English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 571-579 DOI: 10.7536/PC180823 前一篇   后一篇

• •

多巴胺功能材料在水污染控制中的应用

陈贺1, 张帅其1, 赵致雪1, 刘萌1, 张庆瑞1,2,**()   

  1. 1. 燕山大学环境与化学工程学院 秦皇岛 066004
    2. 河北省应用化学重点实验室 秦皇岛 066004
  • 收稿日期:2018-08-28 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 张庆瑞
  • 作者简介:
  • 基金资助:
    国家自然科学基金项目资助(51578476); 国家自然科学基金项目资助(21876145)

Application of Dopamine Functional Materials in Water Pollution Control

He Chen1, Shuaiqi Zhang1, Zhixue Zhao1, Meng Liu1, Qingrui Zhang1,2,**()   

  1. 1. School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
    2. Key Laboratory of Applied Chemistry of Hebei Province, Qinhuangdao 066004, China
  • Received:2018-08-28 Online:2019-01-15 Published:2019-01-14
  • Contact: Qingrui Zhang
  • About author:
  • Supported by:
    Fund:The work was supported by the National Natural Science Foundation of China(51578476); Fund:The work was supported by the National Natural Science Foundation of China(21876145)

多巴胺又名4-(2-乙氨基)-苯-1,2-二酚,具有官能团丰富,吸附位点多以及良好的生物相容性等众多优势,近年来,利用多巴胺研制纳米复合功能材料及环境应用是重要研究方向之一。本文从多巴胺结构特性以及自聚组装机理入手,介绍了将聚多巴胺涂布于不同基底材料进行改性,总结性能优异的多巴胺纳米复合材料的制备方法及在污水处理方面的应用进展及应用前景。

Dopamine, known as 4-(2-ethylamino)-benzene-1, 2-diphenol, exhibits abundance in functional groups and active sites for adsorption, as well as good biocompatibility. Recently, an important research area has been emerging using dopamine based nanocomposite for environmental remediation. In this paper, the structural characteristics of dopamine and the mechanism of self-polymerization are introduced, and the polydopamine coating onto various substrates and the relative applications for wastewater treatment are discussed.

()
图1 不同儿茶酚类的结构图[14]
Fig. 1 Structure diagram of different catechols[14]. Copyright 2017, Wiley.
图2 不同PDA结构[18]
Fig. 2 Different PDA structures[18]. Copyright 2013, ACS.
图3 多巴胺在水溶液中的反应路线[23]
Fig. 3 The reaction route of dopamine in aqueous solution[23]. Copyright 2015, Elsevier.
图4 CuSO4/H2O2为氧化剂制备PDA膜[36]
Fig. 4 Preparation of PDA Membrane by CuSO4 / H2O2 as Oxidant[36]. Copyright 2017, ACS.
图5 多巴胺与不同材料基体发生共沉积时的相互作用[41]
Fig. 5 Interaction of dopamine with co-deposition of different material matrices[41]. Copyright 2018, Wiley.
图6 石墨烯水凝胶吸附污水效果图[52]
Fig. 6 Effect of PDA-GH on adsorption of sewage[52].Copyright 2013, ACS.
图7 通过PDA化学介导的SET-LRP的AO功能化MNPs合成示意图[56]
Fig. 7 Illustration of the synthetic procedure of AO-functio-nalized MNPs by SET-LRP mediated by PDA chemistry[56].Copyright 2016, RSC.
图8 (a)Fe3O4@PDA-Ag核/壳纳米球制备示意图;(b)Fe3O4@PDA-Ag核/壳纳米球吸附MB连续紫外-可见光谱图[64]
Fig. 8 (a)Schematic diagram of preparation of Fe3O4 @PDA-Ag core/shell nanospheres;(b)Successive UV-vis absorption spectra of MB aqueous solution in the presence of Fe3O4@PDA-Ag core-shell microspheres[64].Copyright 2014, ACS.
图9 Ag纳米颗粒载入PDA涂覆的3D-IO结构的模板示意图[76]
Fig. 9 Schematic procedure of fabricating Ag nanoparticle-incorporated free-standing membranes using a template of a PDA-coated 3D-IO structure[76]. Copyright 2016, ACS.
[1]
Lee B P, Messersmith P B, Israelachvili J N ,Waite J H. Annu. Rev. Mater. Res., 2011,41:99.
[2]
Lee H, Rho J ,Messersmith P B. Adv. Mater 2009,21:431.
[3]
Waite J H. Biol. Rev., 1983,58:209.
[4]
Lee H, Dellatore S M, Miller W M, Messersmith P B . Science, 2007,318:426.
[5]
Zhang H, Hardy G C, Rosseinsky M J ,Cooper A I. Adv. Mater, 2003,15:78.
[6]
Wu K, Du K, Hu G . J. Mater. Chem. Res. A, 2018,6:3444.
[7]
Liu Y, Ai K, Lu L . Chem. Rev 2014,114:5057.
[8]
Gao F, Wang J, Zhang H, Jia H, Cui Z, Yang G J . Membrane Sci., 2019,15:570.
[9]
Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, Xu H, Li X J . Hazard. Mater., 2014,270:27. https://www.ncbi.nlm.nih.gov/pubmed/24525161

