English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 225-242 DOI: 10.7536/PC170829 前一篇   后一篇

• 综述 •

四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除

杨姗也1, 王祥学2, 陈中山1*, 李倩1, 韦犇犇1, 王祥科1*   

  1. 1. 华北电力大学环境科学与工程学院 北京 102206;
    2. 华北电力大学环境科学与工程学院 保定 071003
  • 收稿日期:2017-08-28 修回日期:2017-10-30 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 陈中山,zschen@ncepu.edu.cn;王祥科,xkwang@ncepu.edu.cn E-mail:zschen@ncepu.edu.cn;xkwang@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21607042,21577032)和中央高校基本科研业务费专项资金(No.2016MS02)资助

Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions

Shanye Yang1, Xiangxue Wang2, Zhongshan Chen1*, Qian Li1, Benben Wei1, Xiangke Wang1*   

  1. 1. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China;
    2. College of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
  • Received:2017-08-28 Revised:2017-10-30 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21607042, 21577032) and the Fundamental Research Funds for the Central Universities(No. 2016MS02).
四氧化三铁(Fe3O4)纳米材料因比表面积大、功能基团多、活性强、便于磁性分离等优点,在吸附和分离放射性元素及重金属离子方面显示出了广阔的应用前景。然而,该材料也存在着易团聚、分散性差、化学稳定性差等局限性,这些缺点可通过表面功能化修饰得到大大改善。本文概括了四氧化三铁基纳米复合材料合成方法的特性、优越性和局限性,综述了水体放射性元素及重金属离子污染去除研究中的磁性纳米材料的类型,归纳总结并比较了功能性磁性纳米材料对不同种类的放射性元素及重金属离子的去除能力及优缺点,探讨了四氧化三铁基纳米材料在放射性元素和重金属离子污染去除中的应用并对其机理进行了分析,对功能化磁性纳米材料在去除放射性元素及重金属离子污染水体治理中的应用前景进行了展望。
Nowadays, Fe3O4-based magnetic nanomaterials have shown broad prospects in multidisciplinary areas, especially in the efficient elimination of radionuclides and heavy metal ions from large volumes of aqueous solutions as they have special physicochemical properties, such as large specific surface area, large amounts of oxygen-containing functional groups and active sites, and easy magnetic separation from wastewater. However, the magnetic nanomaterials have some weak points like easy coagulation, and poor dispersibility and chemical stability in the meantime. To overcome these shortcomings, the surface functionalization of Fe3O4 nanomaterials with different oxygen-containing functional groups is an efficient method. In this review, the types and properties of Fe3O4-based magnetic nanocomposites synthesized by variety surface modification methods are reviewed, and the merits and demerits of these synthetic methods are discussed as well. The types of the Fe3O4-based magnetic nanocomposites for the removal of radionuclides or heavy metal ions are classified. And then, their removal ability, advantages and disadvantages in the removal of radionuclides or heavy metal ions on each kind of functionalized magnetic nanomaterials are compared and summarized, and the interaction mechanism of the radionuclides or heavy metal ions with the Fe3O4-based magnetic nanocomposites are discussed in detail. The possible application of functionalized magnetic nanocomposites in the efficient removal of radionuclides and heavy metal ions are prospected.
Contents
1 Introduction
2 Synthesis of Fe3O4-based nanomaterials
2.1 Solvothermal method
2.2 Coprecipitation method
2.3 Plasma-induced grafting technique
2.4 Other methods
3 Classification of Fe3O4-based nanomaterials
3.1 Organics modified magnetic nanomaterials
3.2 Inorganics modified magnetic nanomaterials
4 The applications and mechanisms of Fe3O4-based nanomaterials
4.1 Removal of radionuclides
4.2 Removal of heavy metal ions
5 Conclusion

中图分类号: 

()
[1] Hu R, Ren X M, Hou G S, Shao D D, Gong Y, Chen X J, Tan X L, Wang X K, Nagatsu M. RSC Adv., 2016, 6(69):65136.
[2] Zong P F, Wang S F, Zhao Y L, Wang H, Pan H, He C H. Chem. Eng. J., 2013, 220:45.
