English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1074-1091 DOI: 10.7536/PC200714 前一篇   后一篇

• 综述 •

环境条件下电催化氮还原的现状、挑战与展望

刘晓璐1, 耿钰晓1, 郝然1, 刘玉萍1,*(), 袁忠勇2, 李伟1   

  1. 1 南开大学化学学院 先进能源材料化学教育部重点实验室 天津 300071
    2 南开大学材料科学与工程学院 国家新材料研究院 天津 300350
  • 收稿日期:2020-07-09 修回日期:2020-09-21 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 刘玉萍
  • 基金资助:
    国家自然科学基金项目(21421001); 国家自然科学基金项目(21573115); 国家自然科学基金项目(21875118)

Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives

Xiaolu Liu1, Yuxiao Geng1, Ran Hao1, Yuping Liu1,*(), Zhongyong Yuan2, Wei Li1   

  1. 1 Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
    2 National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
  • Received:2020-07-09 Revised:2020-09-21 Online:2021-07-20 Published:2020-12-28
  • Contact: Yuping Liu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21421001); National Natural Science Foundation of China(21573115); National Natural Science Foundation of China(21875118)

氨是一种重要的化肥生产原料和清洁能源载体,在工业上主要通过哈伯法合成,但该工艺反应条件苛刻,需要高温高压并消耗大量的化石能源。因此,开发能耗低、反应温和的合成氨方法,对于缓解能源和环境的双重压力具有重要的现实意义。近年来,在温和条件下通过电催化氮还原反应(NRR)合成氨有望替代哈伯法,但该技术的重点在于设计合理的电催化反应体系并开发高效的催化剂以提升缓慢的NRR动力学过程。为此,本文从电催化合成氨的反应机理出发,介绍了电催化氮还原体系的构建,综述了近年来电催化氮还原催化剂的发展现状,重点总结了提升NRR催化剂活性的设计策略,并对这一新兴领域面临的挑战和潜在的应用前景进行了合理的展望。

Ammonia (NH3) is one of the most important nitrogen-based fertilizers and chemicals, and is also a novel hydrogen storage material. It is made on an industrial scale via the Haber-Bosch process, which requires high temperature and high pressure to consume a large amount of energy. It is very urgent to find an environmentally benign alternative process to alleviate the crises for energy and environment. Electrocatalytic nitrogen reduction reaction (NRR) has attracted worldwide research interest. However, such process is actually hard to perform due to the inherent inertness of N2 molecules together with the low solubility in aqueous solutions. Although great research efforts have been made to explore and design suitable electrocatalysts for ammonia synthesis, the yield of ammonia is still very low. In addition, the ambiguous mechanism still remains as a major barrier for the development of NRR systems. In this review, we firstly introduced the catalytic reaction mechanisms towards NRR. Then we overviewed of the latest progress of the state-of-art catalysts in the electrocatalytic NRR. Moreover, we put more emphasis on the various rational strategies for electrocatalyst design to enhance the NRR performance, such as size effects, facets regulation, defects engineering, amorphization, which are aiming to increasing the exposed active sites or altering the electronic structure to further improve the apparent or intrinsic activity. Finally, we briefly discussed the main challenges in this field. We hope this review will offer a helpful guidance for the reasonable design of electrocatalysts towards NRR, arouse more interests in the new research field of NRR, and promote the green ammonia synthesis industrialization as soon as possible.

