English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 1982-1995 DOI: 10.7536/PC211217 前一篇   后一篇

• 综述 •

电喷印刷柔性传感器

卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉*(), 胡文平*()   

  1. 天津大学理学院 天津市分子光电科学重点实验室 天津 300072
  • 收稿日期:2021-12-15 修回日期:2022-03-19 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    科技部重点研发计划(2018YFA0703200); 国家自然科学基金项目(51973154); 天津市自然科学基金重点项目(20JCZDJC00680)

Flexible Sensors Based on Electrohydrodynamic Jet Printing

Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang(), Wenping Hu()   

  1. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University,Tianjin 300072, China
  • Received:2021-12-15 Revised:2022-03-19 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: yanghui2018@tju.edu.cn (Hui Yang);huwp@tju.edu.cn (Wenping Hu)
  • Supported by:
    Ministry of Science and Technology of China(2018YFA0703200); National Natural Science Foundation of China(51973154); Natural Science Foundation of Tianjin(20JCZDJC00680)

柔性传感器因其在弯折、扭曲、拉伸等大变形条件下具有稳定的传感性能,所以在软体机器人、可穿戴电子和生物医疗等领域具有潜在的应用前景,受到了国内外研究者的广泛关注。与传统光刻技术相比,印刷技术制造作为增材制造,具有绿色、低成本和可大面积制造的优势,被广泛应用于柔性电子器件制备。其中,电流体动力喷墨打印(电喷印)技术因其具有多种功能材料的兼容性,被认为最有可能替代传统的光刻技术,实现柔性传感器高分辨率和跨规模制造。近年来,电喷印技术在微型化柔性传感器制造领域显示出广泛的应用潜力。本综述重点介绍了电喷印刷柔性传感器的工艺、材料和应用的最新研究进展。首先,详细介绍了电流体动力喷墨打印技术的工作原理,总结了用于电喷印的各种功能性墨水材料,然后,介绍了电喷印刷中墨水和柔性基底间表界面调控的问题。随后,综述了电喷印方法在柔性压力传感器、柔性气体传感器和柔性电化学传感器等柔性传感器制造的应用进展。最后,总结讨论了下一代电喷印刷技术在柔性传感器领域的机遇与挑战。

Flexible sensors have potential applications in the fields of soft robotic, wearable electronics and biomedical, etc., due to their stable sensing performance under large deformation conditions, such as,bending, twisting, and stretching. Compared with traditional photolithography technology for constructing flexible sensors, printing as one of additive manufacturing technologies has the advantages of green, low-cost and large-area manufacturing. In various printing technologies, electrohydrodynamic jet (e-jet) printing technology enable replace traditional lithography technology to fabricate high-resolution flexible sensors, because its compatibility with multiple functional materials and special working mechanism. Recently, e-jet printing technology shows wide application prospects in the fields of miniaturized flexible sensors, such as flexible pressure sensors, flexible gas sensors and flexible electrochemical sensors. In the review, we focused on the recent developments of materials, processes and applications of e-jet printing technology in the field of flexible sensor. Firstly, we introduced the working principle of e-jet printing technology and various e-jet printing ink materials in detail. Then, the interface controlling methods between ink and flexible substrate in e-jet printing progress were discussed. Subsequently, the applications of e-jet printing technology for flexible pressure sensors, flexible gas sensors and flexible electrochemical sensors were provided. Finally, we presented the future challenges and opportunities of next-generation e-jet printing in high resolution flexible sensors.