[3] Chen C L, Wang X K, Nagatsu M. Environ. Sci. Technol., 2009, 43(7):2362.
[4] Duruibe J O, Ogwuegbu M, Egwurugwu J N. International Journal of Physical Sciences, 2007, 2(5):112.
[5] 刘旸(Liu Y), 赵雪松(Zhao X S), 潘学军(Pan X J), 陈波(Chen B). 水处理技术(Water Treatment Technology), 2014,(12):5.
[6] Shao D D, Jiang Z Q, Wang X K, Li J X, Meng Y D. The Journal of Physical Chemistry B, 2009, 113(4):860.
[7] Sun Y B, Zhang R, Ding C C, Wang X X, Cheng W C, Chen C L, Wang X. Geochim. Cosmochim. Ac., 2016, 180:51.
[8] Ding C C, Cheng W C, Sun Y B, Wang X K. Geochim. Cosmochim. Ac., 2015, 165:86.
[9] Rengaraj S, Moon S. Water Res., 2002, 36(7):1783.
[10] Rengaraj S, Yeon K, Moon S. J. Hazard. Mater., 2001, 87(1):273.
[11] Huikuri P, Salonen L, Raff O. Desalination, 1998, 119(1):235.
[12] Mavrov V, Erwe T, Blöcher C, Chmiel H. Desalination, 2003, 157(1/3):97.
[13] Dushenkov V, Kumar P N, Motto H, Raskin I. Environ. Sci. Technol., 1995, 29(5):1239.
[14] Yu S J, Wang X X, Tan X L, Wang X K. Inorg. Chem. Front., 2015, 2(7):593.
[15] Xu H, Li G, Li J, Chen C L, Ren X M. J. Mol. Liq., 2016, 213:58
[16] Pan N, Li L, Ding J, Li S K, Wang R B, Jin Y D, Wang X K, Xia C Q. J. Hazard. Mater., 2016, 309(309):107.
[17] Wang M M, Tao X Q, Song X P. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288(3):859.
[18] Sun Y B, Yang S B, Chen Y, Ding C C, Cheng W C, Wang X K. Environ. Sci. Technol., 2015, 49(7):4255.
[19] Zhao G X, Wen T, Yang X, Yang S B, Liao J L, Hu J, Shao D D, Wang X K. Dalton Trans., 2012, 41(20):6182.
[20] Li J X, Chen S Y, Sheng G D, Hu J, Tan X L, Wang X K. Chem. Eng. J., 2011, 166(2):551.
[21] Yang S B, Hu J, Chen C L, Shao D D, Wang X K. Environ. Sci. Technol., 2011, 45(8):3621.
[22] Taosha O U, Huang H, Deng P, Deng D. Journal of South China Normal University, 2017, 49(2):94.
[23] Yang S T, Guo Z Q, Sheng G D, Wang X K. Sci. Total Environ., 2012, 420(420):214.
[24] Cheng W C, Ding C C, Wang X X, Wu Z Y, Sun Y B, Yu S H, Hayat T, Wang X K. Chem. Eng. J., 2016, 293:311.
[25] Li J, Chen C L, Zhang R, Wang X K. Science China Chemistry, 2016, 59(1):150.
[26] Lu Z H, Hao Z Q, Wang J, Chen L. J. Ind. Eng. Chem., 2016, 34:374.
[27] Maynard A D, Warheit D B, Philbert M A. Toxicol. Sci., 2011, 120(Supplement 1):S109.
[28] 李小康(Li X K), 胡献刚(Hu X G), 周启星(Zhou Q C). 农业环境科学学报(Journal of Agro-Environment Science), 2015,(11):2041.
[29] Hu X, Kang J, Lu K, Zhou R, Mu L, Zhou Q. Sci. Rep., 2015, 4(1):6122.
[30] Song W C, Liu M C, Hu R, Tan X L, Li J X. Chem. Eng. J., 2014, 246:268.
[31] Shen W J, Mu Y, Xiao T, Ai Z H. Chem. Eng. J., 2016, 285:57.
[32] Zhang H, Huang F, Liu D L, Shi P. Chinese Chem. Lett., 2015, 26(9):1137.