Contents

1 Introduction

2 NRR Mechanisms

3 The factors of electrocatalytic NRR system

3.1 Modified reactor configuration

3.2 Suitable applied potential

3.3 Effects of electrolytes

4 Research progress of electrocatalyst of NRR

4.1 Noble metal-based electrocatalysts

4.2 Non-noble metal-based electrocatalysts

4.3 Metal-free electrocatalysts

4.4 Single-metal-atom electrocatalysts

5 Electrocatalysts design for NRR

5.1 Size effects

5.2 Defect engineering

5.3 Morphology effects

5.4 Amorphous phases

6 Conclusion and outlook

()
图式1 NRR反应机理图:(a) 解离路径;(b) 交替缔合途径;(c) 远端缔合路径[4]
Scheme 1 Schematic depiction of (a) the dissociative pathway, (b) associative alternating pathways, (c) associative distal associative for catalytic conversion of N2 to NH3[4], Copyright 2020, Wiley-VCH
图1 (a) PEM型电解池;(b) 单室电解池;(c) H型电解池的结构示意图[3]
Fig.1 Schematics of different cell configurations of (a) PEM-type cell, (b) Single chamber and (c) H-type cell for NRR at ambient conditions[3]. Copyright 2018, Wiley-VCH
图2 (a) Au THH NRs的TEM图及几何模型;(b) 给定电位下NH3的产率和法拉第效率;(c) NRR的电解池模型;(d) Au THH NRs的自由能图及氮还原催化路径[37]
Fig. 2 (a) Transmission electron microscopy image of Au THH NRs and the geometric model. (b) NH3 yield rates and FEs at each given potential. (c) Setup of the electrolytic cell used for the NRR. (d) Free energy diagram and catalytic pathway of N2 reduction on the Au THH NRs[37]. Copyright 2017, Wiley-VCH
图3 (a) NH3的法拉第效率;(b) NH3的合成的速率;(c) Mo2C/C在质子富集与缺乏条件下的NRR催化机制[79]
Fig. 3 (a) NH3 synthesis Faradic efficiency and (b) corresponding yield rate. (c) NRR catalytic mechanism of the Mo2C/C under proton-suppressed and proton-enriched condtions[79]. Copyright 2019, Wiley-VCH
图4 (a) Pt SAs/WO3 的HAADF-STEM图像;(b) Pt NPs/WO3 HRTEM图像;(c) Pt SAs/WO3和Pt NPs/WO3的氨产率和法拉第效率;(d) Pt SAs/WO3的电化学原位时间分辨傅里叶变换红外光谱[94]
Fig. 4 (a) HAADF-STEM image of Pt SAs/WO3. (b) HRTEM image of Pt NPs/WO3. (c) Yield of NH3 and Faradaic efficiency of Pt SAs/WO3 and Pt NPs/WO3. (d) Electrochemical in situ time-resolved Fourier transform infrared (FT-IR) spectra for nitrogen reduction reaction (NRR) on the Pt SAs/WO3 electrode[94]. Copyright 2020, Wiley-VCH.
图5 (a) Al-Co3O4/NF合成示意图;(b,c) Al-Co3O4/NF的SEM图像;(d) 不同界面结构的NRR模拟过程;(e) Al-Co3O4/NF的电化学原位红外图像;(f) NRR的可能途径[115]
Fig. 5 (a) Schematic diagram of Al-Co3O4/NF synthesis. (b, c) SEM images of Al-Co3O4/NF. (d) The proposed limitation and promotion of NRR behavior from different surface interface structures. (e) Electrochemical in situ-FTIR spectra of NRR on Al-Co3O4/NF. (f) Corresponding possible pathway for NH3 production[115]. Copyright 2020, ACS
表1 NRR电催化剂的总结与对比
Table 1 Summary of recently reported NRR electrocatalysts.