Contents

1 Introduction

2 E-jet printing

2.1 Principles of e-jet printing technique

2.2 Functional ink materials

2.3 Interface control in e-jet printing progress

3 Applications of e-jet printing in flexible sensors

3.1 flexible pressure sensors

3.2 flexible gas sensors

3.3 flexible electrochemical sensors

4 Conclusion and outlook

()
图1 (a)丝网印刷[34]和(b)喷墨打印的过程示意图[36]
Fig. 1 Schematic diagram of (a) screen printing[34].Copyright 2019, John Wiley and Sons and (b) inkjet printing process[36]. Copyright 2013, American Chemical society
图2 电流体喷墨打印柔性传感器示意图
Fig. 2 Schematic diagram of E-jet printing flexible sensor
图3 电流体喷墨打印设备结构图[42]
Fig. 3 Structure diagram of E-jet printing[42]
图4 (a)圆锥形喷射示意图[37]。由于在喷嘴尖端和基底之间施加电压产生电场,纳米颗粒墨水从喷嘴尖端形成锥形墨水弯液面的顶点墨水喷射;(b)喷嘴的SEM图像[37];(c)电喷印刷中观察到的6种不同模式[48]
Fig. 4 (a) Schematic diagram of the Conical E-jet printing[37]. Due to the application of a voltage between the nozzle tip and the receiving substrate to generate an electric field, the nanoparticle ink is ejected from the apex of the conical ink meniscus formed at the tip of the nozzle nozzle. (b) SEM images of nozzle.[37]. Copyright 2007, Springer Nature. (c) Six different ejection modes observed in E-jet printing technique[48]. Copyright 2015, John Wiley and Sons
图5 (a)在柔性基底上电喷印刷银墨水的微电极阵列;(b)和(c)印刷的高分辨率图案[52];(d)曲面玻璃上电喷印刷金墨水的光学照片;(e)和(f)在12 V DC电压下加热器的红外图像[53]
Fig. 5 (a) E-jet printed silver ink mic-roelectrode array on a flexible substrate. (b) and (c) Printed high resolution patterns[52]. Copyright 2013, Elsevier. (d) Optical photo of E-jet printing Au ink on curved glass. (e) and (f) Infrared image of heater at 12 V DC voltage[53]
图6 (a)PEDOT:PSS/GR/SWCNT墨水制备工艺流程图[59];(b)聚苯胺墨水电喷印刷在电极上[51]
Fig. 6 (a) PEDOT:PSS/GR/SWCNT ink preparation process flow chart[59]. Copyright 2021, Elsevier. (b) Polyaniline ink E-jet printing on the electrode[51]
图7 (a)氧化石墨烯作为墨水的电喷印示意图[68];(b)印刷微尺度石墨烯不同图案的光学显微照片[69]
Fig. 7 (a) Schematic diagram of electrojet printing of T graphene oxide as ink[68]. (b) Optical micrographs of different patterns of printed micro-scale graphene[69]
图8 (a)电喷印刷通过静电纺丝和破碎工艺制备的金属氧化物纳米纤维;(b)在传感电极和加热器上电喷印刷制备纳米纤维气体传感器阵列[72]
Fig. 8 (a) E-jet printing metal oxide nanofibers prepared by electrostatic spinning and crushing process. (b) Gas sensor array of nanofibers fabricated by E-jet printing on the sensing electrodes and microheaters[72]. Copyright 2017, Elsevier
图9 (a)AgNP溶液纳米图案化方案;(b)不同成分的AgNP 溶液蒸发示意图[76]
Fig. 9 (a) The AgNP solution nanopatterning scheme. (b) Schematic illustrations of the evaporation of AgNP solutions with different compositions[76]. Copyright 2019, John Wiley and Sons