[33] Xuan S H, Wang Y J, Yu J C, Leung K C. Langmuir, 2009, 25(19):11835.
[34] Wang G S, Chang Y, Wang L, Wei Z Y, Kang J Y, Sang L, Dong X F, Chen G Y, Wang H, Qi M. J. Magn. Magn. Mater., 2013, 340(340):57.
[35] 宋海南(Song H N), 李国喜(Li G X), 周建庆(Zhou J Q), 吴寅子(Wu Y Z). 分子催化(Journal of Molecular Catalysis), 2011, 25(6):557.
[36] 李凤生(Li F S), 罗付生(Luo F S), 杨毅(Yang Y), 刘宏英(Liu H Y). 磁性材料及器件(Journal of Magnetic Materials and Devices), 2002, 33(6):1.
[37] Fan X L, Yao K F. Chinese Sci. Bull., 2007, 52(20):2866.
[38] 王祥科(Wang X K), 庞宏伟(Pang H W), 王祥学(Wang X X), 姚文(Yao W), 于淑君(Yu S J). 中国科学:化学(Scientia Sinica Chimica), 2017, 47:doi:10.1360/N032017-00133.
[39] Borlido L, Azevedo A M, Roque A, Aires-Barros M R. Biotechnol. Adv., 2013, 31(8):1374.
[40] 关晓辉(Guan X H), 赵洁(Zhao J), 秦玉春(Qin Y C). 环境化学(Environmental Chemistry), 2005, 24(4):409.
[41] Li J, Zhang S W, Chen C L, Zhao G X, Yang X, Li J X, Wang X K. ACS Appl. Mater. Inter., 2012, 4(9):4991.
[42] Wang P Y, Wang X X, Yu S J, Zou Y D, Wang J, Chen Z S, Alharbi N S, Alsaedi A, Hayat T, Chen Y T, Wang X K. Chem. Eng. J., 2016, 306:280.
[43] Min X, Yang W T, Hui Y F, Gao C Y, Dang S, Sun Z M. Chem. Commun., 2017, 53(30):4199.
[44] Wang X, Yu J T. J. Radioanal. Nucl. Ch., 2015, 303(1):807.
[45] Wang Y Q, Zou B F, Gao T, Wu X P, Lou S Y, Zhou S M. J. Mater. Chem., 2012, 22(18):9034.
[46] Zhang Y X, Yu X Y, Jin Z, Jia Y, Xu W H, Luo T, Zhu B J, Liu J H, Huang X J. J. Mater. Chem., 2011, 21(41):16550.
[47] Yang S T, Zong P F, Ren X M, Wang Q, Wang X K. ACS Appl. Mater. Interfaces, 2012, 4(12):6891.
[48] Deng Y H, Qi D W, Deng C H, Zhang X M, Zhao D Y. J. Am. Chem. Soc., 2008, 130(1):28.
[49] Xu J, Yang H B, Fu W Y, Du K, Sui Y M, Chen J J, Zeng Y, Li M H, Zou G T. J. Magn. Magn. Mater., 2007, 309(2):307.
[50] Chen Z S, Wang J, Pu Z X, Zhao Y S, Jia D S, Chen H X, Wen T, Hu B W, Alsaedi A, Hayat T, Wang X K. Chem. Eng. J., 2017, 320:448.
[51] Zhao Y G, Li J X, Zhao L P, Zhang S W, Huang Y S, Wu X L, Wang X K. Chem. Eng. J., 2014, 235:275.
[52] Liz L, Quintela M L, Mira J, Rivas J. J. Mater. Sci., 1994, 29(14):3797.
[53] Kheirandish S, Ghaedi M, Dashtian K, Jannesar R, Montazerozohori M, Pourebrahim F, Zare M A. J. Colloid Interf. Sci., 2017, 500:241.
[54] Li Q L, Li H L, Pol V G, Bruckental I, Koltypin Y, Calderon-Moreno J, Nowik I, Gedanken A. New J. Chem., 2003, 27(8):1194.
[55] Li J, Chen C L, Zhao Y, Hu J, Shao D D, Wang X K. Chem. Eng. J., 2013, 229:296.