Catalyst Electrolyte NH3 yield rate FE (%) Potential
(V vs RHE)
ref
Noble metal-
based materials
THH Au nanorods 0.1 mol/L KOH 1.648 μg·h -1·c m - 2 4.0 -0.2 37
Hollow Au nocages 0.5mol/L LiClO4 3.9 μg·h -1·c m - 2 30.2 -0.5 120
porous Au film 0.1 mol/L Na2SO4 9.42 μg·h -1·c m - 2 13.36 -0.2 38
Au/TiO2 0.1mol/L HCl 21.4 μg·h -1 m g cat. - 1 8.11 -0.2 99
a-Au/CeOx-rGO 0.1 mol/L HCl 8.3 μg·h -1 m g cat. - 1 10.1 -0.2 127
Pd/C 0.1mol/L PBS 4.5 μg·h -1 m g cat. - 1 8.2 0.1 27
Pd0.2Cu0.8/rGO 0.1 mol/L KOH 2.80 μg·h -1 m g cat. - 1 17.8 -0.2 48
Pt93Ir7alloy 0.001 mol/L HCl 28 μg·h -1·c m - 2 40.8 -0.3 34
Rh nanosheet 0.1 mol/L KOH 23.88μg·h-1·m g cat. - 1 0.217 -0.2 54
Ag nanosheets 0.1 mol/L HCl 4.62×10-11mol ·s -1·cm-2 4.8 -0.6 44
Ag3Cu networks 0.1 mol/L Na2SO4 24.59 μg·h -1 m g cat. - 1 13.28 -0.5 47
Non-noble metal-
based materials
Fe2O3nanorode 0.1mol/L Na2SO4 15.9 μg·h -1 m g cat. - 1 0.94 -0.8 22
Fe/Fe3O4 0.1mol/L PBS 0.19 μg·h -1·c m - 2 8.29 -0.3 57
MoO3 0.1 mol/L HCl 4.80×10-10 mol·s-1·cm-2 1.9 -0.5 59
Nb2O5 nanofiber 0.1 mol/L HCl 43.6 μg·h -1 m g cat. - 1 9.26 -0.55 61
NbO2 0.05 mol/L H2SO4 11.6 μg·h -1 m g cat. - 1 32 -0.65 60
Mn3O4 NP@rGO 0.1 mol/L Na2SO4 17.4 μg·h -1 m g cat. - 1 3.52 -0.85 62
r-WO3nanosheets 0.1 mol/L HCl 17.28 μg·h -1 m g cat. - 1 7 -0.3 63
WO3-x nanosheets 0.1 mol/L HCl 4.2 μg·h -1 m g cat. - 1 6.8 -0.12 64
Bi4V2O11/CeO2 0.1 mol/L HCl 23.21 μg·h -1 m g cat. - 1 10.16 -0.2 126
Ti3C2Tx MXene N.A. 0.26 μg·h -1·c m - 2 5.78 -0.2 103
Mo2C/C 0.5mol/L H2SO4 11.3 μg·h -1 m g cat. - 1 7.8 -0.2 79
MoS2 nanoflower 0.1mol/L Na2SO4 29.28 μg·h -1 m g cat. - 1 8.34 -0.4 107
Mo2N 0.1 mol/L HCl 78.4 μg·h -1 m g cat. - 1 4.5 -0.3 73
MoN NA/CC 0.1 mol/L HCl 3.01×10-10 mol·s-1·cm-2 1.15 -0.3 74
W2N3 nanosheets 0.1 mol/L KOH 11.66±0.98 μg·h-1 m g cat. - 1 11.67 ± 0.93 -0.2 76
Metal-free materials N-doped carbon 0.1 mol/L KOH 57.8 μg·h -1 cm-2 10.2 -0.3 118
PCN 0.1 mol/L HCl 8.09 μg·h -1 m g cat. - 1 11.59 -0.2 106
B-doped graphene 0.05 mol/L H2SO4 9.8 μg·h -1·c m - 2 10.8 -0.5 84
B4C 0.1 mol/L HCl 26.57 μg·h -1 m g cat. - 1 15.95 -0.75 88
Single atom
metal materials
Ru SAs/N-C 0.05 mol/L H2SO4 120.9 μg·h -1 m g cat. - 1 29.6 -0.2 92
Ru@ZrO2/NC 0.1 mol/L HCl 3665 μg·h -1 m g cat. - 1 21 -0.21 93
Au1/C3N4 0.005 mol/L H2SO4 1305 μg·h -1 m g cat. - 1 11.1 -0.1 V vs Ag/AgCl 91
Pt SAs/WO3 0.1 mol/L K2SO4 342.4 μg·h -1·m g Pt - 1 31.1 -0.2 94
Mo SAs/N-C 0.1 mol/L KOH 34.0±3.6 μg·h-1·m g cat. - 1 14.6±1.6 -0.3 95
Fe SAs/MoS2 0.1 mol/L KCl 97.5±6 μg·h-1·c m - 2 31.6±2 -0.2 96
[1]
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. Nat. Geosci., 2008, 1(10):636.

