English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1665-1678 DOI: 10.7536/PC150401 前一篇   后一篇

• 综述与评论 •

功能化碳质材料的制备及其对水中重金属的去除

刘榆, 傅瑞琪, 楼子墨, 方文哲, 王卓行, 徐新华*   

  1. 浙江大学环境工程系 杭州 310058
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 徐新华 E-mail:xuxinhua@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21477108,21277119)资助

Preparation of Functional Carbon-Based Materials for Removal of Heavy Metals from Aqueous Solution

Liu Yu, Fu Ruiqi, Lou Zimo, Fang Wenzhe, Wang Zhuoxing, Xu Xinhua*   

  1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21477108, 21277119).
重金属污染是目前最为严峻的环境问题之一,我国的重金属污染问题尤为突出。活性炭、纳米碳管和石墨烯等环境友好型碳质材料由于其比表面积大,吸附能力强等优点而被应用于水中重金属的去除,而进行官能团功能化改性后其吸附效果可以明显提高。本文重点阐述了活性炭、纳米碳管、石墨烯及生物质炭等碳质材料的巯基化(-SH)、氨基化(-NH2)等功能化改性方法及其应用,考察了功能化碳质复合材料对水中重金属离子的去除效果和影响因素,最后展望了功能化碳质复合材料对水中重金属污染物去除研究的发展方向。
Heavy metals pollution has become an environmental and public health concern all over the world, especially in China. Activated carbon, carbon nano-tubes and graphene are used to remove heavy metal ions from aqueous solutions due to their large surface area, high adsorption capacity and environmentally benign nature. Whereas, carbon-based materials assembled on functional groups possess excellent adsorption capacity for metal ions. In this study, the modification methods of activated carbon, carbon nano-tubes, graphene and biochar are reviewed, mainly including thiol-functionalization and amino-functionalization. The applications of functional carbon-based materials for heavy metal ions removal are also summarized. The removal efficiency and influential factors of heavy metal ions removal by different functionalized carbon-based materials are discussed in detail. In addition, the outlook and suggestion of heavy metal ions removal by functionalized carbon-based materials are presented.

Contents
1 Introduction
2 Preparation of functional carbon-based materials for removal of heavy metals from aqueous solution
2.1 Functional activated carbon
2.2 Functional graphene
2.3 Functional carbon nanotubes
2.4 Functional biochar
3 The influencing factors of heavy metal removal from water by functional carbon-based materials
3.1 The properties of composite materials
3.2 Environmental conditions
4 The application of functional carbon-based materials
5 Conclusion and outlook

中图分类号: 

