English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1537-1550 DOI: 10.7536/PC170739 前一篇   

• 综述 •

光电子协同微生物介导的重金属离子还原与电子转移机理

刘明学1, 董发勤2*, 聂小琴3, 丁聪聪3, 何辉超2, 杨刚1   

  1. 1. 西南科技大学生命科学与工程学院 绵阳 621010;
    2. 固体废物处理与资源化教育部重点实验室 绵阳 621010;
    3. 核废物与环境安全国防重点学科实验室 绵阳 621010
  • 收稿日期:2017-07-25 修回日期:2017-10-13 出版日期:2017-12-15 发布日期:2017-11-15
  • 通讯作者: 董发勤,fqdong@swust.edu.cn E-mail:fqdong@swust.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)(No.2014CB846003)和国家自然科学基金项目(No.41272371,41572035,41502316)资助

Reduction of Heavy Metal Ions Mediated by Photoelectron-Microorganism Synergistic Effect and Electron Transfer Mechanism

Mingxue Liu1, Faqin Dong2*, Xiaoqin Nie3, Congcong Ding3, Huichao He2, Gang Yang1   

  1. 1. Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, China;
    2. Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang 621010, China;
    3. Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang 621010, China
  • Received:2017-07-25 Revised:2017-10-13 Online:2017-12-15 Published:2017-11-15
  • Supported by:
    The work was supported by National Basic Research Program of China (973)(No.2014CB846003) and the National Nature Science Foundation of China (No. 41272371, 41572035, 41502316).
重金属污染是一个亟待解决的环境和社会问题。重金属元素在自然界常会形成各种价态的矿物,具有不同的理化性质,对重金属污染治理具有重要的参考意义。重金属离子价态的改变可通过微生物、电极电子及半导体矿物光电子传递与吸收实现。本文分析了微生物及其电化学系统、半导体矿物光电子与光电子协同作用对重金属离子的还原作用,从氧化还原电势角度分析了微生物及其电化学系统与光电子对重金属离子的还原机理。重点从微生物跨膜电子传递过程及分子网络角度阐述了微生物还原变价重金属离子的直接/间接电子传递途径、从微生物向电极的正/逆向电子传递与吸收利用角度揭示了微生物电化学系统与光电子协同微生物对重金属离子价态调控的机制。最后,提出了微生物、电极、半导体矿物与光在重金属价态调控中的作用网络与能量利用途径。可为进一步研究微生物胞外电子传递及微生物光电子利用与光电子协同微生物调控重金属离子价态及其环境治理提供参考。
Heavy metal pollution is an environmental and social problem that needs to be solved urgently. Heavy metal elements in nature will form a variety of minerals with different states of valence and show different physical and chemical properties, which has important implications for the treatment of heavy metal pollution. The valence state of heavy metal ions can be regulated through electron transfer and electron absorption from microbe, electrode, and semiconductor mineral photocatalysis. This review analyzes the reduction effect of heavy metal ions by microbes, microbial electrolysis system (MES), photoelectron and photoelectron-microorganism synergistic effect. The redox reaction and the energy utilization mechanism during the heavy metal ions reduction process are illustrated based on oxidation reduction potential principle. Detailed transmembrane electron transfer process and molecular networks are elaborated for direct/indirect electron transfer pathways during reduction of heavy metal ions by microorganism. The electron transfer from microorganism cells to electrode and reverse electron absorption-utilization process are also expounded for heavy metal ion valence state regulation by microbial electrolysis system and photoelectron-microorganism synergistic effect. Finally, the interaction network and energy utilization mechanism are proposed to elucidate the regulation of heavy metal ion valence state by microorganisms, electrodes, semiconductor minerals and light. This review will provide a reference for the further study regarding the microbial extracellular electron transfer, the photoelectron utilization by microorganism and the valence state regulation of heavy metal ions by microbe-photoelectron coordination as well as its environmental significance.