doi: 10.1038/ngeo325     URL    
[2]
Canfield D E, Glazer A N, Falkowski P G. Science, 2010, 330(6001):192.

doi: 10.1126/science.1186120     pmid: 20929768
[3]
Cui X Y, Tang C, Zhang Q. Adv. Energy Mater., 2018, 8(22):1800369.

doi: 10.1002/aenm.v8.22     URL    
[4]
Patil S B, Wang D Y. Small, 2020, 16 (45):2002885.

doi: 10.1002/smll.v16.45     URL    
[5]
Tanabe Y, Nishibayashi Y. Coord. Chem. Rev., 2013, 257(17/18):2551.

doi: 10.1016/j.ccr.2013.02.010     URL    
[6]
van der Ham C J M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43(15):5183.

doi: 10.1039/C4CS00085D     URL    
[7]
Xue X L, Chen R P, Yan C Z, Zhao P Y, Hu Y, Zhang W J, Yang S Y, Jin Z. Nano Res., 2019, 12(6):1229.

doi: 10.1007/s12274-018-2268-5     URL    
[8]
MacKay B A, Fryzuk M D. Chem. Rev., 2004, 104(2):385.

pmid: 14871129
[9]
Li M Q, Huang H, Low J, Gao C, Long R, Xiong Y J. Small Methods, 2019, 3(6):1800388.

doi: 10.1002/smtd.v3.6     URL    
[10]
Jia H P, Quadrelli E A. Chem. Soc. Rev., 2014, 43(2):547.

doi: 10.1039/C3CS60206K     URL    
[11]
Zhan C G, Nichols J A, Dixon D A. J. Phys. Chem. A, 2003, 107(20):4184.

doi: 10.1021/jp0225774     URL    
[12]
Singh A R, Rohr B A, Schwalbe J A, Cargnello M, Chan K R, Jaramillo T F, Chorkendorff I, Nørskov J K. ACS Catal., 2017, 7(1):706.

doi: 10.1021/acscatal.6b03035     URL    
[13]
Li J, Zheng G F. Adv. Sci., 2017, 4(3):1600380.

doi: 10.1002/advs.201600380     URL    
[14]
Cao N, Zheng G F. Nano Res., 2018, 11(6):2992.

doi: 10.1007/s12274-018-1987-y     URL    
[15]
Guo X X, Du H T, Qu F L, Li J H. J. Mater. Chem. A, 2019, 7(8):3531.

doi: 10.1039/C8TA11201K     URL    
[16]
Shipman M A, Symes M D. Catal. Today, 2017, 286:57.

doi: 10.1016/j.cattod.2016.05.008     URL    
[17]
Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov J K. Phys. Chem. Chem. Phys., 2012, 14(3):1235.

doi: 10.1039/c1cp22271f     pmid: 22146855
[18]
Abghoui Y, Garden A L, Hlynsson V F, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E. Phys. Chem. Chem. Phys., 2015, 17(7):4909.

doi: 10.1039/c4cp04838e     pmid: 25446373
[19]
Kang S H, Wang J L, Zhang S B, Zhao C J, Wang G Z, Cai W P, Zhang H M. Electrochem. Commun., 2019, 100:90.

doi: 10.1016/j.elecom.2019.01.028     URL    
[20]
Ling C Y, Zhang Y H, Li Q, Bai X W, Shi L, Wang J L. J. Am. Chem. Soc., 2019, 141(45):18264.

doi: 10.1021/jacs.9b09232     URL    
[21]
Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M. Catal. Today, 2017, 286:2.

doi: 10.1016/j.cattod.2016.06.014     URL    
[22]
Xiang X J, Wang Z, Shi X F, Fan M K, Sun X P. ChemCatChem, 2018, 10(20):4530.

doi: 10.1002/cctc.201801208     URL    
[23]
Hao Q, Liu C, Jia G, Wang Y, Arandiyan H, Wei W, Ni B J. Mater. Horiz., 2020, 7 (4):1014.

doi: 10.1039/C9MH01668F     URL    
[24]
Chen S M, Perathoner S, Ampelli C, Mebrahtu C, Su D S, Centi G. Angew. Chem. Int. Ed., 2017, 56(10):2699.

doi: 10.1002/anie.201609533     URL    
[25]
Chen G F, Ren S Y, Zhang L L, Cheng H, Luo Y R, Zhu K H, Ding L X, Wang H H. Small Methods, 2019, 3(6):1800337.