图10 (a) 液滴的蒸发过程示意图;(b)在柔性聚酰亚胺基板上印刷出的各种复杂图案[75]
Fig. 10 (a) Schematic diagram of the evaporation process for a printed droplet. (b) Various complex patterns printed on flexible polyimide substrates[75]. Copyright 2019, The Royal Society of Chemistry
图11 (a)柔性压力传感器制备过程示意图;(b)手指弯曲不同角度的图像和颈部肌肉的微运动的监测[59]
Fig. 11 (a) Schematic diagram of the preparation process of the flexible pressure sensor. (b) The images of different angles of finger bending and the monitoring of the micro-motion of the neck muscles[59]. Copyright 2021, Elsevier
图12 NFEDW设备结构示意图[59]
Fig. 12 The structure diagram of FNFEDW equipment[59]. Copyright 2021, Elsevier
图13 (a)PDMS基底上电喷印刷圣诞树图案导体,(b)导体在弯曲状态下保持导电,(c)不同程度拉伸应变的光学照片,(d)和(e)导体过度拉伸导出现电路断开的光学照片,(f)和(g)电路断开被修复的光学照片,(h)修复后导体的弯折测试,(i)在多次拉伸-断开-修复测试后的半圆图案,(j)和(k)修复前后失败位置的光学图像,(l)循环拉伸应变函数图像[55]
Fig. 13 (a) Optical picture of the conductor of the E-jet printed Christmas tree pattern on the PDMS substrate.(b) Conductivity test of the conductor in the bent state. (c) Optical photos of different degrees of tensile strain.(d) (a) and (b) An optical photo of a broken circuit caused by excessive stretching of theconductor.(c) and (d) an optical photo of the broken circuit being repaired.(e) bending test of the conductor after repair.(f) multiple stretch-break-Semicircle pattern after repair test.(g) and (h) Optical image of the failed position before and after repair.(i) Cyclic tensile strain function image, (j) and (k) optical images of failure positions before and after repair,(l) images of cyclic tensile strain function[55]
图14 (a) 接触氨气时,导电聚苯胺电阻性改变;(b)HCl掺杂的聚苯胺的传感和校准图[51]
Fig. 14 (a)Conductive polyaniline resistance changes when exposed to ammonia. (b)Sensing and calibration diagrams of HCl-doped polyaniline[51]
图15 (a) 在不同电压下方波和三角波形状中的电喷印刷线条图案的光学显微镜图像;(b) 传感器在MEMS平台的应用;(c) 电喷印刷纳米纤维材料的扫描电子显微镜图像[72]
Fig. 15 (a) Optical image of E-jet printed line patterns in wave and triangle wave shapes under different voltages. (b) The structure of biological field applications. (c) SEM image of E-jet printed nanofiber material[72]. Copyright 2017, Elsevier
图16 (a,b) 按需喷墨模式脉冲电压示意图;(c)按需喷墨印刷点阵列;(d)喷墨印刷连续线;(e)印刷石墨烯线电阻率和线宽随印刷次数的变化;(f)一次印刷石墨烯微结构的拉曼图像[69]
Fig. 16 (a,b) Schematic diagram of pulse voltage in drop-on-demand inkjet mode. (c) Drop-on-demand E-jet printing dot array. (d) Inkjet printing continuous line. (e) Variations of resistivity and line thickness with the number of printing times. (f) Raman spectra of printed graphene[69]
[1]
Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R. Adv. Mater., 2014, 26(1): 149.