[56] Franger S, Berthet P, Berthon J. J. Solid State Electr., 2004, 8(4):218.
[57] Lu A H, Salabas E L, Schüth F. Angew. Chem. Int. Ed., 2007, 46(8):1222.
[58] Beheshti H, Irani M, Hosseini L, Rahimi A, Aliabadi M. Chem. Eng. J., 2016, 284:557.
[59] Burke L, Mortimer C J, Curtis D J, Lewis A R, Williams R, Hawkins K, Maffeis T G, Wright C J. Materials Science & Engineering C Materials for Biological Applications, 2017, 70(Pt 1):512.
[60] 施尔畏(Shi E W),夏长泰(Xia C T). 无机材料学报(Journal of Inorganic Materials), 1996, 11(2):193.
[61] 吴健松(Wu J S),李海民(Li H M). 海湖盐与化工(Jounral of Salt and Chemical Industry), 2004, 33(4):22.
[62] Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28):8204.
[63] Li Z, Sun Q, Gao M Y. Angewandte Chemie International Edition, 2005, 44(1):123.
[64] Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. J. Am. Chem. Soc., 2012, 134(2):1071.
[65] Hu R, Furukawa T, Wang X K, Nagatsu M. Carbon, 2016, 110:215.
[66] 汪永丽(Wang Y L),张远欣(Zhang Y X). 山东化工(Shandong Chemical Industry), 2016, 45(21):47.
[67] Wu S, Sun A Z, Zhai F Q, Wang J, Xu W H, Zhang Q, Volinsky A A. Mater. Lett., 2011, 65(12):1882.
[68] Cai Y W, Yuan F, Wang X M, Sun Z, Chen Y, Liu Z Y, Wang X K, Yang S T, Wang S A. Cellulose, 2017, 24(1):175.
[69] Zhang X B, Wang Y, Yang S T. Carbohyd. Polym., 2014, 114:521.
[70] Yang S T, Guo Z Q, Sheng G D, Wang X K. Carbohyd. Polym., 2012, 90(2):1100.
[71] Xiao J, Chen Y T, Xu J B. J. Ind. Eng. Chem., 2014, 20(5):2830.
[72] 徐涛(Xu T). 中国工程物理研究院科技年报(Annual Report of China Academy of Engineering Physics), 2010,(1):77.
[73] 徐小玉(Xu X X), 赵玉涛(Zhao Y T), 戴起勋(Dai Q X), 傅明喜(Fu M X), 李长生(Li C C). 材料导报(Materials Review), 2005,(07):69.
[74] 张平原(Zhang P Y), 谭雪栓(Tan X S), 张平凡(Zhang P F). 化学推进剂与高分子材料(Chemical Propellants & Polymeric Materials), 2000,(1):16.
[75] 张健泓(Zhang J H),陈优生(Chen Y S). 广东化工(Guangdong Chemical Industry), 2008, 35(3):47.
[76] Stöber W, Fink A, Bohn E. J. Colloid Interf. Sci., 1968, 26(1):62.
[77] Zhang X B, Tong H W, Liu S M, Yong G P, Guan Y F. J. Mater. Chem. A, 2013, 1(25):7488.
[78] 刘翠娟(Liu C J), 杨治伟(Yang Z W), 慎爱民(Shen A M). 佳木斯大学学报(自然科学版)(Journal of Jiamusi University(Natural Science Edition)), 2005, 23(2):273.
[79] Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M. J. Ind. Eng. Chem., 2014, 20(6):3970.
[80] Deng Y H, Yang W L, Wang C C, Fu S K. Adv. Mater., 2003, 15(20):1729.
[81] 包建军(Bao J J),刘迪文(Liu D W). 高分子材料科学与工程(Polymeric Materials Science and Engineering), 2003,(05):204.
[82] Chen X B, Mao S S. Chem. Rev., 2007, 107(7):2891.
[83] Cao C Y, Cui Z M, Chen C Q, Song W G, Cai W. J. Phys. Chem. C., 2010, 114(21):9865.
[84] Kaynar V H, Ayvacikli M, Kaynar S Ç, Hiçsönmez V. J. Radioanal. Nucl. Ch., 2014, 299(3):1469.