doi: 10.1002/smtd.v3.6     URL    
[26]
Pham D N, Burgess B K. Biochemistry, 1993, 32(49):13725.

pmid: 8257707
[27]
Wang J, Yu L, Hu L, Chen G, Xin H L, Feng X F. Nat. Commun., 2018, 9(1):1.

doi: 10.1038/s41467-017-02088-w     URL    
[28]
Song Y, Johnson D, Peng R, Hensley D K, Bonnesen P V, Liang L B, Huang J S, Yang F C, Zhang F, Qiao R, Baddorf A P, Tschaplinski T J, Engle N L, Hatzell M C, Wu Z L, Cullen D A, Meyer H M III, Sumpter B G, Rondinone A J. Sci. Adv., 2018, 4(4):e1700336.

doi: 10.1126/sciadv.1700336     URL    
[29]
Liu Y Y, Han M M, Xiong Q Z, Zhang S B, Zhao C J, Gong W B, Wang G Z, Zhang H M, Zhao H J. Adv. Energy Mater., 2019, 9(14):1970042.

doi: 10.1002/aenm.v9.14     URL    
[30]
Tang C, Qiao S Z. Chem. Soc. Rev., 2019, 48(12):3166.

doi: 10.1039/C9CS00280D     URL    
[31]
Liu H L, Nosheen F, Wang X. Chem. Soc. Rev., 2015, 44(10):3056.

doi: 10.1039/C4CS00478G     URL    
[32]
Gu J, Zhang Y W, Tao F F. Chem. Soc. Rev., 2012, 41(24):8050.

doi: 10.1039/c2cs35184f     URL    
[33]
Lan R, Irvine J T S, Tao S W. Sci. Rep., 2013, 3(1):1.
[34]
Mao Y J, Wei L, Zhao X S, Wei Y S, Li J W, Sheng T, Zhu F C, Tian N, Zhou Z Y, Sun S G. Chem. Commun., 2019, 55(63):9335.

doi: 10.1039/C9CC04034J     URL    
[35]
Nazemi M, El-Sayed M A. J. Phys. Chem. Lett., 2018, 9(17):5160.

doi: 10.1021/acs.jpclett.8b02188     URL    
[36]
Liu G Q, Cui Z Q, Han M M, Zhang S B, Zhao C J, Chen C, Wang G Z, Zhang H M. Chem. Eur. J., 2019, 25(23):5904.

doi: 10.1002/chem.v25.23     URL    
[37]
Bao D, Zhang Q, Meng F L, Zhong H X, Shi M M, Zhang Y, Yan J M, Jiang Q, Zhang X B. Adv. Mater., 2017, 29(3):1604799.

doi: 10.1002/adma.v29.3     URL    
[38]
Wang H J, Yu H J, Wang Z Q, Li Y H, Xu Y, Li X N, Xue H R, Wang L. Small, 2019, 15(6):1804769.

doi: 10.1002/smll.v15.6     URL    
[39]
Lv X W, Wang L, Wang G C, Hao R, Ren J T, Liu X L, Duchesne P N, Liu Y P, Li W, Yuan Z Y, Ozin G A. J. Mater. Chem. A, 2020, 8(18):8868.

doi: 10.1039/D0TA02832K     URL    
[40]
Wang P, Ji Y, Shao Q, Li Y, Huang X. Sci. Bull., 2020, 65:350.

doi: 10.1016/j.scib.2019.12.019     URL    
[41]
Kordali V, Kyriacou G, Lambrou C. Chem. Commun., 2000(17):1673.
[42]
Lindley B M, Bruch Q J, White P S, Hasanayn F, Miller A J M. J. Am. Chem. Soc., 2017, 139(15):5305.

doi: 10.1021/jacs.7b01323     pmid: 28383261
[43]
Ahmed M I, Liu C W, Zhao Y, Ren W H, Chen X J, Chen S, Zhao C. Angew. Chem. Int. Ed., 2020, 59(48):21465.

doi: 10.1002/anie.v59.48     URL    
[44]
Huang H H, Xia L, Shi X F, Asiri A M, Sun X P. Chem. Commun., 2018, 54(81):11427.