doi: 10.1002/adma.201303349     URL    
[2]
Myny K. Nat. Electron., 2018, 1(1): 30.

doi: 10.1038/s41928-017-0008-6     URL    
[3]
Nathan A, Ahnood A, Cole M T, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D P, Flewitt A J, Ferrari A C, Kelly M J, Robertson J, Amaratunga G A J, Milne W I. Proc. IEEE, 2012, 100: 1486.

doi: 10.1109/JPROC.2012.2190168     URL    
[4]
Fan L J, Chen L, He Y, Liu H. Prog. Chem., 2021, 33(5): 767.
( 范路洁, 陈莉, 何崟, 刘皓. 化学进展, 2021, 33(5): 767.).

doi: 10.7536/PC200616    
[5]
Pan Z Y, Ma J Z, Zhang W B, Wei L F. Progress in Chemistry, 2020, 32: 1592.
( 潘朝莹, 马建中, 张文博, 卫林峰. 化学进展, 2020, 32: 1592.).

doi: 10.7536/PC200322    
[6]
Zhou K K, Dai K, Liu C T, Shen C Y. SmartMat, 2020, 1(1): e1010.
[7]
Ying Z P, Huang Y A, Bu N B, Wang X M, Xiong Y L. Chinese Sci Bull, 2010, 55: 2487.
( 尹周平, 黄永安, 布宁斌, 王小梅, 熊有伦. 中国科学, 2010, 55: 2487.).
[8]
Huang Y A, Ding Y J, Bian J, Su Y W, Zhou J, Duan Y Q, Yin Z P. Nano Energy, 2017, 40: 432.

doi: 10.1016/j.nanoen.2017.07.048     URL    
[9]
Adam Bilodeau R, White E L, Kramer R K. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, 2324.
[10]
Yang H, Leow W R, Chen X D. Small Methods, 2018, 2(1): 1700259.

doi: 10.1002/smtd.201700259     URL    
[11]
Yang H, Leow W R, Chen X D. Adv. Mater., 2018, 30(13): 1704347.

doi: 10.1002/adma.201704347     URL    
[12]
Wu F M, Liu Y X, Zhang J, Duan S M, Ji D Y, Yang H. Small Methods, 2021, 5(12): 2100676.

doi: 10.1002/smtd.202100676     URL    
[13]
Wang M, Yan Z, Wang T, Cai P Q, Gao S Y, Zeng Y, Wan C J, Wang H, Pan L, Yu J C, Pan S W, He K, Lu J, Chen X D. Nat. Electron., 2020, 3(9): 563.

doi: 10.1038/s41928-020-0422-z     URL    
[14]
Park Y G, Lee S, Park J U. Sensors, 2019, 19(20): 4353.

doi: 10.3390/s19204353     URL    
[15]
Chen J, Zheng J H, Gao Q W, Zhang J J, Zhang J Y, Omisore O, Wang L, Li H. Appl. Sci., 2018, 8(3): 345.

doi: 10.3390/app8030345     URL    
[16]
Sanderson K. Nature, 2021, 591(7851): 685.

doi: 10.1038/d41586-021-00739-z     URL    
[17]
Gang W, Gao X Y, Xing Y, Wang H P. Journal of functional materials and devices, 2021, 27: 105.
( 王刚, 高贤永, 邢毅, 汪浩鹏. 功能材料与器件学报, 2021, 27: 105.).
[18]
Qi D P, Liu Z Y, Leow W R, Chen X D. MRS Bull., 2017, 42(2): 103.

doi: 10.1557/mrs.2017.7     URL    
[19]
Lee W, Kim D, Rivnay J, Matsuhisa N, Lonjaret T, Yokota T, Yawo H, Sekino M, Malliaras G G, Someya T. Adv. Mater., 2016, 28(44): 9722.

doi: 10.1002/adma.201602237     URL    
[20]
Liu Y H, Pharr M, Salvatore G A. ACS Nano, 2017, 11(10): 9614.

doi: 10.1021/acsnano.7b04898     URL    
[21]
Zhang X, Jiang X P, Zhang Z, Qin H T. Int. J. Adv. Manuf. Technol., 2021, 114(1/2): 241.

doi: 10.1007/s00170-021-06858-1     URL    
[22]
Bian Y S, Liu K, Guo Y L, Liu Y Q. Acta Chim. Sinica, 2020, 78, 848.

doi: 10.6023/A20050197     URL    
( 边洋爽, 刘凯, 郭云龙, 刘云圻. 化学学报, 2020, 78, 848.).

doi: 10.6023/A20050197    
[23]
Sekitani T, Zschieschang U, Klauk H, Someya T. Nat. Mater., 2010, 9(12): 1015.

doi: 10.1038/nmat2896     URL    
[24]
Gili E, Caironi M, Sirringhaus H. Appl. Phys. Lett., 2012, 100(12): 123303.

