English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 980-995 DOI: 10.7536/PC181108 前一篇   后一篇

所属专题: 金属有机框架材料

• •

功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用

谭远铭, 孟皓, 张霞**()   

  1. 东北大学理学院化学系 沈阳 110819
  • 收稿日期:2018-11-13 出版日期:2019-07-15 发布日期:2019-04-26
  • 通讯作者: 张霞
  • 作者简介:
  • 基金资助:
    国家自然科学基金项目(21501023); 国家自然科学基金项目(21103017)

Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes

Yuanming Tan, Hao Meng, Xia Zhang**()   

  1. Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
  • Received:2018-11-13 Online:2019-07-15 Published:2019-04-26
  • Contact: Xia Zhang
  • Supported by:
    National Natural Science Foundation of China(21501023); TNational Natural Science Foundation of China(21103017)

全球工业的发展带来了严重的水污染问题,对含各类有机和无机污染物工业废水的处理也成为了重要研究课题。金属-有机骨架(Metal-Organic Frameworks, MOFs)化合物由于其大比表面积、高孔隙率、有序孔道结构及可调节孔道物理化学性质、热稳定性高、易于合成和丰富的开放活性位点等特点,在诸多领域得到广泛应用,其中在固相吸附/分离领域,特别是吸附水中污染物方面展现出良好应用前景。通过合成后改性、使用含取代基配体原位合成、与特定功能材料复合等方法实现MOFs功能化,可有效增加MOFs材料的吸附活性位点,提高吸附性能和吸附选择性。与MOFs颗粒相比较,MOFs/聚合物复合膜结合了MOFs颗粒的结构与物理化学特性以及聚合物薄膜优秀的分离/载体性能,在有机染料及重金属离子的吸附中表现出优秀的吸附/分离性能。本文重点综述了以染料和重金属离子为代表的有机、无机污染物的吸附去除为目标的MOFs功能化方法,以及MOFs/聚合物复合膜的制备方法,并对未来研究方向和研究前景进行展望。

The development of global industries has brought serious problem of water pollution, therefore, the efficient treatment of wastewater containing various kinds of organic and inorganic pollutants is one of the most important research topics. Metal-organic frameworks(MOFs) have been widely applied in many fields, especially in the solid phase adsorption/separation owing to their large surface area, high porosity, ordered structure and tunable porous physico-chemical properties, thermal stability, easy synthesis and abundant open active sites. The functionalization methods of MOFs such as post-synthesis modification, in situ synthesis with linkers containing substituents, and hybridization with specific functional materials could effectively increase the adsorption active sites, thus enhancing the adsorption performance and adsorption selectivity. Compared to MOFs particles, MOFs/polymer composite membranes combine the special structure and physico-chemical properties of MOFs and excellent adsorption/carrier nature of polymer films and thus exhibit extraordinary adsorption/separation performances in the removal of pollutants. In this paper, we focus on the functionalization methods of MOFs which are applied in the adsorption/removal of dyes and heavy metal ions. We also summarize the fabrication technology of MOFs/polymer composite membranes and their applications in the wastewater treatment. Finally, the development direction and research prospect of MOFs-related composite materials are also proposed.

()
图1 PVBTAH~ZIF-8离子交换材料的结构[39]
Fig. 1 The structures of PVBTAH~ZIF-8 ion-exchange materials[39]
图2 MOF-808的EDTA功能化及对金属离子的吸附[45]
Fig. 2 The functionalization of MOF-808 with EDTA for metal ions adsorption[45]
图3 Zr-DMBD骨架对Hg2+的吸附[53]
Fig. 3 The adsorption of Hg2+ on Zr-DMBD framework[53]
图4 MCNC@Zn-BTC的制备及其吸附Pb2+应用[64]
Fig. 4 The preparation of MCNC@Zn-BTC and its application for Pb2+ adsorption[64]
图5 Cu-BTC/PVDF杂化膜制备流程图[101]
Fig. 5 Sketching map of synthesis of Cu-BTC/PVDF hybrid membranes[101]
图6 ZIF-8/PSS/HPAN杂化膜的制备[105]
Fig. 6 Preparation of the ZIF-8/PSS/HPAN hybrid membrane[105]
图7 TFN-mZIF复合膜的制备[109]
Fig. 7 The preparation of TFN-mZIF composite membrane[109]
图8 光诱导聚合制备UiO-66-NH-Met/BMA PSP衍生膜[93]
Fig. 8 Preparation of a PSP-derived membrane by photoinduced postsynthetic polymerization[93]
[1]
Yagub M T, Sen T K, Afroze S, Ang H M . Adv. Colloid Interface Sci., 2014,209:172.
[2]
Ahmad A, Mohd-Setapar S H, Chuong C S, Khatoon A, Wani W A, Kumar R, Rafatullah M . RSC Adv., 2015,5:30801.
[3]
Haque E, Lee J E, Jang I T, Hwang Y K, Chang J S, Jegal J, Jhung S H . J.Hazard. Mater., 2010,181:535.
[4]
Kobielska P A, Howarth A J, Farha O K, Nayak S . Coord. Chem. Rev., 2018,358:92.
[5]
Feng M, Zhang P, Zhou H C, Sharma V K . Chemosphere, 2018,209:783.
[6]
Hasan Z, Jhung S H . J.Hazard. Mater., 2015,283:329. https://www.ncbi.nlm.nih.gov/pubmed/25305363