doi: 10.1016/j.jhazmat.2014.01.039     URL     pmid: 24525161
[10]
Guang Y, Wang J, Zhang H, Jia H, Zhang Y, Gao F. Water Res ., 2019,149:215.
[11]
Li N, Tang S, Rao Y, Qi J, Wang P, Jiang Y, Huang H, Gu J, Yuan D . Electrochim. Acta, 2018,270:330.
[12]
Schlaich C, Li M, Cheng C, Donskyi I S, Yu L, Song G, Osorio E, Wei Q, Haag R. Adv. Mater . Interfaces, 2018,5:1701254.
[13]
张庆瑞(Zhang Q R), 李奕璇(Li Y X), 陈贺(Chen H), 张帅其(Zhang S Q), 乔丽丽(Qiao L L). . 燕山大学学报(Journal of Yanshan University), 2018,42(1):1.
[14]
Barclay T G, Hegab H M, Clarke S R, Ginic-Markovic M.. Adv. Mater. Interfaces, 2017,4:1601192.
[15]
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y . Nanoscale, 2016,8:16819.
[16]
Zhang X, Huang Q, Deng F, Huang H, Wan Q, Liu M, Wei Y. Appl. Mater. Today, 2017,7:222.
[17]
Jeong Y K, Park S H ,Choi J W. ACS Appl. Mater. Interfaces, 2018,10:7562.
[18]
Jürgen L, Rados AwM, ,Scheidt H A, Claudiu F H, Dade N D, Rodica T, Attila B, Sebastian B . Langmuir, 2013,29:10539.
[19]
Tse D C S, McCreery R L, Adams R N J . Med. Chem., 1976,19:37.
[20]
Ryu J H, Messersmith P B ,Lee H S. ACS Appl. Mater. Interfaces, 2018,10:7523.
[21]
Hong S, Na Y S, Choi S, Song I T, Kim W Y ,Lee H. Adv. Funct. Mater, 2012,22:4711.
[22]
Kim H W ,McCloskey B D, Choi T H, Lee C, Kim M J, Freeman B D, Park H B . ACS Appl. Mater. Interfaces, 2013,5:233.
[23]
Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R ,Xu Q. Chem. Eng. J, 2015,259:53.
[24]
Chen C T, Martin-Martinez FJ, Jung G S ,Buehler M J. Chem. Sci, 2017,8:1631.
[25]
Mrówczyński R, Markiewicz R, Liebscher J . Polym. Int 2016,65:1288.
[26]
Kang X, Cai W, Zhang S, Cui S . Polym. Chem 2017,8:860.
[27]
Ham H O, Liu Z ,Lau K H A, Lee H, Messersmith P B . Angew. Chem. Int. Ed. Engl., 2011,50:732.
[28]
Zhang C, Ou Y, Lei W X, Wan L S, Ji J ,Xu Z K. Angew. Chem. Int. Ed. Engl, 2016,55:3054.
[29]
Lee M, Lee S H, Oh I K, Lee H . Small. 2017,13:1600443.
[30]
Liu X S, Cao J M, Li H, Li J Y, Qiao J, Ren K F, Ji J . ACS Nano, 2013,7:9384.
[31]
Zeng Z, Wen M, Yu B, Ye G, Huo X, Lu Y, Chen J. ACS Appl . Mater. Interfaces, 2018,10:14735.
[32]
Della V N F, Avolio R, Alfè M, Errico M E, Napolitano A, D’Ischia M . Adv. Funct. Mater., 2013,23:1331.
[33]
Wei Q, Zhang F, Li J, Li B, Zhao C . Polym. Chem 2010,1:1430.
[34]
Hedlund J, Andersson M, Fant C, Bitton R, Bianco-Peled H, Elwing H, Berglin M . Biomacromolecules, 2009,10:845.
[35]