Contents
1 Introduction
2 Reduction and immobilization of heavy metal ions by microorganisms and electrochemical systems
2.1 Reduction of heavy metal ions by microorganisms
2.2 Reduction of heavy metal ions by microbial electrolysis system
3 Reduction of heavy metal ions by microorganism and photoelectron coordination
3.1 Reduction of heavy metal ions by photoelectron
3.2 Reduction of heavy metal ions by microorganism and photoelectron coordination
3.3 Mineralization, transformation and interface interaction during reduction of heavy metals induced by microorganisms and photoelectrons
4 Electrochemical mechanism of reduction of heavy metal ions by microorganisms, electrochemical systems and photoelectrons
5 The role of microbial electrode as well as electron transport and transfer during reduction of heavy metal ions
5.1 Electron transfer from microorganism to heavy metal ions
5.2 Electron transfer from microorganism to electrode
5.3 The reverse transfer of electrons:from electrode to microorganism
6 Conclusion and outlook

中图分类号: 

()
[1] 孙宁(Sun N), 王兆苏(Wang Z S), 卢然(Lu R), 贾杰林(Jia J L). 环境保护科学(Environmental Protection Science), 2016, 42(2):1.
[2] Lovley D R, Phillips E J P, Gorby Y A, Landa E R. Nature, 1991, 350:413.
[3] Goulhen F, Gloter A, Guyot F, Bruschi M. Appl. Microbiol. Biotechnol., 2006, 71:892.
[4] Yoneyama H, Yamashita Y, Tamura H. Nature, 1979, 282:817.
[5] Lu A H, Li Y, Jin S, Wang X, Wu X L, Zeng C P, Li Y, Ding H R, Hao R X, Lv M, Wang C Q, Tang Y Q, Dong H L. Nat. Commun., 2012, 3:768.
[6] Huang W B, Nie X Q, Dong F Q, Ding C C, Huang R, Qin Y L, Liu M X, Sun S Y. J. Radioanal. Nucl. Chem., 2017, 312:531.
[7] Caccavo F, Lonergan D J, Lovley D R, Davis M, Stolz J F, McInerney M J. Appl. Environ. Microbiol., 1994, 60:3752.
[8] Suzuki Y, Kitatsuji Y, Ohnuki T, Tsujimura S. Phys. Chem. Chem. Phys., 2010, 12:10081.
[9] Chabalala S, Chirwa E M N. Miner. Eng., 2010, 23:526.
[10] 吴云当(Wu Y D), 李芳柏(Li F B), 刘同旭(Liu T X). 土壤学报(Acta Pedologica Sinica), 2016, 53(2):277.
[11] Liu T X, Li X M, Li F B, Han R, Wu Y D, Yuan X, Wang Y. Sci. Rep., 2016, 6:29592.
[12] Leigh M B, Wu W M, Cardenas E, Uhlik O, Carroll S, Gentry T, Marsh T L, Zhou J, Jardine P, Criddle C S, Tiedje J M. Front. Environ. Sci. Eng., 2015, 3:453.
[13] Reguera G. Biochem. Soc. Trans., 2012, 40:1227.
[14] Michelson K, Sanford R A, Valocchi A J, Werth C J. Environ. Sci. Technol., 2017, 51:11660.
[15] Madden A S, Swindle A L, Beazley M J, Moon J W, Ravel B, Phelps T J. Am. Mineral., 2012, 97:1641.
[16] Barlett M, Moon H S, Peacock A A, Hedrick D B, Williams K H, Long P E, Lovley D, Jaffe P R. Biodegradation, 2012, 23:535.
[17] Chang Y J, Long P E, Geyer R, Peacock A D, Resch C T, Sublette K, Pfiffner S, Smithgall A, Anderson R T, Vrionis H A, Stephen J R, Dayvault R, Ortiz-Bernad I, Lovley D R, White D C. Environ. Sci. Technol., 2005, 39:9039.
[18] Madden A S, Palumbo A V, Ravel B, Vishnivetskaya T A, Phelps T J, Schadt C W, Brandt C C. J. Environ. Qual., 2009, 38:53.