doi: 10.1016/j.jhazmat.2014.09.046     URL     pmid: 25305363
[7]
Dias J M, Alvim-Ferraz M C M, Almeida M F, Rivera-Utrilla J, Sánchez-Polo M . J. Environ. Manage., 2007,85:833. 4a255f1a-62e6-4acb-bae1-35fe9ba23089http://www.sciencedirect.com/science/article/pii/S0301479707002964

doi: 10.1016/j.jenvman.2007.07.031     URL    
[8]
Ihsanullah, Abbas A, Al-Amer A M, Laoui T, Al-Marri M J, Nasser M S, Khraisheh M, Atieh M A . Sep. Purif. Technol., 2016,157:141.
[9]
Cao Y, Li X . Adsorption, 2014,20:713.
[10]
Babel S, Kurniawan T A . J.Hazard. Mater., 2003,97:219.
[11]
Ahmed M N, Ram R N . Environ. Pollut., 1992,77:79.
[12]
Delkash M, Bakhshayesh B E, Kazemian H . Micropor. Mesopor. Mat., 2015,214:224.
[13]
Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q . J.Hazard. Mater., 2012,211:317.
[14]
Butova V V, Soldatov M A, Guda A A, Lomachenko K A, Lamberti C . Russ. Chem. Rev., 2016,85:280.
[15]
Li J, Cheng S, Zhao Q, Long P, Dong J . Int. J. Hydrogen Energ., 2009,34:1377.
[16]
Sung H J, Lee J H, Chang J S . B. Korean Chem. Soc., 2005,26:880.
[17]
Qiu L G, Li Z Q, Wu Y, Wang W, Xu T, Jiang X . Chem. Commun., 2008,3642.
[18]
Yuan W, Garay A L, Pichon A, Clowes R, Wood C D, Cooper A I, James S L . CrystEngComm, 2010,12:4063.
[19]
Peng L, Zhang J, Li J, Han B, Xue Z, Yang G . Chem. Commun., 2012,48:8688.
[20]
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J . J.Mater. Chem., 2006,16:626.
[21]
Gangu K K, Maddila S, Mukkamala S B, Jonnalagadda S B . Inorg. Chim. Acta, 2016,446:61.
[22]
Rowsell J L C, Yaghi O M . J.Am. Chem. Soc., 2006,128:1304. https://www.ncbi.nlm.nih.gov/pubmed/16433549

doi: 10.1021/ja056639q     URL     pmid: 16433549
[23]
Li Y W, Li J R, Wang L F, Zhou B Y, Chen Q, Bu X H . J. Mater. Chem. A, 2013,1:495.
[24]
Horcajada P, Márquez-Alvarez C, Rámila A, Pérez-Pariente J, Vallet-Regí M . Solid State Sci., 2006,8:1459.
[25]
Shamzhy M V, Opanasenko M V, Garcia H, Čejka J . Micropor. Mesopor. Mat., 2015,202:297. https://linkinghub.elsevier.com/retrieve/pii/S1387181114005770

doi: 10.1016/j.micromeso.2014.10.003     URL    
[26]
Haque E, Jun J W, Jhung S H . J.Hazard. Mater., 2011,185:507. https://www.ncbi.nlm.nih.gov/pubmed/20933323

doi: 10.1016/j.jhazmat.2010.09.035     URL     pmid: 20933323
[27]
Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F . J.Hazard. Mater., 2011,196:36.
[28]
Wang C, Liu X, Demir N K, Chen J P, Li K . Chem. Soc. Rev., 2016,45:5107.
[29]
Yang C, Kaipa U, Mather Q Z, Wang X, Nesterov V, Venero A F, Omary M A, J . Am. Chem. Soc., 2011,133:18094. https://www.ncbi.nlm.nih.gov/pubmed/21981413

