English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1538-1549 DOI: 10.7536/PC200844 前一篇   后一篇

• 综述 •

气态酸和有机胺响应的超分子凝胶

曹新华1,*(), 韩晴晴1, 高爱萍1, 王桂霞2   

  1. 1 信阳师范学院化学化工学院/信阳市绿色催化与合成重点实验室 信阳 464000
    2 洛阳师范学院化学化工学院 河南省功能导向多孔材料重点实验室 洛阳 471934
  • 收稿日期:2020-08-20 修回日期:2020-10-22 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 曹新华
  • 基金资助:
    国家自然科学基金项目(U1704164); 河南省高等学校青年骨干教师培养计划项目(2018GGJS127)

Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine

Xinhua Cao1(), Qingqing Han1, Aiping Gao1, Guixia Wang2   

  1. 1 College of Chemistry and Chemical Engineering/Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
    2 College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
  • Received:2020-08-20 Revised:2020-10-22 Online:2021-09-20 Published:2020-12-28
  • Contact: Xinhua Cao
  • Supported by:
    National Natural Science Foundation of China(U1704164); Training Project for Youth Backbone Teachers in College and Universities of Henan Province(2018GGJS127)

超分子凝胶是由有机分子在非共价键作用力驱动下自组装形成的一种具有液态和固态双重性质的软物质。超分子凝胶能对多种外界刺激做出响应,广泛应用于催化和传感等领域。与传统的小分子探针相比,超分子凝胶传感器显示出了多种检测模式和多信号输出的优点,如超分子凝胶材料的内部三维网络结构和较大的接触面积有利于分析物的快速渗透,并且其凝胶状态的变化可以作为检测过程中的输出信号。此外,干凝胶薄膜材料还具有三维网络结构,在检测气体分析物方面表现出优异的检测性能。本文重点介绍了超分子凝胶在气态酸和有机胺检测中的应用以及相关超分子凝胶的设计和检测机理,为构建用于气态酸和有机胺检测的新型超分子凝胶提供了参考。最后总结了超分子凝胶在气态酸和有机胺检测中存在的问题及应用前景。

Supramolecular gels as important soft materials are formed by self-assembly of organic molecules under the driving force of non-covalent interactions, which can gel organic solvents or water. These materials possess both liquid and solid properties. This kind of materials with the advantages of stimulus response behavior and easy modification is widely used in many fields such as chemistry, biology, medicine and energy. Compared with the traditional small-molecule probes, supramolecular gels have many advantages for their application as chemical sensors. For example, the internal three-dimensional network structure of supramolecular gel material and its large contact area facilitate the rapid infiltration of analytes, and the change of gel state can be used as the output signal in the detection process. In addition, the xerogel film material also has a three-dimensional network structure, which also shows excellent detection performance in the detection of gaseous analytes. This work focuses on the application of supramolecular gels in the detection of gaseous acids and organic amines, as well as the designs and detection mechanisms of supramolecular gels, so as to provide reference for the construction of new supramolecular gels for the detection of gaseous acids and organic amines. Finally, the problems and prospects in the application of supramolecular gels are summarized and prospected.