doi: 10.1039/C8CC06365F     URL    
[45]
Ji L, Shi X F, Asiri A M, Zheng B Z, Sun X P. Inorg. Chem., 2018, 57(23):14692.

doi: 10.1021/acs.inorgchem.8b02436     URL    
[46]
Nazemi M, El-Sayed M A. J. Phys. Chem. C, 2019, 123(18):11422.

doi: 10.1021/acs.jpcc.9b01107     URL    
[47]
Yu H J, Wang Z Q, Yang D D, Qian X Q, Xu Y, Li X N, Wang H J, Wang L. J. Mater. Chem. A, 2019, 7(20):12526.

doi: 10.1039/C9TA03297E     URL    
[48]
Shi M M, Bao D, Li S J, Wulan B R, Yan J M, Jiang Q. Adv. Energy Mater., 2018, 8(21):1800124.

doi: 10.1002/aenm.v8.21     URL    
[49]
Wang Z Q, Li C J, Deng K, Xu Y, Xue H R, Li X N, Wang L, Wang H J. ACS Sustainable Chem. Eng., 2019, 7(2):2400.

doi: 10.1021/acssuschemeng.8b05245     URL    
[50]
Lv J, Wu S L, Tian Z F, Ye Y X, Liu J, Liang C H. J. Mater. Chem. A, 2019, 7(20):12627.

doi: 10.1039/C9TA02045D     URL    
[51]
Pang F J, Wang Z F, Zhang K, He J, Zhang W Q, Guo C X, Ding Y. Nano Energy, 2019, 58:834.

doi: 10.1016/j.nanoen.2019.02.019     URL    
[52]
Wang H J, Li Y H, Yang D D, Qian X Q, Wang Z Q, Xu Y, Li X N, Xue H R, Wang L. Nanoscale, 2019, 11(12):5499.

doi: 10.1039/C8NR10398D     URL    
[53]
Xu W C, Fan G L, Chen J L, Li J H, Zhang L, Zhu S L, Su X C, Cheng F Y, Chen J. Angew. Chem. Int. Ed., 2020, 59(9):3511.

doi: 10.1002/anie.v59.9     URL    
[54]
Liu H M, Han S H, Zhao Y, Zhu Y Y, Tian X L, Zeng J H, Jiang J X, Xia B Y, Chen Y. J. Mater. Chem. A, 2018, 6(7):3211.

doi: 10.1039/C7TA10866D     URL    
[55]
Chen C Y, Chen M L, Chen H B, Wang H X, Cramer S P, Zhou Z H. J. Inorg. Biochem., 2014, 141:114.

doi: 10.1016/j.jinorgbio.2014.08.003     URL    
[56]
Burgess B K, Lowe D J. Chem. Rev., 1996, 96(7):2983.

doi: 10.1021/cr950055x     URL    
[57]
Hu L, Khaniya A, Wang J, Chen G, Kaden W E, Feng X F. ACS Catal., 2018, 8(10):9312.

doi: 10.1021/acscatal.8b02585     URL    
[58]
Zhang G, Ji Q H, Zhang K, Chen Y, Li Z H, Liu H J, Li J H, Qu J H. Nano Energy, 2019, 59:10.

doi: 10.1016/j.nanoen.2019.02.028    
[59]
Han J R, Ji X Q, Ren X, Cui G W, Li L, Xie F Y, Wang H, Li B H, Sun X P. J. Mater. Chem. A, 2018, 6(27):12974.

doi: 10.1039/C8TA03974G     URL    
[60]
Huang L S, Wu J W, Han P, Al-Enizi A M, Almutairi T M, Zhang L J, Zheng G F. Small Methods, 2019, 3(6):1800386.

doi: 10.1002/smtd.v3.6     URL    
[61]
Han J R, Liu Z C, Ma Y J, Cui G W, Xie F Y, Wang F X, Wu Y P, Gao S Y, Xu Y H, Sun X P. Nano Energy, 2018, 52:264.

doi: 10.1016/j.nanoen.2018.07.045     URL    
[62]
Huang H, Gong F, Wang Y, Wang H B, Wu X F, Lu W B, Zhao R B, Chen H Y, Shi X F, Asiri A M, Li T S, Liu Q, Sun X P. Nano Res., 2019, 12(5):1093.