()
[1] Fu F, Wang Q. J. Environ. Manage., 2011, 92(3):407.
[2] 邹照华(Zhou Z H), 何素芳(He S F), 韩彩芸(Han C Y), 张六一(Zhang L Y), 罗永明(Luo Y M). 水处理技术(Technology of Water Treatment), 2010, 36(6):17.
[3] Ngah W S W, Hanafiah M. Bioresource Technol., 2008, 99(10):3935.
[4] 李灵香玉(Li L X Y), 吴坚阳(Wu J Y), 田光明(Tian G M),许振岚(Xu Z L).农机化研究(Journal of Agricultural Mechanization Research), 2009, 31(9):209.
[5] 杨丰科(Yang F K), 王守满(Wang S M), 姜萍(Jinag P), 李思东(Li S D). 化学与生物工程(Chemistry & Bioengineering), 2009, 26(6):1.
[6] Sun Y Y, Yue Q Y, Mao Y P, Gao B Y, Gao Y, Huang L H. J. Hazard. Mater., 2014, 265:191.
[7] Rodriguez-Reinoso F. Int. J. Urol., 2014, 21(S2):A6.
[8] Jusoh A, Shiung L S, Noor M.Desalination, 2007, 206(1/3):9.
[9] Seco A, Marzal P, Gabaldón C. J. Chem. Tech. Biotechnol., 1997, 68:23.
[10] Park H S, Koduru J R, Choo K H, Lee B. J. Hazard. Mater., 2015, 286:315.
[11] Han Z, Sani B, Mrozik W, Obst M, Beckingham B, Karapanagioti H K, Werner D.Water Res., 2015, 70(1):394.
[12] Yantasee W, Lin Y, Fryxell G E, Alford K L, Busche B J, Johnson C D. Ind. Eng. Chem. Res., 2004, 43(11):2759.
[13] Monser L, Adhoum N. Sep. Purif. Technol., 2002, 26(2):137.
[14] Zhu J H, Yang J, Deng B L. J. Hazard. Mater., 2009, 166(2/3):866.
[15] Zhang L,Chang X J, Li Z H, He Q. J. Mol. Struct., 2010, 964(1/3):58.
[16] Peñas-Sanjuán A, López-Garzón R, López-Garzón J, Pérez-Mendoza M, Melguizo M. Carbon, 2012, 50(6):2350.
[17] Sharififard H, Soleimani M, Ashtiani F Z. J.Taiwan Inst. Chem. E., 2012, 43(5):696.
[18] Kasnejad M H, Esfandiari A, Kaghazchi T, Asasian N. J. Taiwan Inst. Chem. E., 2012, 43(5):736.
[19] Mahaninia M H, Rahimian P, Kaghazchi T. Chinese J. Chem. Eng., 2015, 23(1):50.
[20] Ismaiel A A, Aroua M K, Yusoff R. Chem. Eng. J., 2013, 225:306.
[21] Li Z C, Wu L Y, Liu H J, Lan H C, Qu J H. Chem. Eng. J., 2013, 228:925.
[22] Kim E, Seyfferth A L, Fendorf S, Luthy R G. Water Res., 2011, 45(2):453.
[23] Tian H, Hu Z, He Q, Liu X L, Zhang L, Chang X J. Spectrochim. Acta A, 2012, 93:335.
[24] Jin G P, Zhu X H, Li C Y, Fu Y, Guan J X,Wu X P. J. Environ. Chem. Engin., 2013, 1(4):736.
[25] Chen W F, Pan L, Chen L F, Yu Z, Wang Q, Yan C C. Appl. Surf. Sci., 2014, 309:38.
[26] Starvin A M, Rao T P. J. Hazard. Mater., 2004, 113(1/3):75.
[27] Ensafi A A, Shiraz A Z. J. Hazard. Mater., 2008, 150(3):554.
[28] Mallakpour S, Abdolmaleki A, Borandeh S. Appl. Surf. Sci., 2014, 307:533.
[29] Wang H, Liu Y G, Zeng G M, Hu X J, Hu X, Li T T, Li H Y, Wang Y Q, Jiang L H. Carbohyd. Polym., 2014, 113:166.
[30] Pan Y Z, Bao H Q, Li L. ACS Appl. Mater. Inter., 2011, 3(12):4819.
[31] Luo S L, Xu X L, Zhou G Y, Liu C B, Tang Y H, Liu Y T. J. Hazard. Mater., 2014, 274:145.
[32] Zhang C Y, Shan C, Jin Y J, Tong M P. Chem. Eng. J., 2014, 254:340.
[33] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2):101.
[34] Guo X Y, Du B, Wei Q, Yang J, Hu L H, Yan L G, Xu W Y. J. Hazard. Mater., 2014, 278:211.