Vincent B, José G, Mercedes V, Manoj Kumar S, Marie-Hélène MB, Marc M ,Jér? Me B, Valérie T, David R, Buehler M J 2013,29:12754.
[36]
Zhang C, Lv Y, Qiu W Z, He A ,Xu Z K. ACS Appl. Mater. Interfaces, 2017,9:14437.
[37]
Lee M, Lee S H, Oh I K, Lee H . Small, 2017,13.
[38]
Du X, Li L, Behboodi-Sadabad F, Welle A, Li J, Heissler S, Zhang H, Plumeré N ,Levkin P A. Polym. Chem, 2017,8:2145.
[39]
Xin D, Linxian L, Junsheng L, Chengwu Y, Nataliya F, Alexander W, Stefan H, Alexei N, Michael G, Levkin PA . Adv. Mater 2014,26:8029.
[40]
Wang Z, Xu C, Lu Y, Wei G, Ye G, Sun T, Chen J . Polym. Chem 2017,8:4388.
[41]
Yang H C, Waldman R Z, Wu M B, Hou J, Chen L, Darling S B ,Xu Z K. Adv. Funct. Mater, 2018,28:1705327.
[42]
蒋金泓(Jiang J H) . 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2014.
[43]
徐又一(Xu Y Y), 蒋金泓(Jiang J H), 朱利平(Zhu Li P), 朱宝库(Zhu B K) . 膜科学与技术(Membrane Science and Technology(China)), 2011,31:32.
[44]
Ghosh Chaudhuri R, Paria S . Chem. Rev 2012,112:2373.
[45]
Guo L Q, Qian L, Li GL, Shi J B, Liu J Y, Wang T, Jiang G B . Nanoscale, 2012,4:5864.
[46]
Yang Z, Xu H, Shan C, Jiang Z, Pan B . Chemosphere, 2017,170:251.
[47]
Pashaei H, Ghaemi A, Nasiri M, Heydarifard M . Energ. Fuels 2018,32:2037.
[48]
Song Y, Ye G, Wu F, Wang Z, Liu S, Kope M, Wang Z, Chen J, Wang J, Matyjaszewski K . Chem. Mater., 2016,28:5013.
[49]
Zhang K, Yong F, McCarthy DT, Deletic A. Water Res., 2018,142:236.
[50]
Zhang Q, Yang Q, Phanlavong P, Li Y, Wang Z, Jiao T ,Peng Q. ACS Sustain. Chem. Eng, 2017,5:4161.
[51]
李鹏莉(Li P L), 于树玲(Yu S L), 石家华(Shi J H) . Journal of Henan University(Natural Science)), 2014,44:416.
[52]
Gao H, Sun Y, Zhou J, Xu R ,Duan H. ACS Appl. Mater. Interfaces, 2013,5:425.
[53]
Zhu K, Lu S, Gao Y, Zhang R, Tan X, Chen C . Appl. Surf. Sci, 2017,396:1726.
[54]
贾潞(Jia L), 马建中(Ma J Z), 高党鸽(Gao D H), 吕斌(Lu B) . 化学进展(Progress in Chemistry), 2018,30:295.
[55]
Sun Q, Yang Y, Zhao Z, Zhang Q, Zhao X, Nie G, Jiao T, Peng Q . Environ. Sci. Nano., 2018,5:2440.
[56]
Yang Y, Wang J, Wu F, Ye G, Yi R, Lu Y, Chen J . Polym. Chem 2016,7:2427.
[57]
Wu F, Pu N, Ye G, Sun T, Wang Z, Song Y, Wang W, Huo X, Lu Y ,Chen J. Environ. Sci. Technol, 2017,51.
[58]
李创(Li C), 王彩云(Wang C Y), 江婷婷(Jiang T T), 汪满丽(Wang M L), 张小亮(Zhang X L) . 化工学报(Journal of Chemical Industry and Engineering(China)), 2017,68:2577.
[59]
Yang Y, Shapter J G, Popelka-Filcoff R, Bennett J W, Ellis A V J . Hazard. Mater., 2014,273:174. https://www.ncbi.nlm.nih.gov/pubmed/24731937

