English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 998-1009 DOI: 10.7536/PC200731 前一篇   后一篇

• 综述 •

污泥中重金属处理方法

陈冠益1,2,3, 韩克旋1, 刘彩霞1,4,*(), 旦增2, 布多2   

  1. 1 天津大学环境科学与工程学院 天津 300350
    2 西藏大学理学院 拉萨 850012
    3 天津商业大学机械工程学院 天津 300134
    4 天津市有机固废安全处置与能源利用工程研究中心 天津 300350
  • 收稿日期:2020-07-14 修回日期:2020-11-17 出版日期:2021-06-20 发布日期:2020-12-28
  • 通讯作者: 刘彩霞
  • 基金资助:
    国家重点研发计划项目(2018YFC1900105)

Removing Heavy Metals from Sludge

Guanyi Chen1,2,3, Kexuan Han1, Caixia Liu1,4,*(), Zeng Dan2, Duo Bu2   

  1. 1 School of Environmental Science and Engineering, Tianjin University,Tianjin 300350, China
    2 School of Sciences, Tibet University, Lasa 850012, China
    3 School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
    4 Tianjin Engineering Research Center for Organic Solid Waste Treatment and Energy Utilization, Tianjin University, Tianjin 300350, China
  • Received:2020-07-14 Revised:2020-11-17 Online:2021-06-20 Published:2020-12-28
  • Contact: Caixia Liu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Program of China(2018YFC1900105)

污泥特别是燃煤电厂脱硫废水污泥中的重金属严重超标,属于危险固体废物。据统计,我国市政污泥年产量已经突破5000万吨,脱硫废水污泥每年产量更是高达9000万吨,如果不进行妥当的重金属处置,会造成严重的二次污染和环境健康风险。本文介绍了污泥处理的国内外现状和污泥重金属的测定及评价方法,并从原理、反应装置、研究进展和热点等方面详细总结了化学法、电动法、生物法、热处理法和稳定化法的优缺点,阐明了各种方法中的现存问题和发展前景,最后对多方法联合方案提出了前景展望。

The heavy metals in sludge, especially flue gas desulphurization wastewater sludge, exceed the standard seriously, which belongs to hazardous solid waste. The annual production of sewage sludge in China has exceeded 50 million tons. It is calculated that only the annual production of flue gas desulphurization wastewater sludge in coal-fired power plants reaches 90 million tons. The heavy metals in sludge, if not disposed of properly, will cause very serious secondary pollution to the ecological environment. This paper introduces the present situation of sludge treatment at home and abroad and the determination and estimation methods of heavy metals in sludge. The advantages and disadvantages of chemical process, electrokinetic treatment, bioleaching process, thermal treatment and stabilization are summarized in detail from the aspects of principle, reaction device, research progress, and hot spot. Furthermore, the authors shed light on the existing problems and development prospects of each method. In the end, the paper puts forward the prospect of economical and efficient implementation device and technical scheme with strong application.