[85] Xie K, Wang X X, Liu Z J, Alsaedi A, Hayat T, Wang X K. Journal of Zhejiang University Science A, 2014, 15(8):671.
[86] Wan Ngah W S, Hanafiah M A K M. Bioresource Technol., 2008, 99(10):3935.
[87] Ding C C, Cheng W C, Sun Y B, Wang X K. J. Hazard. Mater., 2015, 295:127.
[88] Liu J F, Zhao Z S, Jiang G B. Environ. Sci. Technol., 2008, 42(18):6949.
[89] Niu H Y, Zhang D, Zhang S X, Zhang X L, Meng Z F, Cai Y Q. J. Hazard. Mater., 2011, 190(1/3):559.
[90] Nishio K, Gokon N, Hasegawa M, Ogura Y, Ikeda M, Narimatsu H, Tada M, Yamaguchi Y, Sakamoto S, Abe M. Colloids Surf. B Biointerfaces, 2007, 54(2):249.
[91] Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik C N, Markovich G. Langmuir, 2001, 17(25):7907.
[92] Thinh N N, Hanh P T B, Ha L T T, Anh L N, Hoang T V, Hoang V D, Dang L H, Khoi N V, Lam T D. Mater. Sci. Eng. C, 2013, 33(3):1214.
[93] Chen Y W, Wang J L. Chem. Eng. J., 2011, 168(1):286.
[94] Jiang L H, Liu Y G, Liu S B, Hu X J, Zeng G M, Hu X, Liu S M, Liu S H, Huang B Y, Li M F. Chem. Eng. J., 2017, 308:597.
[95] Wang X X, Wang J, Chen Y T, Chen Z S, Wang Q, Hayat T, Wang X K. J. Radioanal. Nucl. Ch., 2016, 309(3):1241.
[96] Malakootikhah J, Rezayan A H, Negahdari B, Nasseri S, Rastegar H. Carbohyd. Polym., 2017, 170:190.
[97] Mahdavinia G R, Hasanpour S, Behrouzi L, Sheykhloie H. Starch, 2016, 68(3/4):188.
[98] Atia A A, Donia A M, El-Nomany H H. J. Disper. Sci. Technol., 2009, 30(4):451.
[99] 翟云会(Zhai Y H), 阮晓芳(Ruan X F), 王振(Wang Z), 翁姣(Weng J). 光谱实验室(Chinese Journal of Spectroscopy Laboratory), 2011, (04):2042.
[100] 王亚雄(Wang Y X), 郭瑾珑(Guo J L), 刘瑞霞(Liu R X). 环境科学(Environmental Science), 2001, (06):72.
[101] Das S, Pandey A K, Athawale A A, Manchanda V K. J. Phys. Chem. B, 2009, 113(18):6328.
[102] Hazer O, Kartal E. Talanta, 2010, 82(5):1974.
[103] Zhang A Y, Uchiyama G, Asakura T. React. Funct. Polym., 2005, 63(2):143.
[104] Molday R S, Mackenzie D. J. Immunol. Methods, 1982, 52(3):353.
[105] Kim D K, Mikhaylova M, Wang F H, Kehr J, Bjelke B, Zhang Y, Tsakalakos T, Muhammed M. Chem. Mater., 2003, 15(23):4343.
[106] Luo C, Tian Z, Yang B, Zhang L, Yan S Q. Chem. Eng. J., 2013, 234:256.
[107] Yang Z J, Liu J P, Yao X D, Rui Z B, Ji H B. Sep. Purif. Technol., 2016, 158:417.
[108] Zhu M Y, Diao G W. J. Phy. Chem. C, 2011,(115):24743.
[109] Chen S L, Reynolds F, Yu L T, Weissleder R, Josephson L. J. Mater. Chem., 2009, 19(35):6387.
[110] Kang S M, Choi I S, Lee K B, Kim Y. Macromol. Res., 2009, 17(4):259
[111] Wu Z S, Yang S B, Sun Y, Parvez K, Feng X L, M Llen K. J. Am. Chem. Soc., 2012, 134(22):9082.