doi: 10.1016/j.jhazmat.2014.03.048     URL     pmid: 24731937
[60]
杜思南(Du S N) . 西南民族大学博士论文(Doctoral Dissertation of Southwest Minzu University), 2017.
[61]
Li N, Tang S, Rao Y, Qi J, Zhang Q, Yuan D . Electrochim. Acta, 2019,298:59.
[62]
Wang Z, Guo J, Ma J, Shao L . J. Mater. Chem A, 2015,3:19960.
[63]
陈中辉(Chen Z H) . 郑州大学博士论文(Doctoral Dissertation of Zhengzhou University), 2015.
[64]
Xie Y, Yan B, Xu H, Jian C, Liu Q, Deng Y, Zeng H . ACS Appl. Mater. Interfaces, 2014,6:8845.
[65]
Dong Z, Wang D, Liu X, Pei X, Chen L, Jin J . J. Mater. Chem. A, 2014,2:5034.
[66]
王玮(Wang W) . 燕山大学博士论文(Doctoral Dissertation of Yanshan University), 2016.
[67]
Tang S, Li X, Zhang C, Liu Y, Zhang W, Yuan D . PlasmaSci. Tech., 2019,21:025504.
[68]
曹晓彤(Cao X T) . 中国科学院大学博士论文. (Doctoral Dissertation of University of Chinese Academy of Sciences), 2017.
[69]
Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans J D ,Doonan C J. Chem. Inform, 2016,47:237.
[70]
Zhang M, He X, Chen L, Zhang Y J . Mater. Chem., 2010,20:10696.
[71]
Mao W X, Lin X J, Zhang W, Chi Z X, Lyu R W, Cao A M ,Wan L J. Chem. Commun, 2016,52:7122.
[72]
刘书君(Liu S J) . 郑州大学博士论文(Doctoral Dissertation of Zhengzhou University), 2016.
[73]
Wang J G, Hua X, Li M ,Long Y T . ACS Appl. Mater. Interfaces, 2017,9:3016.
[74]
闫孟飞(Yan M F), 韩霞(Han X), 刘洪来(Liu H L) . 华东理工大学学报(自然科学版)(Journal of East China University of Science and Technology), 2017,43:16.
[75]
许枭然(Xu X R), 周璘(Zhou L), 孙雪(Sun X), 刘吉洋(Liu J Y), 奚凤娜(Xi F N) . 浙江理工大学学报(Journal of Zhejiang Sci-Tech University), 2016,35:548.
[76]
Choi G H, Rhee D K, Park A R, Oh M J, Hong S, Richardson J J, Guo J, Caruso F ,Yoo P J. ACS Appl. Mater. Interfaces, 2016,8:3250.
[77]
张培斌(Zhang P B), 唐安琪(Tang A Q), 路景驭(Lu J Y), 朱宝库, 朱利平(Zhu L P) . 功能高分子学报(Journal of Functional Polymer), 2017,30:1.
[78]
Cao Y, Liu N, Zhang W, Feng L, Wei Y. ACS Appl . Mater. Interfaces, 2016,8:3333.
[79]
Yang Z, Wu Y, Wang J, Cao B ,Tang CY. Environ. Sci. Technol, 2016,50:9543.
[80]
Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y . ACSAppl. Mater. Interfaces, 2013,5:12895.
[81]
Cao Y, Zhang X, Lei T, Kan L, Xue Z, Lin F, Wei Y. ACS Appl . Mater. Interfaces, 2013,5:4438.
[82]
Hou C, Zhou L, Zhu H, Wang X, Hu N, Zeng F, Wang L, Yin H J . Ind. Microbiol. Biotechnol., 2015,42:723. https://www.ncbi.nlm.nih.gov/pubmed/25752766

doi: 10.1007/s10295-015-1602-0     URL     pmid: 25752766
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[8] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[11] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[12] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[13] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.