[35] Ma H L, Zhang Y, Hu Q H, Yan D, Yu Z Z, Zhai M. J. Mater. Chem., 2012, 22(13):5914.
[36] Dong Z H, Zhang F, Wang D, Liu X, Jin J. J.Solid State Chem., 2014.
[37] Xu Z W, Zhang Y Y, Qian X M, Shi J, Chen L, Li B D, Niu J R, Liu L S. Appl. Surf. Sci., 2014, 316:308.
[38] Yang L, Li Z C, Nie G D, Zhang Z, Lu X F, Wang C. Appl. Surf. Sci., 2014, 307:601.
[39] Li R J, Liu L F, Yang F L. Chem. Eng. J., 2013, 229:460.
[40] Chandra V, Kaim K S. Chem. Commun., 2011, 47(13):3942.
[41] Wang H, Yuan X H, Wu Y, Chen X H, Leng L, Wang H, Li H, Zeng G M. Chem. Eng. J., 2015, 262:597.
[42] Wu S B, Zhang K S, Wang X L, Jia Y, Sun B, Luo T, Meng F L, Jin Z, Lin D Y, Shen W, Kong L T, Liu J H. Chem. Eng. J., 2015, 262:1292.
[43] Hu X J, Liu Y G, Wang H, Chen A W, Zeng G M, Liu S M, Guo Y M, Hu X, Li T T, Wang Y Q, Zhou L, Liu S H. Sep. Purif. Technol., 2013, 108:189.
[44] Deng X J, Lü L L, Li H W, Luo F. J. Hazard. Mater., 2010, 183(1/3):923.
[45] Behbahani M, Bagheri A, Amini M M, Sadeghi O, Salarian M, Najafi F, Taghizadeh M. Food Chem., 2013, 141(1):48.
[46] Lemos V A, Teixeira L S G, Bezerra M D A, Costa A C S, Castro J T, Cardoso L A M, Jesus D S, Santos E S, Baliza P X,Santos L N. Appl. Spectrosc. Rev., 2008, 43:303.
[47] Grobert N. Mater. Today., 2007, 10(1):28.
[48] Pyrzynska K.Trac-Trend. Anal. Chem., 2010, 29(7):718.
[49] Vainrot N, Eisen M S, Semiat R. Mrs Bull., 2008, 33(1):16.
[50] Liu Y, Li Y, Wu Z Q, Yan X P. Talanta, 2009, 79(5):1464.
[51] Sitko R,Zawisza B,Malicka E.Trac-Trend. Anal. Chem., 2012, 37:22.
[52] Vukovi D? G D, Marinkovi D? A D, ?oli D? M, Risti D? M D, Aleksi D? R, Peri D?-Gruji D? A A, Uskokovi D? P S. Chem. Eng. J., 2010, 157(1):238.
[53] Yang W J, Ding P, Zhou L, Yu J G, Chen X Q, Jiao F P. Appl. Surf. Sci., 2013, 282:38.
[54] Vukovi D? G D, Marinkovi D? A D, škapin S D, Risti D? M D, Aleksi D? R, Peri D?-Gruji D? A A, Uskokovi D? P S. Chem. Eng. J., 2011, 173(3):855.
[55] Vukovi D? G, Marinkovi D? A, Obradovi D? M, Radmilovi D? V, D?oli D? M, Aleksi D? R, Uskokovi D? P S. Appl. Surf. Sci., 2009, 255(18):8067.
[56] Felten A, Bittencourt C, Pireaux J J, van Lier G, Charlier J C. J. Appl. Phys., 2005, 98(7):74308.
[57] Wang Y, Gu Z X, Yang J J, Liao J L, Yang Y Y, Liu N, Tang J. Appl. Surf. Sci., 2014, 320:10.
[58] Zhang C, Sui J H, Li J, Tang Y L, Cai W. Chem. Eng. J., 2012, 210:45.
[59] Bandaru N M, Reta N, Dalal H, Ellis A V, Shapter J, Voelcker N H. J. Hazard. Mater., 2013, 261:534.
[60] Wang J P, Ma X X, Fang G Z, Pan M F, Ye X K, Wang S. J. Hazard. Mater., 2011, 186(2/3):1985.
[61] Hadavifar M, Bahramifar N, Younesi H, Li Q. Chem. Eng. J., 2014, 237:217.
[62] Liu Y, Li Y, Yan X P. Adv. Funct. Mater., 2008, 18(10):1536.
[63] Shao D D, Jiang Z Q, Wang X K, Li J X, Meng Y D. J. Phys. Chem. B, 2009, 113(4):860.
[64] Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S. Chemosphere, 2014, 99:19.