[112] Wang X, Yu J T. J. Radioanal. Nucl. Ch., 2015, 303(1):807.
[113] 余琦栗(Yu Q S). 广东化工(Guangdong Chemical Industry), 2017, 44(11):131.
[114] Chandra V, Park J, Chun Y, Lee J W, Hwang I, Kim K S. ACS Nano, 2010, 4(7):3979.
[115] Du X, Wang C Y, Chen M M, Jiao Y, Wang J. J. Phy. Chem. C, 2009, 113(6):2643.
[116] Lu S S, Chen L, Dong Y H, Chen Y X. J. Radioanal. Nucl. Ch., 2011, 288(2):587.
[117] Chen H, Li J X, Zhang S W, Ren X M, Sun Y B, Wen T, Wang X K. Radiochim. Acta, 2013, 101(12):785.
[118] Yu S J, Wang X X, Yao W, Wang J, Ji Y F, Ai Y J, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2017, 51(6):3278.
[119] Yu S J, Wang X X, Ai Y J, Tan X L, Hayat T, Hu W P, Wang X K. J. Mater. Chem. A, 2016, 4(15):5654.
[120] Yao Y J, Miao S D, Liu S Z, Ma L P, Sun H Q, Wang S B. Chem. Eng. J., 2012, 184:326.
[121] Zhu J H, Wei S Y, Gu H B, Rapole S B, Wang Q, Luo Z P, Haldolaarachchige N, Young D P, Guo Z H. Environ. Sci. Technol., 2012, 46(2):977.
[122] Deng J H, Zhang X R, Zeng G M, Gong J L, Niu Q Y, Liang J. Chem. Eng. J., 2013, 226:189.
[123] Sun Y B, Shao D D, Chen C L, Yang S B, Wang X K. Environ. Sci. Technol., 2013, 47(17):9904.
[124] Romanchuk A Y, Slesarev A S, Kalmykov S N, Kosynkin D V, Tour J M. Phys. Chem. Chem. Phys., 2013, 15(7):2321.
[125] Liu Y Y, Zeng G M, Tang L, Cai Y, Pang Y, Zhang Y, Yang G D, Zhou Y Y, He X X, He Y. J. Colloid Interf. Sci., 2015, 448:451.
[126] Li Z Y, Ren S L. J. Mater. Sci., 2015, 50(13):4600.
[127] Baikousi M, Georgiou Y, Daikopoulos C, Bourlinos A B, Filip J, Zboril R, Deligiannakis Y, Karakassides M A. Carbon, 2015, 93:636.
[128] Xu S H, Zhao Y G, Zheng F C, Zhang Y G. J. Mater. Sci., 2016, 51(5):2550.
[129] Wang F, Zhang L, Wang Y, Liu X, Rohani S, Lu J. Appl. Surf. Sci., 2017, 420(31):970.
[130] Wang J H, Zheng S R, Shao Y, Liu J L, Xu Z Y, Zhu D Q. J. Colloid Interf. Sci., 2010, 349(1):293.
[131] Zhang S, Li J, Wen T, Xu J, Wang X. RSC Adv., 2013, 3(8):2754.
[132] Sheng G D, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang X K, Li H, Huang Y Y. Carbon, 2016, 99:12.
[133] Fan Q H, Tan X L, Li J X, Wang X K, Wu W S, Montavon G. Environ. Sci. Technol., 2009, 43(15):5776.
[134] Das N. CLEAN-Soil, Air, Water, 2012, 40(1):16.
[135] Patra S, Roy E, Madhuri R, Sharma P K. Environ. Sci. Technol., 2015, 49(10):6117.
[136] Rezaei A, Khani H, Masteri-Farahani M, Rofouei M K. Anal. Methods, 2012, 4(12):4107.
[137] Shao D D, Wang X X, Li J X, Huang Y S, Ren X M, Hou G S, Wang X K. Environ. Sci.-Wat. Res., 2015, 1(2):169.
[138] 申东方(Shen D F). 湘潭大学硕士论文(Master's Dissertation of Xiangtan University), 2014.
[139] 徐龙君(Xu L J), 刘科(Liu K), 张福凯(Zhang F K). 环境工程学报(Chinese Journal of Environmental Engineering), 2012,(09):3121.