doi: 10.1063/1.3696487     URL    
[25]
Shen W F, Zhang X P, Huang Q J, Xu Q S, Song W J. Nanoscale, 2014, 6(3): 1622.

doi: 10.1039/C3NR05479A     URL    
[26]
Jang D, Kim D, Moon J. Langmuir, 2009, 25(5): 2629.

doi: 10.1021/la900059m     URL    
[27]
Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y, Itoh A, Yokota T, Hashizume D, Someya T. Nat. Mater., 2017, 16(8): 834.

doi: 10.1038/nmat4904     pmid: 28504674
[28]
Matsuhisa N, Kaltenbrunner M, Yokota T, Jinno H, Kuribara K, Sekitani T, Someya T. Nat. Commun., 2015, 6: 7461.

doi: 10.1038/ncomms8461     pmid: 26109453
[29]
Zhang J, Zhang X T, Ren X C, Hu W P. Progress in Chemistry, 2021, 33: 490.

doi: 10.7536/PC200560    
( 张静, 张小涛, 任晓辰, 胡文平. 化学进展, 2021, 33: 490.).

doi: 10.7536/PC200560    
[30]
Yin Z P, Huang Y A, Chen R, Wu Z G, Wu H, Duan Y Q. China Basic Science, 2020, 5: 21.
( 尹周平, 黄永安, 陈蓉, 吴志刚, 吴豪, 段永青. 中国基础科学, 2020, 5: 21.
[31]
Kang S B, Noh Y J, Na S I, Kim H K. Sol. Energy Mater. Sol. Cells, 2014, 122: 152.

doi: 10.1016/j.solmat.2013.11.036     URL    
[32]
Hermerschmidt F, Mathies F, Schröder V R F, Rehermann C, Morales N Z, Unger E L, List-Kratochvil E J W. Mater. Horiz., 2020, 7(7): 1773.

doi: 10.1039/D0MH00512F     URL    
[33]
Wang Y F, Sekine T, Takeda Y, Yokosawa K, Matsui H, Kumaki D, Shiba T, Nishikawa T, Tokito S. Sci. Rep., 2020, 10: 2467.

doi: 10.1038/s41598-020-59432-2     URL    
[34]
Duan S M, Gao X, Wang Y, Yang F X, Chen M X, Zhang X T, Ren X C, Hu W P. Adv. Mater., 2019, 31(16): 1807975.

doi: 10.1002/adma.201807975     URL    
[35]
Seifert T, Baum M, Roscher F, Wiemer M, Gessner T. Mater. Today Proc., 2015, 2(8): 4262.
[36]
Kang B, Lee W H, Cho K. ACS Appl. Mater. Interfaces, 2013, 5(7): 2302.

doi: 10.1021/am302796z     URL    
[37]
Park J U, Hardy M, Kang S J, Barton K, Adair K, Mukhopadhyay D K, Lee C Y, Strano M S, Alleyne A G, Georgiadis J G, Ferreira P M, Rogers J A. Nat. Mater., 2007, 6(10): 782.

doi: 10.1038/nmat1974     URL    
[38]
Kim S Y, Kim K, Hwang Y H, Park J, Jang J, Nam Y, Kang Y, Kim M, Park H J, Lee Z, Choi J, Kim Y, Jeong S, Bae B S, Park J U. Nanoscale, 2016, 8(39): 17113.

pmid: 27722626
[39]
Morozov V N, Morozova T Y. Anal. Chem., 1999, 71(15): 3110.

pmid: 10450156
[40]
An S, Lee M W, Kim N Y, Lee C M, Al-Deyab S S, James S C, Yoon S S. Appl. Phys. Lett., 2014, 105(21): 214102.

doi: 10.1063/1.4902241     URL    
[41]
Barton K, Mishra S, Shorter K A, Alleyne A, Ferreira P, Rogers J. Mechatronics, 2010, 20(5): 611.