[19] 吴唯民(Wu W M), Carley J, Watson D, 顾宝华(Gu B H), Brooks S, Kelly S D, Kemner K, van Nostrand J D, 吴力游(Wu L Y), 许玫英(Xu M Y), 周集中(Zhou J Z), 罗剑(Luo J), Cardenas E, 黃家琪(Huang J Q), Fields M W, Marsh T L, Tiedje J M, Green S J, Kostka J E, Kitanidis P K, Jardine P M, Criddle C S. 环境科学学报(Acta Scientiae Circumstantiae), 2011, 31(3):449.
[20] Zhang P, He Z L, van Nostrand J D, Qin Y J, Deng Y, Wu L Y, Tu Q C, Wang J J, Schadt C W, W Fields M, Hazen T C, Arkin A P, Stahl D A, Zhou J Z. Environ. Sci. Technol., 2017, 51:3609.
[21] Tang G, Watson D B, Wu W M, Schadt C W, Parker J C, Brooks S C. Environ. Sci. Technol., 2013, 47:3218.
[22] Hu N, Ding D X, Li S M, Tan X, Li G Y, Wang Y D, Xu F. J. Environ. Radioact., 2016, 154:60.
[23] Newsome L, Morris K, Shaw S, Trivedi D, Lloyd J R. Chem. Geol., 2015, 409:125.
[24] Francis C A, Obraztsova A Y, Tebo B M. Appl. Environ. Microbiol., 2000, 66:543.
[25] Barnhart J. J. Soil Contam., 2008, 6:561.
[26] Yang C P, Cheng Y J, Ma X Y, Zhu Y, Holman H Y, Lin Z, Wang C. Langmuir, 2007, 23:4480.
[27] Hwang Y H, Shim M J, Oh D H, Yang J S, Kwon M J. J. Soil Groundwater Environ., 2014, 19:16.
[28] Wang C, Deng H, Zhao F. Soil Sediment Contam., 2016, 25:1.
[29] Lu Z H, Chang D M, Ma J X, Huang G T, Cai L K, Zhang L H. J. Power Sources, 2015, 275:243.
[30] Wang H M, Ren Z J. Biotechnol. Adv., 2013, 31:1796.
[31] 刘利丹(Liu L D), 肖勇(Xiao Y)吴义诚(Wu Y C), 陈必链(Chen B L), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2014, 26(11):1859.
[32] 张锦涛(Zhang J T), 倪晋仁(Ni J R), 周顺桂(Zhou S G). 应用与环境生物学报(Chinese Journal of Applied and Environmental Biology), 2008, 14(2):290.
[33] Bond D R, Holmes D E, Tender L M, Lovley D R. Science, 2002, 295:483.
[34] Kim H J, Park H S, Hyun M S, Chang I S, Kim M, Kim B H. Enzyme Microb. Technol., 2002, 30:145.
[35] Li Z J, Zhang X W, Lei L C. Process Biochem., 2008, 43:1352.
[36] Tao H C, Liang M, Li W, Zhang L J, Ni J R, Wu W M. J. Hazard. Mater., 2011, 189:186.
[37] 梁敏(Liang M), 陶虎春(Tao H C), 李绍峰(Li S F), 李伟(Li W), 张丽娟(Zhang L J), 倪晋仁(Ni J R). 环境科学(Environmental Science), 2011, 32(1):179.
[38] Qin B Y, Luo H P, Liu G L, Zhang R D, Chen S S, Hou Y P, Luo Y. Bioresour. Technol., 2012, 121:458.
[39] Williams K H, Nevin K P, Franks A, Englert A, Long P E, Lovley D R. Environ. Sci. Technol., 2010, 44:47.
[40] Lu A H, Li Y. Geomicrobiol. J., 2012, 29:236.
[41] Wang H Y, Qian F, Li Y. Nano Energy, 2014, 8:264.
[42] Kim G, Igunnu E T, Chen G Z. Chem. Eng. J., 2014, 244:411.
[43] Chen J, Ollis D F, Rulkens W H, Bruning H. Colloids Surf. A Physicochem. Eng. Asp., 1999, 151:339.
[44] Amadelli R, Maldotti A, Sostero S, Carassiti V. J. Chem. Soc. Faraday Trans., 1991, 87:3267.