doi: 10.1021/ja208408n     URL     pmid: 21981413
[30]
Taylor J M, R Vaidhyanathan, Iremonger S S, Shimizu G K, J . Am. Chem. Soc., 2012,134:14338. https://www.ncbi.nlm.nih.gov/pubmed/22909234

doi: 10.1021/ja306812r     URL     pmid: 22909234
[31]
Tong M, Liu D, Yang Q, Devautour-Vinot S, Maurin G, Zhong C . J. Mater. Chem. A, 2013,1:8534.
[32]
Xu Y, Jin J, Li X, Han Y, Meng H, Wang T, Zhang X . RSC Adv., 2015,5:19199.
[33]
Conde-gonzález J E, Peñaméndez E M, Rybáková S, Pasán J, Ruiz-Pérez C, Havel J . Chemosphere, 2016,150:659.
[34]
Tehrani M S, Zare-Dorabei R . Spectrochim. Acta A, 2016,160:8.
[35]
Bakhtiari N, Azizian S . J.Mol. Liq., 2015,206:114. https://linkinghub.elsevier.com/retrieve/pii/S0167732215000999

doi: 10.1016/j.molliq.2015.02.009     URL    
[36]
Luo X, Ding L, Luo J . J. Chem. Eng. Data, 2015,60:1732.
[37]
Bai Z Q, Yuan L Y, Zhu L, Liu Z R, Chu S Q, Zheng L R, Zhang J, Chai Z F, Shi W Q . J. Mater. Chem. A, 2014,3:525.
[38]
Wang Y, Ye G, Chen H, Hu X, Niu Z, Ma S . J. Mater. Chem. A, 2015,3:15292.
[39]
Gao L, Li C Y V, Chan K Y, Chen Z N . J. Am. Chem. Soc., 2014,136:7209. eb74183d-e991-4f7d-98c4-1e856cba47e8http://dx.doi.org/10.1021/ja501958u

doi: 10.1021/ja501958u     URL    
[40]
Peng Y, Huang H, Liu D, Zhong C . ACS Appl. Mater. Interfaces, 2016,8:8527.
[41]
Huang L, He M, Chen B, Hu B . J. Mater. Chem. A, 2016,4:5159.
[42]
Alqadami A A, Naushad M, Alothman Z A, Ahamad T . ACS Appl. Mater. Inter., 2017,9:36026.
[43]
Alqadami A A, Naushad M, Alothman Z A, Ahamad T . J.Environ. Manage., 2018,223:29. https://www.ncbi.nlm.nih.gov/pubmed/29885562

doi: 10.1016/j.jenvman.2018.05.090     URL     pmid: 29885562
[44]
Yin N, Wang K, Li Z . Desalination, 2018,430:120.
[45]
Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Liu D, Zhong C . Nat. Commun., 2018,9:187.
[46]
Fan L, Deng M, Lin C, Xu C, Liu Y, Shi Z, Wang Y, Xu Z, Li L, He M . RSC Adv., 2018,8:10561.
[47]
Yuan G, Zhao C, Tu H, Li M, Liu J, Liao J, Yang Y, Yang J, Liu N . Inorg. Chim. Acta, 2018,483:488.
[48]
Olorunyomi J F, Chan K Y, Gao L, Voskanyan A A, Li C Y V . Micropor. Mesopor. Mater., 2018,259:255.
[49]
Zhou X P, Xu Z, Zeller M, Hunter A D . Chem. Commun., 2009,5439.
[50]
Haque E, Lo V, Minett A, Harris A T, Church T L . J. Mater. Chem. A, 2013,2:193.
[51]
Wang K, Gu J, Yin N . Ind. Eng. Chem. Res., 2017,56:1880.
[52]
何燕萍(He Y Y), 谭衍曦(Tan Y X), 张健(Zhang J) . 化学学报 (Acta Chimica Sinica), 2014,72(12):1228.
[53]
Yee K K, Reimer N, Liu J, Cheng S Y, Yiu S M, Weber J, Stock N, Xu Z . J.Am. Chem. Soc., 2013,135:7795. https://www.ncbi.nlm.nih.gov/pubmed/23646999