Contents

1 Introduction

2 Determination and Estimation methods

2.1 Determination methods

2.2 Estimation methods

3 Advanced technology for disposal of heavy metal in sludge

3.1 Chemical process

3.2 Electrokinetic treatment

3.3 Bioleaching process

3.4 Thermal treatment

3.5 Stabilization

4 Conclusion and outlook

()
表1 污泥基本理化性质[3⇓⇓⇓~7]
Table 1 Basic physical and chemical characteristics of sludge[3⇓⇓⇓~7]
表2 污泥重金属含量[4,5,7,8]
Table 2 Heavy metal content of sludge[4,5,7,8]
表3 地质累积指数污染标准
Table 3 Criteria of Geoaccumlation Index
表4 潜在生态风险指数法分组标准
Table 4 Grouping criteria of potential ecological risk index
表5 不同药剂条件下的化学法对比[15⇓⇓⇓⇓⇓⇓~22]
Table 5 Comparison of chemical process with different medicaments[15⇓⇓⇓⇓⇓⇓~22]
图1 电动法反应装置:(a)长方体;(b)圆柱形[27,29]
Fig.1 The reactor of electrokinetic treatment[27,29]:(a)cuboid;(b)cylindrical
表6 不同实验条件下的电动法对比[26⇓~28,30]
Table 6 Comparison of electrokinetic treatment with different experimental condition[26⇓~28,30]
Pretreatment The source of
sludge
Mechanism Experimental condition Remove Rate Power Consumption
(kW·h·kg-1)
Deionized Water Sewage Sludge + Soil Electromigration,electrodialysis and electrophoresis. 2 V·cm-1, 150 h Cu 1%
Pb 2%
0.40
Polyepoxysuccinic Acid(PESA) Application of PASP as anode working fluid can slow down corrosion of uninduced steel electrodes 2 V·cm-1, 150 h Cu 46%
Pb 33%
0.83
Citric Acid Citric acid transformed residual fraction heavy metal into unstable fraction. 2 V·cm-1, 150 h Cu 16%
Pb 22%
0.82
Polyepoxysuccinic Acid(PESA) + Citric Acid PASP and citric acid enhanced chelation effect. 2 V·cm-1, 150 h Cu 18%
Pb 29%
1.35
Deionized Water Sewage Sludge Electromigration,electrodialysis and electrophoresis. 1.5 V·cm-1, pH=6, 5 d Pb 28%
Ammonia Sewage Sludge Ammonia increased the proportion of acid soluble fraction heavy metals. Vammonia:Vwater:Vsludge= 0.4∶1∶4 Cu 66%
Pb 41%
Zn 81%
1.1
Ethylenediamine Addition of ethylenediamine does not affect sludge acidification and current density. Vammonia:Vwater:Vsludge=0.2∶1∶4 Cu 65%
Pb 53%
Zn 82%
1.2
Magnetization Sewage Sludge The applied magnetic field produces a greater current density 2 V·cm-1, 9.5 mT,
15 g·L-1, 6 h
Cd 97%
Pb 28%
Zn 89%
0.07
Rhamnolipid Sewage Sludge Rhamnolipid has strong functional groups to form mobile heavy metal complexes and it can reduce the surface tension and increase heavy metals solubility 2 V·cm-1, 192 h,
2 g·L-1
Cu 56%
Pb 52%
Zn 74%
Cr 64%
0.06
Sodium nitrate(NaNO3) Municipal Sludge Addition of NaNO3 effect the current density and pH. 2.0 mA/cm2, 132 h Cu 83%
Ni 75%
2.39
表7 各菌种的生物浸提法对比[39⇓⇓⇓⇓⇓⇓~46]
Table 7 Comparison of bioleaching process with different kinds of bacteria[39⇓⇓⇓⇓⇓⇓~46]
图2 一种典型的热处理法反应装置[51]
Fig. 2 A typical thermal treatment reactor[51]
表8 不同反应温度下的热处理法对比[49,50,52⇓⇓⇓ ~56]
Table 8 Comparison of thermal treatment with different reaction temperature[49,50,52⇓⇓⇓ ~56]
表9 不同药物添加下稳定化法的重金属稳定态增加量对比[62⇓~64,67⇓ ~69]
Table 9 Comparison of recruitment of stable heavy metals by stabilization with different drugs[62⇓~64,67⇓ ~69]
表10 污泥重金属处理方法对比
Table 10 Comparison of different heavy metal processes of sludge
[1]
Li L P. China Urban-Rural Construction Statistical Yearbook. Beijing: China Statistics Press. 2017.288.
(李礼平. 中国城乡建设统计年鉴. 北京: 中国统计出版社. 2017.288.).
[2]
Raheem A, Sikarwar V S, He J, Dastyar W, Dionysiou D D, Wang W, Zhao M. Chem. Eng. J., 2018, 337:616.

doi: 10.1016/j.cej.2017.12.149     URL    
[3]
Xue H Y, Zhan Y, Zhang J Y, Wu P. Res. Explor. Lab., 2014, 33:28.
(薛红艳, 战友, 张劲勇, 吴鹏. 实验室研究与探索, 2014, 33:28.).
[4]
Zhao M. Sci. Technol. Inform., 2017, 15(29):113.
(赵宇明. 科技资讯, 2017, 15(29): 113.)
[5]
Liu X. Master Dissertation of South China University of Technology, 2010.
(刘欣. 华南理工大学硕士论文, 2010.).
[6]
Chen J B. Master Dissertation of Dalian University of Technology, 2016.
(陈建标. 大连理工大学硕士论文, 2016.).
[7]
Li L. Master Dissertation of Jiangnan University, 2014.
(李磊. 江南大学硕士论文, 2014.).
[8]
Guo G H, Chen T B, Yang J, Zheng G D, Gao D. Acta Sci. Circumst., 2014, 34(10):2455.
(郭广慧, 陈同斌, 杨军, 郑国砥, 高定. 环境科学学报, 2014, 34(10): 2455.)
[9]
Hudcová H, Vymazal J, Rozkošný M. Soil & Water Res., 2019, 14:104.
[10]
Camargo F P, Sérgio Tonello P, dos Santos A C A, Duarte I C S,. Water Air Soil Pollut., 2016, 227:433.