Contents

1 Introduction

2 Mechanism of supramolecular gel response to gaseous acids and organic amines

3 Application of supramolecular gels for detection of gaseous acids and organic amines

3.1 Gaseous acid-responsive supramolecular gel

3.2 Organic amine-responsive supramolecular gel

3.3 Gaseous acid and organic amine-dual-responsive supramolecular gel

4 Conclusion and outlook

()
表1 具有响应气态酸和有机胺的分子结构
Table 1 Chemical structures of molecules with response towards gaseous acids and organic amines
图1 Lu等报道的菲并咪唑衍生物凝胶因子1~3[34]
Fig.1 Chemical structures of gelators 1~3 based on phenanthroimidazole derivative reported by Lu[34]
图2 Lu等报道的咔唑衍生物凝胶因子4,5[35]
Fig.2 Chemical structures of gelators 4,5 based on carbazole derivative reported by Lu[35]
图3 由Lu等报道的氰基苯乙烯功能化凝胶因子6,7[36]
Fig.3 Chemical structures of gelators 6,7 with cyanostilbene group reported by Lu[36]
图4 Lu等报道的含有苯并六元杂化的β-亚胺酮及其二氟化硼络合物凝胶因子8A~15A和8B~15B[37]
Fig.4 Chemical structures of gelators 8A~15A and 8B~15B based on β-iminoenolate and their difluoroboron complexes reported by Lu[37]
图5 Xue等报道的含有苯并口恶唑氰基苯乙烯衍生物凝胶因子16[38]
Fig.5 Chemical structure of gelator 16 based on cyanostilbene derivative containing benzoxazole reported by Xue[38]
图6 Bhattacharya等报道的双组分凝胶体系结构[39]
Fig.6 Chemical structure of gelator 17 and NDI reported by Bhattacharya[39]
图7 Xue等报道的双组分凝胶因子18[40]
Fig.7 Chemical structure of two-component gelator 18 reported by Xue[40]
图8 Yi等报道的萘酰亚胺基凝胶因子19及其对脂肪胺和芳香胺的区分[41]
Fig.8 Chemical structure of 19 reported by Yi and explanation of ultrasound-accelerated gelation for visual and reversible sensing of amines[41]
图9 Lu等报道的D-A-D型β-二酮二氟硼配合物凝胶因子20~22[42]
Fig.9 Chemical structures of D-A-D type difluoroboron β-diketonate complexes 20~22 reported by Lu[42]
图10 Xue等报道的低聚(p-苯乙烯)凝胶因子23[43]
Fig.10 Chemical structure of 23 based on oligo(p-phenylenevinylene) derivative reported by Xue[43]
图11 本课题组报道的萘酰亚胺凝胶因子24,25[44]
Fig.11 Chemical structures of 24 and 25 based on bis-naphthalimides derivative reported by our group[44]
图12 本课题组报道的4-位异丙氧基硼酸酯改性的萘酰亚胺凝胶因子26,27[45]
Fig.12 Chemical structures of 26 and 27 based on naphthalimides derivative modified with isopropoxyboronic acid ester reported by our group[45]
图13 Yu等报道的三联吡啶凝胶因子28[46]
Fig.13 Chemical structure of 28 based on terpyridine derivative reported by Yu[46]
图14 本课题组报道的3-羟基萘酰亚胺类凝胶因子29~31[47]
Fig.14 Chemical structures of 29~31 based on 3-hydroxy-1,8-naphthalimide derivative reported by our group[47]
图15 Mahapatra等报道的凝胶因子32a, 32b和铱配合物[49]
Fig.15 Chemical structures of gelators 32a, 32b and Iridium complex reported by Mahapatra[49]
图16 Maji等报道的多功能凝胶因子33[50]
Fig.16 Chemical structure of gelator 33 with multi-function reported by Maji[50]
图17 Xue等报道的苯并口恶唑类凝胶因子34[51]
Fig.17 Chemical structure of 34 from benzoxazole derivative reported by Xue[51]
图18 Xue等报道的氰基乙烯吖啶衍生物凝胶因子35,36[52]
Fig.18 Chemical structures of 35 and 36 based on cyano-substituted vinylacridine derivatives reported by Xue[52]
图19 本课题组报道的噻吩衍生物类凝胶因子37和铱配合物Ir[53]
Fig.19 Chemical structure of 37 based on thiophene derivative and iridium complex reported by our group[53]
图20 本课题组报道的喹啉衍生物凝胶因子38[54]
Fig.20 Chemical structure of 38 based on quinoline derivative reported by our group[54]
图21 本课题组报道的氰基苯乙烯类凝胶因子39[55]
Fig.21 Chemical structure of 39 based on cyanostilbene derivative reported by our group[55]
图22 本课题组报道的四氮唑修饰的萘酰亚胺衍生物凝胶因子40及其检测过程[56]
Fig.22 Chemical structure of 40 based on naphthalimide derivative with a tetrazole group reported by our group and its detection process[56]
图23 本课题组报道的偶氮苯衍生物凝胶因子41[57]
Fig.23 Chemical structure of 41 based on azobenzene derivative reported by our group[57]
图24 Yu等报道的胆甾基萘酰亚胺衍生物凝胶因子42[58]
Fig.24 Chemical structure of 42 based on naphthalimide derivative with two cholesterol groups reported by Yu[58]
[1]
Prathap A, Sureshan K M. Langmuir, 2019, 35(18): 6005.