[45] Selli E, Eliet V, Spini M R, Bidoglio G. Environ. Sci. Technol., 2000, 34:3742.
[46] 李乐(Li L). 南华大学硕士论文(Master Dissertation of University of South China), 2014.
[47] Kabra K, Chaudhary R, Sawhney R L. J. Hazard. Mater., 2007, 149:680.
[48] Kim Y K, Lee S, Ryu J, Park H. Appl. Catal. B-Environ., 2015, 163:584.
[49] Rosenbaum M, He Z, Angenent L T. Curr. Opin. Biotechnol., 2010, 21:259.
[50] Qian F, Wang G M, Li Y. Nano Lett., 2010, 10:4686.
[51] Feng H J, Liang Y X, Guo K, Li N, Shen D S, Cong Y Q, Zhou Y Y, Wang Y F, Wang M Z, Long Y Y. Water Res., 2016, 102:428.
[52] Lin Z Q, Yuan S J, Li W W, Chen J J, Sheng G P, Yu H Q. Water Res., 2017, 109:88.
[53] Li Y, Lu A H, Ding H R, Jin S, Yan Y H, Wang C Q, Zen C P, Wang X. Electrochem. Commun., 2009, 11:1496.
[54] 宗美荣(Zong M R). 西南科技大学硕士论文(Master Dissertation of Southwest University of Science and Technology), 2016.
[55] Ainsworth E V, Lockwood C W, White G F, Hwang E T, Sakai T, Gross M A, Richardson D J, Clarke T A, Jeuken L J, Reisner E, Butt J N. ChemBioChem, 2016, 17:2324.
[56] Liu M X, Dong F Q, Yan X Y, Zeng W M, Hou L Y, Pang X F. Bioresour. Technol., 2010, 101:8573.
[57] Nie X Q, Dong F Q, Liu N, Liu M X, Zhang D, Kang W, Sun S Y, Zhang W, Yang J. Appl. Surf. Sci., 2015, 347:122.
[58] 黄荣(Huang R), 覃贻琳(Qin Y L), 聂小琴(Nie X Q), 董发勤(Dong F Q), 刘明学(Liu M X), 杨刚(Yang G), 马佳林(Ma J L), 龚俊源(Gong J Y), 黄文波(Huang W B), 陈博(Chen B). 中国环境科学(China Environmental Science), 2016, 36(6):1780.
[59] Nie X Q, Dong F Q, Bian L, Liu M X, Ding C, He H, Yang G, Sun S Y, Qin Y, Huang R, Li Z, Ren W, Wang L. ACS Sustain. Chem. Eng., 2017, 5:1494.
[60] Ding C C, Cheng W C, Sun Y B, Wang X K. Geochim. Cosmochim. Acta, 2015, 165:86.
[61] He H C, Zong M R, Dong F Q, Yang P P, Ke G L, Liu M X, Nie X Q, Ren W, Bian L. J. Radioanal. Nucl. Chem., 2017, 313:59.
[62] 张格格(Zhang G G), 刘明学(Liu M X), 董发勤(Dong F Q), 何辉超(He H C), 向沙(Xiang S), 罗浪(Luo L), 宗美荣(Zong M R). 环境科学与技术(Environmental Science and Technology), 2016, 39(11):79.
[63] 向沙(Xiang S). 西南科技大学硕士论文(Master Dissertation of Southwest University of Science and Technology), 2017.
[64] Kato S, Hashimoto K, Watanabe K. Proc. Natl. Acad. Sci. U.S.A., 2012, 109:10042.
[65] 黄杰勋(Huang J X).中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2009.
[66] 曹效鑫(Cao X X). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2009.
[67] 张丽华(Zhang L H). 南华大学硕士论文(Master Dissertation of University of South China), 2013.
[68] Kabra K, Chaudhary R, Sawhney R L. J. Hazard. Mater., 2008, 155:424.
[69] Litter M I. Pure Appl. Chem., 2015, 87:557.