doi: 10.1007/s11270-016-3141-3     URL    
[11]
Koralegedara N H, Pinto P X, Dionysiou D D, Al-Abed S R. J. Environ. Manag., 2019, 251:109572.

doi: 10.1016/j.jenvman.2019.109572     URL    
[12]
Salih H, Patterson C, Li J X, Mock J, Dastgheib S A. Energy Fuels, 2018, 32:6627.

doi: 10.1021/acs.energyfuels.8b00823     URL    
[13]
Cieślik B M, Namieśnik J, Konieczka P.. J. Clean. Prod., 2015, 90:1.

doi: 10.1016/j.jclepro.2014.11.031     URL    
[14]
Ebbers B, Ottosen L M, Jensen P E. Electrochimica Acta, 2015, 181:90.

doi: 10.1016/j.electacta.2015.04.097     URL    
[15]
Kou Y Y, Zhao Q, Cheng Y, Wu Y, Dou W N, Ren X H. Sci. Total. Environ., 2020, 707:135866.

doi: 10.1016/j.scitotenv.2019.135866     URL    
[16]
Chen X, Wang Y J. Envir. Sci. Manag., 2009, 34(6):61.
(陈曦, 王玉军. 环境科学与管理, 2009, 34(6): 61.)
[17]
Ren X H, Yan R, Wang H C, Kou Y Y, Chae K J, Kim I S, Park Y J, Wang A J. Waste Manag., 2015, 46:440.

doi: 10.1016/j.wasman.2015.07.021     URL    
[18]
Wu Q, Cui Y R, Tang X X, Yang H J, Sun J H. Envir. Sci., 2015, 36(05):1733.
(吴青, 崔延瑞, 汤晓晓, 杨慧娟, 孙剑辉. 环境科学, 2015, 36(05): 1733.)
[19]
Lu J P, Pang J, Zhang L Y, Tan F W, Ming C H. Envir. Sci. Technol., 2013, 36(08):120.
(陆建平, 庞洁, 张立颖, 谭芳维, 明春华. 环境科学与技术, 2013, 36(08): 120.)
[20]
Zhang L Y, Pan N, Lu J P, Yin Z H, Tan G W, Pan Q, Tang Y K. Envir. Pollut. Contr., 2012, 34(6):8.
(张立颖, 潘宁, 陆建平, 尹沾合, 谭芳维, 潘乾, 唐燕葵. 环境污染与防治, 2012, 34(6): 8.)
[21]
Zhang H, Zhu Z L, Zhang L H, Qiu Y L, Zhao J F. Envir. sci., 2008, 29(3):733.
(张华, 朱志良, 张丽华, 仇雁翎, 赵建夫. 环境科学, 2008, 29(3): 733.)
[22]
Su X F, Zhang L L, Wang H L. J. Zhejiang Sci-Technol. Univ., 2011, 28(05):674.
(宿霞菲, 张玲玲, 王海龙. 浙江理工大学学报, 2011, 28(05): 674.)
[23]
Wu Q, Cui Y R, Li Q L, Sun J H. J. Hazard. Mater., 2015, 283:748.

doi: 10.1016/j.jhazmat.2014.10.027     URL    
[24]
Suanon F, Sun Q, Dimon B, Mama D, Yu C P. J. Environ. Manag., 2016, 166:341.

doi: 10.1016/j.jenvman.2015.10.035     URL    
[25]
Fu R B, Wen D D, Xia X Q, Zhang W, Gu Y Y. Chem. Eng. J., 2017, 316:601.