doi: 10.1021/acs.langmuir.9b00506     URL    
[2]
Lan Y, Corradini M G, Weiss R G, Raghavan S R, Rogers M A. Chem. Soc. Rev., 2015, 44(17): 6035.

doi: 10.1039/c5cs00136f     pmid: 25941907
[3]
Das D, Kar T, Das P K. Soft Matter, 2012, 8(8): 2348.

doi: 10.1039/C1SM06639K     URL    
[4]
Praveen V K, Vedhanarayanan B, Mal A, Mishra R K, Ajayaghosh A. Acc. Chem. Res., 2020, 53(2): 496.

doi: 10.1021/acs.accounts.9b00580     URL    
[5]
Shimizu T, Ding W X, Kameta N. Chem. Rev., 2020, 120(4): 2347.

doi: 10.1021/acs.chemrev.9b00509     URL    
[6]
Wang P, Yang Q F, Zhao C, Prog. Chem., 2017, 29(7): 750.
(王平, 杨巧凤, 赵传. 化学进展. 2017, 29(7): 750.).

doi: 10.7536/PC170334    
[7]
Yan X H, Zhu P L, Li J B. Chem. Soc. Rev., 2010, 39(6): 1877.

doi: 10.1039/b915765b     URL    
[8]
Lin D W, Xing Q G, Wang Y F, Qi I, Su R X, He Z M. Prog. Chem., 2019, 31(12): 1623.
(林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 化学进展, 2019, 31(12): 1623.).

doi: 10.7536/PC190446    
[9]
Okesola B O, Smith D K. Chem. Soc. Rev., 2016, 45(15): 4226.

doi: 10.1039/C6CS00124F     URL    
[10]
Babu S S, Praveen V K, Ajayaghosh A. Chem. Rev., 2014, 114(4): 1973.

doi: 10.1021/cr400195e     URL    
[11]
Mayr J, Saldías C, Díaz Díaz D. Chem. Soc. Rev., 2018, 47(4): 1484.

doi: 10.1039/C7CS00515F     URL    
[12]
Li J Y, Mooney D J. Nat. Rev. Mater., 2016, 1(12): 1.
[13]
Hapiot F, Menuel S, Monflier E. ACS Catal., 2013, 3(5): 1006.

doi: 10.1021/cs400118c     URL    
[14]
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5): 1660.

doi: 10.1039/C3CS60027K     URL    
[15]
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5): 1734.

doi: 10.1039/C3CS60037H     URL    
[16]
Wu F X, Maier J, Yu Y. Chem. Soc. Rev., 2020, 49(5): 1569.

doi: 10.1039/C7CS00863E     URL    
[17]
Zhong C, Deng Y D, Hu W B, Qiao J L, Zhang L, Zhang J J. Chem. Soc. Rev., 2015, 44(21): 7484.

doi: 10.1039/C5CS00303B     URL    
[18]
Ma R J, Chou S Y, Xie Y, Pei Q B. Chem. Soc. Rev., 2019, 48(6): 1741.

doi: 10.1039/C8CS00834E     URL    
[19]
Wei Z, Yang J H, Zhou J X, Xu F, Zrínyi M, Dussault P H, Osada Y, Chen Y M. Chem. Soc. Rev., 2014, 43(23): 8114.

doi: 10.1039/C4CS00219A     URL    
[20]
Yu X D, Chen L M, Zhang M M, Yi T. Chem. Soc. Rev., 2014, 43(15): 5346.

doi: 10.1039/C4CS00066H     URL    
[21]
Wang S T, Liu K S, Yao X, Jiang L. Chem. Rev., 2015, 115(16): 8230.

doi: 10.1021/cr400083y     URL    
[22]
Kuang M X, Wang J X, Jiang L. Chem. Soc. Rev., 2016, 45(24): 6833.