[70] Odoh S O, Pan Q J, Shamov G A, Wang F Y, Fayek M, Schreckenbach G. Chem.-Eur. J., 2012, 18:7117.
[71] Shi L, Dong H L, Reguera G, Beyenal H, Lu A H, Liu J, Yu H Q, Fredrickson J K. Nat. Rev. Microbiol., 2016, 14:651.
[72] McMillan D G, Marritt S J, Butt J N, Jeuken L J. J. Biol. Chem., 2012, 287:14215.
[73] Shi L, Chen B W, Wang Z M, Elias D A, Mayer M U, Gorby Y A, Ni S S, Lower B H, Kennedy D W, Wunschel D S, Mottaz H M, Marshall M J, Hill E A, Beliaev A S, Zachara J M, Fredrickson J K, Squier T C. J. Bacteriol., 2006, 188:4705.
[74] Mitchell A C, Peterson L, Reardon C L, Reed S B, Culley D E, Romine M R, Geesey G G. Geobiology, 2012, 10:355.
[75] Lovley D R. Energ. Environ. Sci., 2011, 4:4896.
[76] Cologgi D L, Lampa-Pastirk S, Speers A M, Kelly S D, Reguera G. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:15248.
[77] Yang Y, Ding Y Z, Hu Y D, Cao B, Rice S A, Kjelleberg S, Song H. ACS Synth. Biol., 2015, 4:815.
[78] White G F, Shi Z, Shi L, Wang Z M, Dohnalkova A C, Marshall M J, Fredrickson J K, Zachara J M, Butt J N, Richardson D J, Clarke T A. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:6346.
[79] Pirbadian S, Barchinger S E, Leung K M, Byun H S, Jangir Y, Bouhenni R A, Reed S B, Romine M F, Saffarini D A, Shi L, Gorby Y A, Golbeck J H, El-Naggar M Y. Proc. Natl. Acad. Sci. U.S.A., 2014, 111:12883.
[80] Shi L, Richardson D J, Wang Z M, Kerisit S N, Rosso K M, Zachara J M, Fredrickson J K. Environ. Microbiol. Rep., 2009, 1:220.
[81] Leang C, Qian X L, Mester T, Lovley D R. Appl. Environ. Microbiol., 2010, 76:4080.
[82] Tan Y, Adhikari R Y, Malvankar N S, Ward J E, Nevin K P, Woodard T L, Smith J A, Snoeyenbos-West O L, Franks A E, Tuominen M T, Lovley D R. Front. Microbiol., 2016, 7:980.
[83] Ding D W, Li L, Shu C J, Sun X. Front. Microbiol., 2016, 7:530.
[84] Mtimunye P J, Chirwa E M. Chemosphere, 2014, 113:22.
[85] Hartshorne R S, Reardon C L, Ross D, Nuester J, Clarke T A, Gates A J, Mills P C, Fredrickson J K, Zachara J M, Shi L, Beliaev A S, Marshall M J, Tien M, Brantley S, Butt J N, Richardson D J. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:22169.
[86] Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435:1098.
[87] Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:11358.
[88] Ntarlagiannis D, Atewwana E A, Hill E A, Gorby Y. Geophys. Res. Lett., 2007, 34:L17305.
[89] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105:3968.
[90] Coursolle D, Baron D B, Bond D R, Gralnick J A. J. Bacteriol., 2010, 192:467.
[91] 刘鹏程(Liu P C), 朱雯雯(Zhu W W), 肖翔(Xiao X). 微生物学通报(Microbiology China), 2015, 42(11):2238.
[92] Tokunou Y, Hashimoto K, Okamoto A. J. Phys. Chem. C, 2016, 120:16168.
[93] Hong G Y, Pachter R. J. Phys. Chem. B, 2016, 120:5617.
[94] 丁阿强(Ding A Q), 郑平(Zheng P), 张萌(Zhang M). 浙江大学学报(农业与生命科学版) (Journal of Zhejiang University(Agriculture and Life Sciences)), 2016, 42(5):573.
[95] Li R, Tiedje J M, Chiu C C, Worden R M. Environ. Sci. Technol., 2012, 46:2813.