doi: 10.1016/j.mechatronics.2010.05.004     URL    
[42]
Sutanto E, Shigeta K, Kim Y K, Graf P G, Hoelzle D J, Barton K L, Alleyne A G, Ferreira P M, Rogers J A. J. Micromech. Microeng., 2012, 22(4): 045008.

doi: 10.1088/0960-1317/22/4/045008     URL    
[43]
Jeong D W, Kim G H, Kim N Y, Lee Z, Jung S D, Lee J O. RSC Adv., 2017, 7(6): 3273.

doi: 10.1039/C6RA26836F     URL    
[44]
Choi H K, Park J U, Park O O, Ferreira P M, Georgiadis J G, Rogers J A. Appl. Phys. Lett., 2008, 92(12): 123109.

doi: 10.1063/1.2903700     URL    
[45]
Onses M S, Sutanto E, Ferreira P M, Alleyne A G, Rogers J A. Small, 2015, 11(34): 4237.

doi: 10.1002/smll.201500593     URL    
[46]
Bober D B, Chen C H. J. Fluid Mech., 2011, 689: 552.

doi: 10.1017/jfm.2011.453     URL    
[47]
Engstrom D S, Porter B, Pacios M, Bhaskaran H. J. Mater. Res., 2014, 29(17): 1792.

doi: 10.1557/jmr.2014.159     URL    
[48]
Lee A, Jin H, Dang H W, Choi K H, Ahn K H. Langmuir, 2013, 29(44): 13630.

doi: 10.1021/la403111m     URL    
[49]
Abbas Z, Wang D Z, Du Z Y, Zhao K P, Du Z L, Lu L K, Cui Y, Liang J S. Microelectron. Eng., 2021, 237: 111496.

doi: 10.1016/j.mee.2020.111496     URL    
[50]
Yang W D, Liu C Y, Zhang Z Y, Liu Y, Nie S D. J. Mater. Chem., 2012, 22(43): 23012.

doi: 10.1039/c2jm34264b     URL    
[51]
Mkhize N, Murugappan K, Castell M R, Bhaskaran H. J. Mater. Chem. C, 2021, 9(13): 4591.

doi: 10.1039/D0TC05719C     URL    
[52]
Qin H T, Dong J Y, Lee Y S. J. Manuf. Process., 2017, 28: 479.

doi: 10.1016/j.jmapro.2017.04.015     URL    
[53]
Liu J P, Xiao L, Rao Z F, Dong B Y, Yin Z P, Huang Y A. Adv. Mater. Technol., 2018, 3(8): 1800155.

doi: 10.1002/admt.201800155     URL    
[54]
Prasetyo F D, Yudistira H T, Nguyen V D, Byun D. J. Micromech. Microeng., 2013, 23(9): 095028.

doi: 10.1088/0960-1317/23/9/095028     URL    
[55]
Han Y W, Dong J Y. Adv. Mater. Technol., 2018, 3(3): 1700268.

doi: 10.1002/admt.201700268     URL    
[56]
Qin H T, Cai Y, Dong J Y, Lee Y S. J. Manuf. Sci. Eng., 2017, 139(3): 031011.

doi: 10.1115/1.4034663     URL    
[57]
Yu D N, Hu Y, Shi J J, Tang H Y, Zhang W H, Meng Q B, Han H W, Ning Z J, Tian H. Sci. China Chem., 2019, 62(6): 684.

doi: 10.1007/s11426-019-9448-3     URL    
[58]
Jiang H, Tang C, Wang Y. Appl. Surf. Sci., 2021, 564: 150447.

doi: 10.1016/j.apsusc.2021.150447     URL    
[59]
Dong H F, Zhang L B, Wu T, Song H J, Luo J Q, Huang F L, Zuo C C. Org. Electron., 2021, 89: 106044.

doi: 10.1016/j.orgel.2020.106044     URL    
[60]
Ouyang J Y. SmartMat, 2021, 2(3): 263.