doi: 10.1039/C6CS00562D     URL    
[23]
Liu M H, Zhang L, Wang T. Chem. Rev., 2015, 115(15): 7304.

doi: 10.1021/cr500671p     URL    
[24]
Jin Q X, Li J, Li X G, Zhang L, Fang S M, Liu M H. Prog. Chem., 2014, 26(6): 919.
(靳清贤, 李晶, 靳清贤, 李孝刚, 张莉, 方少明, 刘鸣华. 化学进展, 2014, 26(6): 919.).
[25]
Busschaert N, Caltagirone C, van Rossom W, Gale P A. Chem. Rev., 2015, 115(15): 8038.

doi: 10.1021/acs.chemrev.5b00099     pmid: 25996028
[26]
Ren Y S, Xie S, Svensson Grape E, Inge A K, Ramström O. J. Am. Chem. Soc., 2018, 140(42): 13640.

doi: 10.1021/jacs.8b09843     URL    
[27]
Liu J Y, Yuan F, Ma X Y, Auphedeous D I Y, Zhao C L, Liu C T, Shen C Y, Feng C L. Angew. Chem. Int. Ed., 2018, 57(22): 6475.

doi: 10.1002/anie.v57.22     URL    
[28]
Tu Y F, Peng F, Adawy A, Men Y J, Abdelmohsen L K E A, Wilson D A. Chem. Rev., 2016, 116(4): 2023.

doi: 10.1021/acs.chemrev.5b00344     URL    
[29]
Liu G F, Zhang D, Feng C L. Angew. Chem. Int. Ed., 2014, 53(30): 7789.

doi: 10.1002/anie.201403249     URL    
[30]
Miao R, Peng J X, Fang Y. Langmuir, 2017, 33(40): 10419.

doi: 10.1021/acs.langmuir.6b04655     URL    
[31]
Huang R R, Liu K, Liu H J, Wang G, Liu T H, Miao R, Peng H N, Fang Y. Anal. Chem., 2018, 90(23): 14088.

doi: 10.1021/acs.analchem.8b04897     URL    
[32]
Chang X M, Zhou Z X, Shang C D, Wang G, Wang Z L, Qi Y Y, Li Z Y, Wang H, Cao L P, Li X P, Fang Y, Stang P J. J. Am. Chem. Soc., 2019, 141(4): 1757.

doi: 10.1021/jacs.8b12749     URL    
[33]
Che Y K, Yang X M, Loser S, Zang L. Nano Lett., 2008, 8(8): 2219.

doi: 10.1021/nl080761g     URL    
[34]
Peng J, Sun J B, Gong P, Xue P C, Zhang Z Q, Zhang G H, Lu R. Chem. Asian J., 2015, 10(8): 1717.

doi: 10.1002/asia.v10.8     URL    
[35]
Sun J B, Xue P C, Sun J B, Gong P, Wang P P, Lu R. J. Mater. Chem. C, 2015, 3(34): 8888.

doi: 10.1039/C5TC02012C     URL    
[36]
Wu Z, Sun J B, Zhang Z Q, Gong P, Xue P C, Lu R. RSC Adv., 2016, 6(99): 97293.

doi: 10.1039/C6RA20910F     URL    
[37]
Wu Z, Sun J B, Zhang Z Q, Yang H, Xue P C, Lu R. Chem. Eur. J., 2017, 23(8): 1901.

doi: 10.1002/chem.v23.8     URL    
[38]
Xue P C, Yao B Q, Shen Y B, Gao H Q. J. Mater. Chem. C, 2017, 5(44): 11496.

doi: 10.1039/C7TC03752J     URL    
[39]
Bhattacharjee S, Maiti B, Bhattacharya S. Nanoscale, 2016, 8(21): 11224.

doi: 10.1039/c6nr01128d     pmid: 27187776
[40]
Wang S S, Xue P C, Wang P P, Yao B Q. New J. Chem., 2015, 39(9): 6874.