[96] Bouhenni R A, Vora G J, Biffinger J C, Shirodkar S, Brockman K, Ray R, Wu P, Johnson B J, Biddle E M, Marshall M J, Fitzgerald L A, Little B J, Fredrickson J K, Beliaev A S, Ringeisen B R, Saffarini D A. Electroanalysis, 2010, 22:856.
[97] Bond D R, Lovley D R. Appl. Environ. Microbiol., 2003, 69:1548.
[98] Yi H N, Nevin K P, Kim B C, Franks A E, Klimes A, Tender L M, Lovley D R. Biosens. Bioelectron., 2009, 24:3498.
[99] Nevin K P, Kim B C, Glaven R H, Johnson J P, Woodard T L, Methé B A, Didonato R J, Covalla S F, Franks A E, Liu A, Lovley D R. PLoS One, 2009, 4:e5628.
[100] Inoue K, Qian X L, Morgado L, Kim B C, Mester T, Izallalen M, Salgueiro C A, Lovley D R. Appl. Environ. Microbiol., 2010, 76:3999.
[101] Inoue K, Leang C, Franks A E, Woodard T L, Nevin K P, Lovley D R. Environ. Microbiol. Rep., 2011, 3:211.
[102] Busalmen J P, Esteve-Nuñez A, Berná A, Feliu J M. Bioelectrochemistry, 2010, 78:25.
[103] Marsili E, Sun J, Bond D R. Electroanalysis, 2010, 22:865.
[104] Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R, Sun J, Schilling C H, Lovley D R. MeTab. Eng., 2008, 10:267.
[105] Coursolle D, Gralnick J A. Mol. Microbiol., 2010, 77:995.
[106] Gregory K B, Bond D B, Lovley D R. Environ. Microbiol., 2004, 6:596.
[107] Strycharz S M, Woodard T L, Johnson J P, Nevin K P, Sanford R A, Löffler F E, Lovley D R. Appl. Environ. Microbiol., 2008, 74:5943.
[108] Strycharz S M, Glaven R H, Coppi M V, Gannon S M, Perpetua L A, Liu A, Nevin K P, Lovley D R. Bioelectrochemistry, 2011, 80:142.
[109] Lovley D R, Nevin K P. Curr. Opin. Biotechnol., 2011, 22:441.
[110] Ross D E, Flynn J M, Baron D B, Gralnick J A, Bond D R. PLoS One, 2011, 6:e16649.
[111] Dantas J M, Tomaz D M, Morgado L, Salgueiro C A. FEBS Lett., 2013, 587:2662.
[112] Dantas J M, Campelo L M, Duke N E, Salgueiro C A, Pokkuluri P R. FEBS J., 2015, 282:2215.
[113] Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D. Appl. Microbiol. Biotechnol., 2014, 98:8481.
[1] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[2] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[3] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[4] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[5] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[6] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[7] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[8] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[9] 刘利丹, 肖勇, 吴义诚, 陈必链, 赵峰. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11): 1859-1866.
[10] 花伟杰, 高斌, 罗毅*. 软X射线光谱的第一性原理模拟[J]. 化学进展, 2012, 24(06): 964-980.
[11] 张伟伟, 钟欣欣, 司玉冰, 赵仪*. Non-Condon电子转移速率理论与含时波包方法[J]. 化学进展, 2012, 24(06): 1166-1174.
[12] 尉艳, 高超, 杨苒, 王伦, 刘锦淮, 黄行九. 纳米材料修饰电极在重金属离子检测中的应用[J]. 化学进展, 2012, 24(01): 110-121.
[13] 杨新国 张登 唐瑞仁. 以卟啉为中心核的树枝状化合物[J]. 化学进展, 2009, 21(12): 2595-2604.
[14] 李新贵,窦强,黄美荣. 聚苯胺及其复合物对重金属离子的高效吸附性能[J]. 化学进展, 2008, 20(0203): 227-232.
[15] 朱维平,徐玉芳,钱旭红. 具有重要生物学意义的重金属及过渡金属离子荧光分子探针*[J]. 化学进展, 2007, 19(9): 1229-1238.