doi: 10.1007/s12274-019-2352-5    
[63]
Kong W H, Zhang R, Zhang X X, Ji L, Yu G S, Wang T, Luo Y L, Shi X F, Xu Y H, Sun X P. Nanoscale, 2019, 11(41):19274.

doi: 10.1039/C9NR03678D     URL    
[64]
Sun Z Y, Huo R P, Choi C, Hong S, Wu T S, Qiu J S, Yan C, Han Z S, Liu Y C, Soo Y L, Jung Y. Nano Energy, 2019, 62:869.

doi: 10.1016/j.nanoen.2019.06.019     URL    
[65]
Tong Y Y, Guo H P, Liu D L, Yan X, Su P P, Liang J, Zhou S, Liu J, Lu G Q M, Dou S X. Angew. Chem. Int. Ed., 2020, 59(19):7356.

doi: 10.1002/anie.v59.19     URL    
[66]
Zhang X X, Liu Q, Shi X F, Asiri A M, Luo Y L, Sun X P, Li T S. J. Mater. Chem. A, 2018, 6(36):17303.

doi: 10.1039/C8TA05627G     URL    
[67]
Yang L, Wu T W, Zhang R, Zhou H, Xia L, Shi X F, Zheng H G, Zhang Y N, Sun X P. Nanoscale, 2019, 11(4):1555.

doi: 10.1039/c8nr09564g     pmid: 30637419
[68]
Wu T W, Zhao H T, Zhu X J, Xing Z, Liu Q, Liu T, Gao S Y, Lu S Y, Chen G, Asiri A M, Zhang Y N, Sun X P. Adv. Mater., 2020, 32(30):2000299.

doi: 10.1002/adma.v32.30     URL    
[69]
Xu T, Ma D W, Li C B, Liu Q, Lu S Y, Asiri A M, Yang C, Sun X P. Chem. Commun., 2020, 56(25):3673.

doi: 10.1039/C9CC10087C     URL    
[70]
Li C B, Ma D W, Mou S Y, Luo Y S, Ma B Y, Lu S Y, Cui G W, Li Q, Liu Q, Sun X P. J. Energy Chem., 2020, 50:402.

doi: 10.1016/j.jechem.2020.03.044     URL    
[71]
Xia L, Li B H, Zhang Y, Zhang R, Ji L, Chen H Y, Cui G W, Zheng H G, Sun X P, Xie F Y, Liu Q. Inorg. Chem., 2019, 58(4):2257.

doi: 10.1021/acs.inorgchem.8b03143     pmid: 30688065
[72]
Li C B, Yu J L, Yang L, Zhao J X, Kong W H, Wang T, Asiri A M, Li Q, Sun X P. Inorg. Chem., 2019, 58(15):9597.

doi: 10.1021/acs.inorgchem.9b01707     URL    
[73]
Ren X, Cui G W, Chen L, Xie F Y, Wei Q, Tian Z Q, Sun X P. Chem. Commun., 2018, 54(61):8474.

doi: 10.1039/C8CC03627F     URL    
[74]
Zhang L, Ji X Q, Ren X, Luo Y L, Shi X F, Asiri A M, Zheng B Z, Sun X P. ACS Sustainable Chem. Eng., 2018, 6(8):9550.

doi: 10.1021/acssuschemeng.8b01438     URL    
[75]
Zhang R, Zhang Y, Ren X, Cui G W, Asiri A M, Zheng B Z, Sun X P. ACS Sustainable Chem. Eng., 2018, 6(8):9545.

doi: 10.1021/acssuschemeng.8b01261     URL    
[76]
Jin H Y, Li L Q, Liu X, Tang C, Xu W J, Chen S M, Song L, Zheng Y, Qiao S Z. Adv. Mater., 2019: 1902709.
[77]
Yang X, Nash J, Anibal J, Dunwell M, Kattel S, Stavitski E, Attenkofer K, Chen J G, Yan Y S, Xu B J. J. Am. Chem. Soc., 2018, 140(41):13387.