doi: 10.1016/j.cej.2017.01.092     URL    
[26]
Wen D D. Master Dissertation of East China University of Science and Technology, 2017.
(温东东. 华东理工大学硕士论文, 2017.).
[27]
Xiao C X. Master Dissertation of Zhejiang University, 2015.
(萧晨霞. 浙江大学硕士论文, 2015.).
[28]
Li W R. Master Dissertation of Dalian Maritime University, 2017.
(李婉然. 大连海事大学硕士论文, 2017.).
[29]
Wu J N, Xiao C Z, Wu H L. Sep. Purif. Technol., 2018, 197:54.

doi: 10.1016/j.seppur.2017.12.047     URL    
[30]
Lin X Y.. Chin. J. Envir. Eng., 2009, 3(4):748.
(林小英. 环境工程学报, 2009, 3(4): 748.)
[31]
Wu Q, Duan G Q, Cui Y R, Sun J H. Environ. Sci. Pollut. Res., 2015, 22:1144.

doi: 10.1007/s11356-014-3365-y     URL    
[32]
Song Y, Ammami M T, Benamar A, Mezazigh S, Wang H Q. Environ. Sci. Pollut. Res., 2016, 23:10577.

doi: 10.1007/s11356-015-5966-5     URL    
[33]
Liu G. Master Dissertation of Beijing University Of Chemical Technology, 2015.
(刘刚. 北京化工大学硕士论文, 2015.).
[34]
Xue J, Wang W, Wang Q H, Liu S, Yang J, Wui T. J. Chem. Technol. Biotechnol., 2010, 85:1268.
[35]
Meers E, Tack F M G, Verloo M G. Chemosphere, 2008, 70:358.

pmid: 17870142
[36]
Sreekrishnan T R, Tyagi R D, Blais J F, Campbell P G C. Water Res., 1993, 27:1641.

doi: 10.1016/0043-1354(93)90128-5     URL    
[37]
Yang W, Song W, Li J, Zhang X L. Chemosphere, 2020, 249:126134.

doi: S0045-6535(20)30327-1     pmid: 32058136
[38]
Zhang L J, Zhou W B, Liu Y D, Jia H H, Zhou J, Wei P, Zhou H B. Hydrometallurgy, 2020, 191:105227.

doi: 10.1016/j.hydromet.2019.105227     URL    
[39]
Chen S Y, Cheng Y K. Chemosphere, 2019, 234:346.

doi: 10.1016/j.chemosphere.2019.06.084     URL    
[40]
Gao H Z, G W Z. Anhui Agri. Sci. Bull., 2010, 16(20):67.
(高红真, 郭伟珍. 安徽农学通报, 2010, 16(20): 67.)
[41]
Yan J. Master Dissertation of Taiyuan University Of Technology, 2010.
(闫瑾. 太原理工大学硕士论文, 2010.).
[42]
Li S G, Zhang K F, Zhou S Q, Zhang C S, Zhang L Q. Ecol. Environ. Sci., 2009, 18:111.
(李淑更, 张可方, 周少奇, 张朝升, 张立秋. 生态环境学报, 2009, 18:111.).
[43]
Liu F W, Zhou L X, Zhou J, Song X W, Wang D Z. J. Hazard. Mater., 2012, 221/222:170.

doi: 10.1016/j.jhazmat.2012.04.028     URL    
[44]
Zhang J, Xu J Y, Wang D Q, Yang H P, Wu X H. Envir. Eng., 2015, 33(4):39.
(张军, 徐浚洋, 王敦球, 杨慧萍, 吴小卉. 环境工程, 2015, 33(4): 39.)
[45]
Gan L, Liu H Q, Wang Q P, Chen Z L. Chin. Envir. Sci., 2014, 10:2617.
(甘莉, 刘贺琴, 王清萍, 陈祖亮. 中国环境科学, 2014, 10:2617.).
[46]
He Z B, Liao T, Liu Y G, Xiao Y, Li T T, Wang H. J. Cent. South Univ., 2012, 19(12):3540.

doi: 10.1007/s11771-012-1440-4     URL    
[47]
Pathak A, Dastidar M G, Sreekrishnan T R. J. Environ. Manag., 2009, 90(8):2343.

doi: 10.1016/j.jenvman.2008.11.005     URL    
[48]
Cárdenas J P, Quatrini R, Holmes D S. Res. Microbiol., 2016, 167(7):529.