doi: 10.1002/smm2.1059     URL    
[61]
Chen Y H, Zhou H P. J. Appl. Phys., 2020, 128(6): 060903.

doi: 10.1063/5.0012384     URL    
[62]
Li C H, Prokopec S D, Sun R X, Yousif F, Schmitz N, Subtypes P T, Clinical T, Boutros P C, Consortium P. Nat. Commun., 2020, 11: 4330.

doi: 10.1038/s41467-020-17359-2     URL    
[63]
Lee M W, Kang D K, Kim N Y, Kim H Y, James S C, Yoon S S. J. Aerosol Sci., 2012, 46: 1.

doi: 10.1016/j.jaerosci.2011.11.002     URL    
[64]
Bongiovanni Abel S, Molina M A, Rivarola C R, Kogan M J, Barbero C A. Nanotechnology, 2014, 25(49): 495602.

doi: 10.1088/0957-4484/25/49/495602     URL    
[65]
Mabrook M F, Pearson C, Petty M C. Sens. Actuat. B Chem., 2006, 115(1): 547.

doi: 10.1016/j.snb.2005.10.019     URL    
[66]
Chang J K, He J K, Lei Q, Li D C. ACS Appl. Mater. Interfaces, 2018, 10(22): 19116.

doi: 10.1021/acsami.8b04051     URL    
[67]
Popa D, Wijesundara M B J, Mirza F, Sahasrabuddhe R R, Baptist J R, Wijesundara M B J, Lee W H, Popa D O. Sensors for Next Generation Robotics III, 2016, 9859: 98590.
[68]
Zhang B, Lee J, Kim M, Lee N, Lee H, Byun D. Micromachines, 2019, 11(1): 13.

doi: 10.3390/mi11010013     URL    
[69]
Zhao K P, Wang D Z, Li K, Jiang C Y, Wei Y L, Qian J H, Feng L, Du Z Y, Xu Z, Liang J S. J. Electrochem. Soc., 2020, 167(10): 107508.

doi: 10.1149/1945-7111/ab9c7e     URL    
[70]
Li K, Wang D, Yi S. Rev. Sci. Instrum., 2019, 90: 115001.

doi: 10.1063/1.5090415     URL    
[71]
Huang J, Yang X, Wang J Y, Zhong C, Wang L, Qin J G, Li Z. J. Mater. Chem., 2012, 22(6): 2478.

doi: 10.1039/C1JM14054J     URL    
[72]
Kang K, Yang D, Park J, Kim S, Cho I, Yang H H, Cho M, Mousavi S, Choi K H, Park I. Sens. Actuat. B Chem., 2017, 250: 574.

doi: 10.1016/j.snb.2017.04.194     URL    
[73]
Jeong Y J, Lee X, Bae J. Journal of Materials Chemistry C., 2016, 4: 4912.

doi: 10.1039/C6TC01371F     URL    
[74]
Sun J Z, Kuang M X, Song Y L. Progress in Chemistry, 2015, 27: 979.
( 孙加振, 邝旻翾, 宋延林. 化学进展, 2015, 27: 979.).

doi: 10.7536/PC150230    
[75]
Li H G, Liu N, Shao Z L, Li H Y, Xiao L, Bian J, Li J H, Tan Z F, Zhu M H, Duan Y Q, Gao L, Niu G D, Tang J, Huang Y A, Yin Z P. J. Mater. Chem. C, 2019, 7(47): 14867.

doi: 10.1039/C9TC04394B     URL    
[76]
Zhou P L, Yu H B, Zou W H, Wang Z D, Liu L Q. Adv. Mater. Interfaces, 2019, 6(20): 1900912.

doi: 10.1002/admi.201900912     URL    
[77]
Yunker P J, Still T, Lohr M A, Yodh A G. Nature, 2011, 476(7360): 308.