doi: 10.1021/ja400212k     URL     pmid: 23646999
[54]
Luo X P, Fu S Y, Du Y M, Guo J Z, Li B . Micropor. Mesopor. Mat., 2017,237:268.
[55]
Zhang Y, Zhao X, Huang H, Li Z, Liu D, Zhong C . RSC Adv., 2015,5:72107.
[56]
Ebrahimi A K, Sheikhshoaie I, Mehran M . J.Mol. Liq., 2017,240:803. https://linkinghub.elsevier.com/retrieve/pii/S0167732217309492

doi: 10.1016/j.molliq.2017.06.097     URL    
[57]
Meng X, Zhong R L, Song X Z, Song S Y, Hao Z M, Zhu M, Zhao S N, Zhang H J . Chem. Commun., 2014,50:6406.
[58]
Xiong Y Y, Li J Q, Gong L L, Feng X F, Meng L N, Zhang L, Meng P P, Luo M B, Luo F . J.Solid State Chem., 2017,246:16.
[59]
Zou F, Yu R, Li R, Li W . ChemPhysChem, 2013,14:2825.
[60]
Yan A X, Yao S, Li Y G, Zhang Z M, Lu Y, Chen W L, Wang E B . Chem. Eur. J., 2014,20:6927.
[61]
Xiong Y, Ye F, Zhang C, Shen S, Su L, Zhao S . RSC Adv., 2014,5:5164.
[62]
Askari H, Ghaedi M, Dashtian K, Azghandi M H A . Ultrason. Sonochem., 2017,37:71.
[63]
Wang K, Tao X, Xu J, Yin N . Chem. Lett., 2016,45:1365.
[64]
Wang N, Ouyang X K, Yang L Y, Omer A M . ACS Sustain. Chem. Eng., 2017,5:10447.
[65]
Yang C, Cheng J, Chen Y, Hu Y . J.Colloid Interf. Sci., 2017,504:39.
[66]
Liang L, Liu L, Jiang F, Liu C, Yuan D, Chen Q, Wu D, Jiang H L, Hong M . Inorg. Chem., 2018,57:4891.
[67]
Yang C, Wu S, Cheng J, Chen Y . J.Alloy. Compound., 2016,687:804.
[68]
Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J . J. Mater. Chem. A, 2017,5:17933.
[69]
Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I . Chem. Eng. J., 2017,326:1145.
[70]
Samuel M S, Subramaniyan V, Bhattacharya J, Parthiban C, Chand S, Singh N D P . Compos. Part B-Eng., 2018,152:116.
[71]
Yang J M, Ying R J, Han C X, Hu Q T, Xu H M, Li J H, Wang Q, Zhang W . Dalton Trans, 2018,47:3913.
[72]
Zhang J, Xiong Z, Li C, Wu C . J.Mol. Liq., 2016,221:43. https://linkinghub.elsevier.com/retrieve/pii/S0167732216305219

doi: 10.1016/j.molliq.2016.05.054     URL    
[73]
马苗苗(Ma M M), 李梅(Li M), 柯福生(Ke F S) . 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2018,34(09):1663.
[74]
Azhar M R, Abid H R, Sun H, Periasamy V, Tadé M O, Wang S . J.Colloid Interf. Sci., 2017,490:685. https://www.ncbi.nlm.nih.gov/pubmed/27940035

doi: 10.1016/j.jcis.2016.11.100     URL     pmid: 27940035
[75]
Shen J, Wang X, Zhang L Yang W Tian Z Chen J Tao T . J. Clean. Prod., 2018,184:949. https://linkinghub.elsevier.com/retrieve/pii/S0959652618306644

doi: 10.1016/j.jclepro.2018.03.015     URL    
[76]
Mao J, Ge M, Huang J, Lai Y, Lin C, Zhang K, Meng K, Tang Y . J. Mater. Chem. A, 2017,5:11873.
[77]
Yin N, Wang K, Wang L, Li Z . Chem. Eng. J., 2016,306:619.
[78]
Khanjani S, Morsali A . Ultrason. Sonochem., 2014,21:1424.
[79]
Yang W, Wang J, Yang Q, Pei H, Hu N, Suo Y, Li Z, Zhang D, Wang J . Chem. Eng. J., 2018,339:230.
[80]
Li H, Li M, Li W, Yang Q, Li Y, Gu Z, Song Y . Phys. Chem. Chem. Phys., 2016,19:5746.
[81]
Li Z, Zhou G, Dai H, Yang M, Fu Y, Ying Y, Li Y . J. Mater. Chem. A, 2018,6:3402.
[82]
Ting H, Chi H Y, Lam C H, Chan K Y, Kang D Y . Environ. Sci.-Nano, 2017,4:2205.
[83]
Chi H Y, Hung S H, Kan M Y, Lee L W, Lam C H, Chen J J, Kang D Y . CrystEngComm, 2018,20:5465.
[84]
Lee A, Elam J W, Darling S B . Environ. Sci.: Water Res. Technol., 2016,2:17.
[85]
Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelechc M, Jiang Z . Chem. Soc. Rev., 2016,45:5888.
[86]
Car A, Stropnik C, Peinemann K V . Desalination, 2006,200:424.
[87]
Denny M S, Moreton J C, Benz L, Cohen S M . Nat. Rev. Mater., 2016,1:16078.
[88]
Zirehpour A, Rahimpour A, Ulbricht M . J.Membrane Sci., 2017,531:59.
[89]
Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston A G . J.Am. Chem. Soc., 2013,135:15201. https://www.ncbi.nlm.nih.gov/pubmed/24044635