[140] Li G L, Zhao Z S, Liu J Y, Jiang G B. J. Hazard. Mater., 2011, 192(1):277.
[141] Pinakidou F, Katsikini M, Simeonidis K, Kaprara E, Paloura E C, Mitrakas M. Appl. Surf. Sci., 2016, 360:1080.
[142] 陈慧慧(Chen H H). 南京师范大学硕士论文(Master's Dissertation of Nanjing Normal University), 2016.
[143] Chen R Z, Zhi C Y, Yang H, Bando Y, Zhang Z Y, Sugiur N, Golberg D. J. Colloid Interf. Sci., 2011, 359(1):261.
[144] Hakami O, Zhang Y, Banks C J. Water Res., 2012, 46(12):3913.
[145] Figueira P, Lopes C B, Daniel-Da-Silva A L, Pereira E, Duarte A C, Trindade T. Water Res., 2011, 45(17):5773.
[146] Girginova P I, Daniel-Da-Silva A L, Lopes C B, Figueira P, Otero M, Amaral V S, Pereira E, Trindade T. J. Colloid Interf. Sci., 2010, 345(2):234.
[147] 梁宇(Liang Y), 顾鹏程(Gu P C), 姚文(Yao W), 于淑君(Yu S J), 王建(Wang J), 王祥科(Wang X K). 化学进展(Progress in Chemistry), 2017, 29(9):1062.
[148] Hu R, Shao D D, Wang X K. Polym. Chem., 2014, 5(21):6207.
[149] Guo X, Fei G T, Su H, Zhang L D. J. Phy. Chem. C, 2011, 115(5):1608.
[150] Aroua M K, Zuki F M, Sulaiman N M. J. Hazard. Mater., 2007, 147(3):752.
[151] Chen G Q, Zhang W J, Zeng G M, Huang J H, Wang L, Shen G L. J. Hazard. Mater., 2011, 186(2):2138.
[152] Guo Z Q, Li Y, Pan S H, Xu J Z. J. Mol. Liq., 2015, 206:272.
[153] Yu S M, Liu X G, Xu G J, Qiu Y, Cheng L L. Desalin. Water Treat., 2016, 57(36):16943.
[154] Ajouyed O, Hurel C, Ammari M, Allal L B, Marmier N. J. Hazard. Mater., 2010, 174(1):616.
[155] Sun Y B, Wang Q, Chen C L, Tan X L, Wang X K. Environ. Sci. Technol., 2012, 46(11):6020.
[156] Sheng G D, Shao X Y, Li Y M, Li J F, Dong H P, Cheng W, Gao X, Huang Y Y. J. Phys. Chem. A, 2014, 118(16):2952.
[157] Yan S, Hua B, Bao Z Y, Yang J, Liu C X, Deng B L. Environ. Sci. Technol., 2010, 44(20):7783.
[158] Wang X X, Fan Q H, Yu S H, Chen Z S, Ai Y J, Sun Y B, Hobiny A, Alsaedi A, Wang X K. Chem. Eng. J., 2016, 287:448.
[159] 陈海军(Chen H J), 黄舒怡(Huang S Y), 张志宾(Zhang Z B), 刘云海(Liu Y H), 王祥科(Wang X K). 化学学报(Acta Chimica Sinica), 2017, 76(7):560.
[160] Sheng G D, Tang Y N, Linghu W S, Wang L J, Li J X, Li H, Wang X K, Huang Y Y. Appl. Catal. B-Environ., 2016, 192:268.
[161] Sheng G D, Yang P J, Tang Y N, Hu Q Y, Li H, Ren X M, Hu B W, Wang X K, Huang Y Y. Applied Catalysis B:Environmental, 2016, 193:189.
[162] Ponder S M, Darab J G, Mallouk T E. Environ. Sci. Technol., 2000, 34(12):2564.
[163] Bi Y Q, Hyun S P, Kukkadapu R K, Hayes K F. Geochim. Cosmochim. Ac., 2013, 102:175.
[164] Yang M, Fidalgo A B, Sundin S, Jonsson M. J. Nucl. Mater., 2013, 434(1):38.