doi: 10.1016/j.resmic.2016.06.007     pmid: 27394987
[49]
Liu T T, Liu Z G, Zheng Q F, Lang Q Q, Xia Y, Peng N N, Gai C. Bioresour. Technol., 2018, 247:282.

doi: 10.1016/j.biortech.2017.09.090     URL    
[50]
Xu C. Master Dissertation of Southeast University, 2017.
(许超. 东南大学硕士论文, 2017.).
[51]
Zhao P T, Shen Y F, Ge S F, Yoshikawa K. Energy Convers. Manag., 2014, 78:815.

doi: 10.1016/j.enconman.2013.11.026     URL    
[52]
Men Z Y. Master Dissertation of Beijing Jiaotong University, 2017.
(门正宇. 北京交通大学硕士论文, 2017.).
[53]
Sun X P, Wang A T, Li X H, He Z H. China Water Wastewater, 2010, 26(17):66.
(孙雪萍, 王安亭, 李新豪, 何占航. 中国给水排水, 2010, 26(17): 66.)
[54]
Xie S Y, Yu G W, Li J, You F T, Wang G, Wang Y, Ma J L, Shang X F. Chin. J. Envir. Eng., 2018, 12(07):2114.
(谢胜禹, 余广炜, 李杰, 尤甫天, 汪刚, 汪印, 马建立, 商晓甫. 环境工程学报, 2018, 12(07):2114.)
[55]
Shi W S. Master Dissertation of China University of Geosciences,Beijing, 2015.
(施万胜. 中国地质大学(北京)硕士论文, 2015.)
[56]
Shi W S, Liu C G, Ding D H, Lei Z F, Yang Y N, Feng C P, Zhang Z Y. Bioresour. Technol., 2013, 137:18.

doi: 10.1016/j.biortech.2013.03.106     URL    
[57]
Wang Y X, Chen M L. Ind. Saf. Environ. Prot., 2012, 38(12):66.
(王月香, 陈茂林. 工业安全与环保, 2012, 38(12): 66.)
[58]
Zhao P T, Chen H F, Ge S F, Yoshikawa K. Appl. Energy, 2013, 111:199.

doi: 10.1016/j.apenergy.2013.05.029     URL    
[59]
He C, Giannis A, Wang J Y. Appl. Energy, 2013, 111:257.

doi: 10.1016/j.apenergy.2013.04.084     URL    
[60]
Huang H J, Yuan X Z. Bioresour. Technol., 2016, 200:991.

doi: 10.1016/j.biortech.2015.10.099     URL    
[61]
Kumpiene J, Lagerkvist A, Maurice C. Waste Manag., 2008, 28(1):215.

doi: 10.1016/j.wasman.2006.12.012     URL    
[63]
Wei Y, Liu Y S. Chin. J. Envir. Eng., 2017, 11(3):1878.
(魏赢, 刘阳生. 环境工程学报, 2017, 11(3):1878.)
[64]
Li B G, Miao Y, Zhang C. Petrol. Proc. Petrochem., 2018, 49(5):80.
(李本高, 苗远, 张超. 石油炼制与化工, 2018, 49(5): 80.)
[65]
Huang C Y, Guo D, Xue C H, Xue H Q. Technol. Dev. Chem. Ind., 2017, 46(08):46.
(黄晨悦, 郭盾, 薛崇灏, 薛红琴. 化工技术与开发, 2017, 46(08): 46.)
[66]
Yu Y X, Wang H, Li Q, Wang B, Yan Z H, Ding A Z. Sci. Total. Environ., 2016, 548/549:402.