doi: 10.1039/C5NJ01168J     URL    
[41]
Pang X L, Yu X D, Lan H C, Ge X T, Li Y J, Zhen X L, Yi T. ACS Appl. Mater. Interfaces, 2015, 7(24): 13569.

doi: 10.1021/acsami.5b03000     URL    
[42]
Zhai L, Liu M Y, Xue P C, Sun J B, Gong P, Zhang Z Q, Sun J B, Lu R. J. Mater. Chem. C, 2016, 4(34): 7939.

doi: 10.1039/C6TC01790H     URL    
[43]
Xue P C, Yao B Q, Ding J P, Shen Y B, Wang P P, Lu R, Zhao X J. ChemistrySelect, 2017, 2(9): 2841.

doi: 10.1002/slct.201700423     URL    
[44]
Cao X H, Zhao N, Gao A P, Lv H T, Jia Y L, Wu R M, Wu Y Q, Mater. Sci. Eng. C, 2017, 70: 216.

doi: 10.1016/j.msec.2016.08.079     URL    
[45]
Cao X H, Ding Q Q, Zhao N, Gao A P, Jing Q S. Sens. Actuat. B: Chem., 2018, 256: 711.

doi: 10.1016/j.snb.2017.09.210     URL    
[46]
Wang Y Q, Yu X D, Li Y J, Zhang Y J, Geng L J, Shen F J, Ren J J. ACS Appl. Mater. Interfaces, 2019, 11(21): 19605.

doi: 10.1021/acsami.9b02592     URL    
[47]
Cao X H, Li Y R, Gao A P, Yu Y S, Chang X P, Hei X H. ACS Appl. Polym. Mater., 2019, 1(6): 1485.

doi: 10.1021/acsapm.9b00238     URL    
[48]
Yuan J P, Wen D, Gaponik N, Eychmüller A. Angew. Chem., 2013, 125(3): 1010.

doi: 10.1002/ange.201205791     URL    
[49]
Mahapatra T S, Singh H, Maity A, Dey A, Pramanik S K, Suresh E, Das A. J. Mater. Chem. C, 2018, 6(36): 9756.

doi: 10.1039/C8TC03487G     URL    
[50]
Sutar P, Maji T K. Inorg. Chem., 2017, 56(16): 9417.

doi: 10.1021/acs.inorgchem.7b01002     URL    
[51]
Xue P C, Yao B Q, Wang P P, Gong P, Zhang Z Q, Lu R. Chem. Eur. J., 2015, 21(48): 17508.

doi: 10.1002/chem.201502401     URL    
[52]
Xue P C, Ding J P, Shen Y B, Gao H Q, Zhao J Y, Sun J B, Lu R. J. Mater. Chem. C, 2017, 5(44): 11532.

doi: 10.1039/C7TC03192K     URL    
[53]
Cao X H, Zhao N, Zou G D, Gao A P, Ding Q Q, Zeng G J, Wu Y Q. Soft Matter, 2017, 13(20): 3802.

doi: 10.1039/C7SM00714K     URL    
[54]
Cao X H, Ding Q Q, Gao A P, Li Y R, Chang X P, Wu Y Q. New J. Chem., 2018, 42(8): 6305.

doi: 10.1039/C8NJ00753E     URL    
[55]
Cao X H, Ding Q Q, Li Y R, Gao A P, Chang X P. J. Mater. Chem. C, 2019, 7(1): 133.

doi: 10.1039/C8TC04964E     URL    
[56]
Cao X H, Li Y R, Gao A P, Yu Y S, Zhou Q J, Chang X P, Hei X H. J. Mater. Chem. C, 2019, 7(34): 10589.

doi: 10.1039/C9TC03243F     URL    
[57]
Cao X H, Li Y R, Yu Y C, Fu S Y, Gao A P, Chang X P. Nanoscale, 2019, 11(22): 10911.

doi: 10.1039/C9NR01433K     URL    
[58]
Wang T, Yu X D, Li Y J, Ren J J, Zhen X L. ACS Appl. Mater. Interfaces, 2017, 9(15): 13666.

doi: 10.1021/acsami.6b15249     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[6] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[7] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[8] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[9] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[10] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[11] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[12] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[13] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[14] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[15] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.