[165] Bruggeman C, Maes N. Environ. Sci. Technol., 2010, 44(11):4210.
[166] Hua B, Deng B L. Environ. Sci. Technol., 2008, 42(23):8703.
[167] Scott T B, Tort O R, Allen G C. Geochim. Cosmochim. Ac., 2007, 71(21):5044.
[168] Liu M C, Wen T, Wu X L, Chen C L, Hu J, Li J, Wang X K. Dalton Trans., 2013, 42(41):14710.
[169] Li W W, Gao S, Wu L Q, Qiu S Q, Guo Y F, Geng X M, Chen M L, Liao S T, Zhu C, Gong Y P, Long M S, Xu J B, Wei X F, Sun M T, Liu L W. Sci. Rep., 2013, 3:2125.
[170] Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. Adv. Mater., 2012, 24(30):4144.
[171] Šafarík I, Ptárková L, Šafaríková M. Biotechnol. Lett., 2001, 23(23):1953.
[172] Lei Y L, Chen F, Luo Y J, Zhang L. J. Mater. Sci., 2014, 49(12):4236.
[173] Shao D D, Wang X K, Fan Q H. Micropor. Mesopor. Mater., 2009, 117(1/2):243.
[174] Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50(14):7290.
[175] Wang T, Zhang L Y, Li C F, Yang W C, Song T T, Tang C J, Meng Y, Dai S, Wang H Y, Chai L Y, Luo J. Environ. Sci. Technol., 2015, 49(9):5654.
[176] Yu S J, Wang X X, Ai Y J, Liang Y, Ji Y F, Li J X, Hayat T, Alsaedi A, Wang X K. Environ. Sci.-Nano, 2016, 3(6):1361.
[177] Badruddoza A Z M, Tay A S H, Tan P Y, Hidajat K, Uddin M S. J. Hazard. Mater., 2011, 185(2/3):1177.
[178] Tan L C, Wang J, Liu Q, Sun Y B, Jing X Y, Liu L H, Liu J Y, Song D L. New J. Chem., 2015, 39(2):868.
[179] Sadeghi S, Azhdari H, Arabi H, Moghaddam A Z. J. Hazard. Mater., 2012, 215:208.
[180] Wen T, Wang X X, Wang J, Chen Z S, Li J X, Hu J, Hayat T, Alsaedi A, Grambow B, Wang X K. Inorg. Chem. Front., 2016, 3(10):1227.
[181] Hu J, Zhao D L, Wang X K. Water Sci. Technol., 2011, 63(5):917
[1] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[2] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[3] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[4] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[5] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[6] 梁宇, 顾鹏程, 姚文, 于淑君, 王建, 王祥科*. 碳基纳米材料对水环境中放射性元素铀的吸附[J]. 化学进展, 2017, 29(9): 1062-1071.
[7] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[8] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[9] 谭丽莎, 孙明洋, 胡运俊, 程丽华, 徐新华. 功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展, 2013, 25(12): 2147-2158.
[10] 尉艳, 高超, 杨苒, 王伦, 刘锦淮, 黄行九. 纳米材料修饰电极在重金属离子检测中的应用[J]. 化学进展, 2012, 24(01): 110-121.
[11] 周莅霖,况锦铭,袁金颖. 四氧化三铁纳米粒子表面接枝聚合制备磁性聚合物微球*[J]. 化学进展, 2009, 21(09): 1880-1887.
[12] 李新贵,窦强,黄美荣. 聚苯胺及其复合物对重金属离子的高效吸附性能[J]. 化学进展, 2008, 20(0203): 227-232.
[13] 朱维平,徐玉芳,钱旭红. 具有重要生物学意义的重金属及过渡金属离子荧光分子探针*[J]. 化学进展, 2007, 19(9): 1229-1238.
[14] 赵涛,孙蓉,冷静,杜如虚,张治军. 液相法制备(亚)铁磁性纳米材料*[J]. 化学进展, 2007, 19(11): 1703-1709.
[15] 黄美荣 李新贵 李圣贤. 聚萘二胺的合成及其对重金属离子的高效反应吸附*[J]. 化学进展, 2005, 17(02): 299-309.