[65] Xue Y W, Gao B, Yao Y, Inyang M D, Zhang M, Zimmerman A R, Ro K S. Chem. Eng. J., 2012, 200/202:673.
[66] Chowdhury Z Z, Hasan M R, Hamid S B, Samsudin E M, Mohd S, Zain, Khalid K. RSC Adv., 2015, 5:6345.
[67] Li Y C, Shao J G, Wang X H, Deng Y, Yang H P, Chen H P. Energ. Fuel, 2014, 28(8):5119.
[68] Xu X Y, Cao X D, Zhao L, Zhou H J,Luo Q S. RSC Adv., 2014, 4:44930.
[69] Wang S S, Gao B, Zimmerman A R, Li Y C, Ma L N, Harris W G, Migliaccio K W. Bioresource Technol., 2015, 175:391.
[70] Yang G, Jiang H. Water Res., 2014, 48:396.
[71] Zhou Y M, Gao B, Zimmerman A R, Fang J, Sun Y N, Cao X D. Chem. Eng. J., 2013, 231:512.
[72] Amuda O S, Giwa A A, Bello I A. Biochem. Eng. J., 2007, 36(2):174.
[73] Ma Y, Liu W J, Zhang N, Li Y S, Jiang H, Sheng G P. Bioresource Technol., 2014, 169:403.
[74] Sun Y Y, Yue Q Y, Gao B Y, Gao Y, Li Q, Wang Y. Chem. Eng. J., 2013, 217:240.
[75] Ghasemi M, Zeinaly K M, Bavand A A, Ghasemi N, Javadian H, Fattahi M. Powder Technol.2015,274:362.
[76] 徐啸(Xu X), 刘伯羽(Liu B Y), 邓正栋(Deng Z D).能源环境保护(Energy Environmental Protection), 2010, 24(2):48.
[77] 刘娟(Liu J). 华南理工大学硕士论文(Master Dissertation of South China University of Technology), 2011.
[78] 林雪原(Lin X Y), 荆延德(Jing Y D), 巩晨(Gong C), 何振立(He Z L). 环境污染与防治(Environmental Pollution and Control), 2014,(05):83.
[79] Lu Q, Sorial G A. Chemosphere, 2004, 55(5):671.
[80] Liu X Y, Zhang W B, Zhang Z Y. Mater. Lett., 2014, 116:304.
[81] Wang S Y, Tsai M H, Lo S F, Tsai M J. Bioresource Technol., 2008, 99(15):7027.
[82] 杨熙(Yang X). 华中师范大学硕士论文(Master Dissertation of Central China Normal University), 2012.
[83] 刘莹莹(Liu Y Y).南京农业大学硕士论文(Master Dissertation of Nanjing Agricultural University), 2012.
[84] 刘莹莹(Liu Y Y), 秦海芝(Qin H Z), 李恋卿(Li L Q), 潘根兴(Pan G X), 张旭辉(Zhang X H), 郑金伟(Zhang J W), 韩晓君(Han X J), 俞欣(Yu X). 生态环境学报(Ecology and Environmental Sciences), 2012,(01):146.
[85] 谭丽莎(Tan L S), 孙明洋(Sun M Y), 胡运俊(Hu Y J), 程丽华(Cheng L H), 徐新华(Xu X H). 化学进展(Progress in Chemistry), 2013,(12):2147.
[86] Alijani H, Beyki M H, Shariatinia Z, Bayat M, Shemirani F.Chem. Eng. J., 2014, 253:456.
[87] Hadavifar M, Bahramifar N, Younesi H, Li Q. Chem. Eng. J., 2014, 237:217.
[88] Auta M,Hameed B H.Colloids and Surfaces B:Biointerfaces.2013, 105:199.
[89] de Oliveira F M, Somera B F, Corazza M Z, Yabe M J S, Segatelli M G, Ribeiro E S, Lima  C, Dias S L P, Tarley C R T.Talanta, 2011, 85(5):2417.
[90] Behbahani M,Bagheri A,Amini M M,Sadeghi O,Salarian M,Najafi F, Taghizadeh M. Food Chem., 2013, 141(1):48.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[10] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[11] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[12] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[13] 何安恩, 解姣姣, 苑春刚. 大气颗粒物重金属形态分析[J]. 化学进展, 2021, 33(9): 1627-1647.
[14] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[15] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.