doi: 10.1038/nature10344     URL    
[78]
Cui L Y, Zhang J H, Zhang X M, Huang L, Wang Z H, Li Y F, Gao H N, Zhu S J, Wang T Q, Yang B. ACS Appl. Mater. Interfaces, 2012, 4(5): 2775.

doi: 10.1021/am300423p     URL    
[79]
Kuang M X, Wang J X, Bao B, Li F Y, Wang L B, Jiang L, Song Y L. Adv. Opt. Mater., 2014, 2(1): 34.

doi: 10.1002/adom.201300369     URL    
[80]
Anyfantakis M, Geng Z, Morel M, Rudiuk S, Baigl D. Langmuir, 2015, 31(14): 4113.

doi: 10.1021/acs.langmuir.5b00453     pmid: 25797472
[81]
Li Y Y, Ai Q Q, Mao L N, Guo J X, Gong T X, Lin Y, Wu G T, Huang W, Zhang X S. Sci. Rep., 2021, 11: 21006.

doi: 10.1038/s41598-021-00307-5     URL    
[82]
Cholleti E, Stringer J, Assadian M, Battmann V, Bowen C, Aw K. Sensors, 2018, 19(1): 42.

doi: 10.3390/s19010042     URL    
[83]
Hu X H, Jiang Y G, Ma Z Q, He Q P, He Y P, Zhou T F, Zhang D Y. ACS Appl. Polym. Mater., 2020, 2(11): 4399.

doi: 10.1021/acsapm.0c00411     URL    
[84]
Mirza F, Sahasrabuddhe R R, Baptist J R, Wijesundara M B J, Lee W H, Popa D O. Sensors for Next-Generation Robotics III, 2016: 9859.
[85]
Nenow D, Trayanov A. Surf. Sci., 1989, 2132-3: 488.
[86]
Zhang X, Chen X, Zhang X,. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 9193.

doi: 10.1073/pnas.1809474115     pmid: 30150383
[87]
Liu X H, Ma T T, Pinna N, Zhang J. Adv. Funct. Mater., 2017, 27(37): 1702168.

doi: 10.1002/adfm.201702168     URL    
[88]
Nikolic M V, Milovanovic V, Vasiljevic Z Z, Stamenkovic Z. Sensors, 2020, 20(22): 6694.

doi: 10.3390/s20226694     URL    
[89]
Liu X, Cheng S T, Liu H, Hu S, Zhang D Q, Ning H S. Sensors, 2012, 12(7): 9635.

doi: 10.3390/s120709635     URL    
[90]
Hübert T, Boon-Brett L, Black G, Banach U. Sens. Actuat. B Chem., 2011, 157(2): 329.

doi: 10.1016/j.snb.2011.04.070     URL    
[91]
Myers R T, Ayers J. J. Appl. Electrochem., 2019, 49(2): 229.

doi: 10.1007/s10800-018-1269-0    
[92]
Li R F, Qi H, Ma Y, Deng Y P, Liu S N, Jie Y S, Jing J Z, He J L, Zhang X, Wheatley L, Huang C X, Sheng X, Zhang M L, Yin L. Nat. Commun., 2020, 11: 3207.

doi: 10.1038/s41467-020-17008-8     URL    
[93]
Li X L, Park H, Lee M H, Hwang B, Kim S H, Lim S. Org. Electron., 2018, 62: 400.

doi: 10.1016/j.orgel.2018.08.032     URL    
[94]
Xu Z, Zou H Q, Wang J, Zhang M Q, Wang D Z, Liu J S. Microsyst. Technol., 2018, 24(2): 1207.

doi: 10.1007/s00542-017-3487-5     URL    
[1] 陈超, 王古月, 田莹, 孔正阳, 李凤龙, 朱锦, 应邬彬. 自愈合聚氨酯的研究进展及其在柔性传感领域的应用[J]. 化学进展, 2023, 35(9): 1275-1293.
[2] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[3] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
阅读次数
全文


摘要

电喷印刷柔性传感器