doi: 10.1021/ja407665w     URL     pmid: 24044635
[90]
Sorribas S, Kudasheva A, Almendro E, Zornoza B, Iglesia Ó, Télleza C, Coronas J . Chem. Eng. Sci., 2015,124:37.
[91]
Wu B, Liang G, Lin X, Wu L, Luo J, Xu T . J.Membrane Sci., 2014,458:86.
[92]
Li Y, Wee L H, Volodin A, Martensa J A, Vankelecom I F J . Chem. Commun., 2014,51:918. http://xlink.rsc.org/?DOI=C4CC06699E

doi: 10.1039/C4CC06699E     URL    
[93]
Zhang Y, Feng X, Li H, Chen Y, Zhao J, Wang S, Wang L, Wang B . Angew. Chem. Int. Ed., 2015,54:4259.
[94]
Denny M S, Cohen S M . Angew. Chem. Int. Ed., 2015,54:9029.
[95]
Yao B J, Jiang W L, Dong Y, Liu Z X, Dong Y B . Chem. Eur. J., 2016,22:10565.
[96]
Shooto N D, Dikio C W, Wankasi D, Sikhwivhilu L M, Mtunzi F M, Dikio E D . Nanoscale Res. Lett., 2016,11:414.
[97]
Albuquerque G H, Herman G S . Cryst. Growth Des., 2017,17:156.
[98]
Makhetha T A, Moutloali R M . J.Membrane Sci., 2018,554:195.
[99]
Efome J E, Rana D, Matsuura T, Lan C Q . J. Mater. Chem. A, 2018,6:4550.
[100]
Efome J, Rana D, Matsuura T, Lan C Q . ACS Appl. Mater. Inter., 2018,10:18619.
[101]
于承鑫(Yu C X), 刘洋洋(Liu Y Y), 张霞(Zhang X) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2018,39(07):1384.
[102]
Tan Y, Sun Z, Meng H, Han Y, Wu J, Xu J, Xu Y, Zhang X . Sep. Purif. Technol., 2019,215:217.
[103]
Basu S, Balakrishnan M . Sep. Purif. Technol., 2017,179:118.
[104]
Park J, Oh M . Nanoscale, 2017,9:12850.
[105]
Zhang R, Ji S, Wang N, Wang L, Zhang G, Li J R . Angew. Chem. Int. Ed., 2015,53:9775.
[106]
Guo Y, Wang X, Hu P, Peng X . Appl. Mater. Today, 2016,5:103.
[107]
Yang L, Wang Z, Zhang J . J. Mater. Chem. A, 2017,5:15342.
[108]
Li T, Zhang W, Shu Z, Gao G, Ding J, Zhang W, Liu Y, Zhao X, Pan B, Lv L . Water Res., 2018,143:87.
[109]
Zhu J, Qin L, Uliana A, Hou J, Wang J, Zhang Y, Li Xin, Yuan S, Li J, Tian M, Lin J, Bruggen B V . ACS Appl. Mater. Inter., 2017,9:1975.
[110]
Golpour M, Pakizeh M . Chem. Eng. J., 2018,345:221.
[111]
Jia Z, Jiang M, Wu G . Chem. Eng. J., 2016,307:283.
[112]
Zhang P, Gong J L, Zeng G M, Song B, Liu H Y, Huan S Y, Li J . Chemosphere, 2018,204:378.
[1] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[2] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[3] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[4] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[5] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[6] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[7] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[8] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[9] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[10] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[11] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[12] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[13] 杨文清, 谢大乐, 程俊, 唐维克, 汪若冰, 冯乙巳. 负载型BINAP-M类催化剂[J]. 化学进展, 2021, 33(10): 1706-1720.
[14] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[15] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
阅读次数
全文


摘要