doi: 10.1016/j.scitotenv.2015.11.107     URL    
[67]
Wang S, Fu R B, Luo Q S, Zhang C B, Xu Y Y. Envir. Sci., 2010, 31(04):1036.
(王旌, 付融冰, 罗启仕, 张长波, 许延营. 环境科学, 2010, 31(04): 1036.)
[68]
Chen S L. Master Dissertation of Anhui Agricultural University, 2016.
(陈三理. 安徽农业大学硕士论文, 2016.).
[69]
Sun Y, Xu R, Qian G R. Acta Sci. Nat. Univ. Sunyatseni, 2007, 46(1):41.
(孙颖, 许冉, 钱光人. 中山大学学报(自然科学版), 2007, 46(1): 41.)
[70]
Peng C, Feng Q G, Li H X, Wang D B, Wei X, Yang H B. Bull. Chin. Ceram. Soci., 2014, 33(09):2205.
(彭川, 冯庆革, 李浩璇, 王东波, 韦旭, 杨宏斌. 硅酸盐通报, 2014, 33(09):2205.)
[71]
Zhang Y, Tao M N, Shen D Q, Zheng S D, He Y, Ying G Q, Ying J W, Shi Y. Chin. J. Envir. Eng., 2015, 9(04):1984.
(张瑜, 陶梦娜, 沈涤清, 郑书东, 何奕, 应国庆, 应健威, 施耀. 环境工程学报, 2015, 9(04): 1984.)
[72]
Mahar A, Wang P, Ali A, Guo Z Y, Awasthi M K, Lahori A H, Wang Q, Shen F, Li R H, Zhang Z Q. Ecotoxicol. Environ. Saf., 2016, 134:116.

doi: 10.1016/j.ecoenv.2016.08.025     URL    
[73]
Fei Y, Yan X L, Li Y H. Envir. Sci., 2018, 39(03):1430.
(费杨, 阎秀兰, 李永华. 环境科学, 2018, 39(03): 1430.)
[74]
Boveiri Shami R, Shojaei V, Khoshdast H. J. Environ. Manag., 2019, 231:1182.

doi: 10.1016/j.jenvman.2018.03.126     URL    
[75]
Tang J, He J G, Xin X D, Hu H Z, Liu T T. Chem. Eng. J., 2018, 334:2579.

doi: 10.1016/j.cej.2017.12.010     URL    
[76]
Hu S G, Hu J P, Sun Y F, Zhu Q, Wu L S, Liu B C, Xiao K K, Liang S, Yang J K, Hou H J. J. Hazard. Mater., 2021, 405:124072.

doi: 10.1016/j.jhazmat.2020.124072     URL    
[77]
Zhou J W, Liu S Y, Zhou N, Fan L L, Zhang Y N, Peng P, Anderson E, Ding K, Wang Y P, Liu Y H, Chen P, Ruan R. Bioresour. Technol., 2018, 256:295.

doi: 10.1016/j.biortech.2018.02.034     URL    
[78]
Černe M, Palčić I, Pasković I, Major N, Romić M, Filipović V, Igrc M D, Perčin A, Goreta Ban S, Zorko B, Vodenik B, Glavič Cindro D, Milačič R, Heath D J, Ban D A Waste Manag., 2019, 94:27.

doi: 10.1016/j.wasman.2019.05.032     URL    
[79]
Yoo J C, Beiyuan J Z, Wang L, Tsang D C W, Baek K, Bolan N S, Ok Y S, Li X D. Sci. Total. Environ., 2018,616-617: 572.
[80]
Tonanzi B, Gallipoli A, Annesini M C, La Penna C, Gianico A, Braguglia C M. J. Environ. Chem. Eng., 2021, 9(1):104649.

doi: 10.1016/j.jece.2020.104649     URL    
[81]
Fontmorin J M, Sillanpää M. Sep. Purif. Technol., 2015, 156:655.

doi: 10.1016/j.seppur.2015.10.061     URL    
[1] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[2] 何安恩, 解姣姣, 苑春刚. 大气颗粒物重金属形态分析[J]. 化学进展, 2021, 33(9): 1627-1647.
[3] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[4] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.
[5] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[6] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[7] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[8] 陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 多巴胺功能材料在水污染控制中的应用[J]. 化学进展, 2019, 31(4): 571-579.
[9] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[10] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[11] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[12] 傅骏青, 王晓艳, 李金花, 陈令新. 重金属离子印迹技术[J]. 化学进展, 2016, 28(1): 83-90.
[13] 刘榆, 傅瑞琪, 楼子墨, 方文哲, 王卓行, 徐新华. 功能化碳质材料的制备及其对水中重金属的去除[J]. 化学进展, 2015, 27(11): 1665-1678.
[14] 谭丽莎, 孙明洋, 胡运俊, 程丽华, 徐新华. 功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展, 2013, 25(12): 2147-2158.
[15] 尉艳, 高超, 杨苒, 王伦, 刘锦淮, 黄行九. 纳米材料修饰电极在重金属离子检测中的应用[J]. 化学进展, 2012, 24(01): 110-121.
阅读次数
全文


摘要

污泥中重金属处理方法