doi: 10.1021/jacs.8b08379     URL    
[78]
Hu B, Hu M W, Seefeldt L, Liu T L. ACS Energy Lett., 2019, 4(5):1053.

doi: 10.1021/acsenergylett.9b00648     URL    
[79]
Cheng H, Ding L X, Chen G F, Zhang L L, Xue J, Wang H H. Adv. Mater., 2018, 30(46):1803694.

doi: 10.1002/adma.201803694     URL    
[80]
Zhang L, Ji X Q, Ren X, Ma Y J, Shi X F, Tian Z Q, Asiri A M, Chen L, Tang B, Sun X P. Adv. Mater., 2018, 30(28):1800191.

doi: 10.1002/adma.v30.28     URL    
[81]
Tahir M, Pan L, Idrees F, Zhang X W, Wang L, Zou J J, Wang Z L. Nano Energy, 2017, 37:136.

doi: 10.1016/j.nanoen.2017.05.022     URL    
[82]
Kumar C V S, Subramanian V. Phys. Chem. Chem. Phys., 2017, 19(23):15377.

doi: 10.1039/C7CP02220D     URL    
[83]
Zhao J X, Wang B, Zhou Q, Wang H B, Li X H, Chen H Y, Wei Q, Wu D, Luo Y L, You J M, Gong F F, Sun X P. Chem. Commun., 2019, 55(34):4997.

doi: 10.1039/C9CC00726A     URL    
[84]
Yu X M, Han P, Wei Z X, Huang L S, Gu Z X, Peng S J, Ma J M, Zheng G F. Joule, 2018, 2(8):1610.

doi: 10.1016/j.joule.2018.06.007     URL    
[85]
Yang Y Y, Zhang L F, Hu Z P, Zheng Y, Tang C, Chen P, Wang R G, Qiu K W, Mao J, Ling T, Qiao S Z. Angew. Chem. Int. Ed., 2020, 59(11):4525.

doi: 10.1002/anie.v59.11     URL    
[86]
Ren J T, Wan C Y, Pei T Y, Lv X W, Yuan Z Y. Appl. Catal. B: Environ., 2020, 266:118633.

doi: 10.1016/j.apcatb.2020.118633     URL    
[87]
Zhang L L, Ding L X, Chen G F, Yang X F, Wang H H. Angew. Chem. Int. Ed., 2019, 58(9):2528.

doi: 10.1002/anie.v58.9     URL    
[88]
Qiu W B, Xie X Y, Qiu J D, Fang W H, Liang R P, Ren X, Ji X Q, Cui G W, Asiri A M, Cui G L, Tang B, Sun X P. Nat. Commun., 2018, 9(1):1.

doi: 10.1038/s41467-017-02088-w     URL    
[89]
Liang S X, Hao C, Shi Y T. ChemCatChem, 2015, 7(17):2559.

doi: 10.1002/cctc.201500363     URL    
[90]
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angew. Chem. Int. Ed., 2017, 56(45):13944.

doi: 10.1002/anie.201703864     URL    
[91]
Wang X Q, Wang W, Qiao M, Wu G, Chen W X, Yuan T W, Xu Q, Chen M, Zhang Y, Wang X, Wang J, Ge J J, Hong X, Li Y F, Wu Y E, Li Y D. Sci. Bull., 2018, 63(19):1246.

doi: 10.1016/j.scib.2018.07.005     URL    
[92]
Geng Z G, Liu Y, Kong X D, Li P, Li K, Liu Z Y, Du J J, Shu M, Si R, Zeng J. Adv. Mater., 2018, 30(40):1870301.

doi: 10.1002/adma.v30.40     URL    
[93]
Tao H C, Choi C, Ding L X, Jiang Z, Han Z S, Jia M W, Fan Q, Gao Y N, Wang H H, Robertson A W, Hong S, Jung Y, Liu S Z, Sun Z Y. Chem, 2019, 5(1):204.

doi: 10.1016/j.chempr.2018.10.007     URL    
[94]
Hao R, Sun W M, Liu Q, Liu X L, Chen J L, Lv X, Li W, Liu Y P, Shen Z R. Small, 2020, 16(22):2000015.
[95]
Han L L, Liu X J, Chen J P, Lin R Q, Liu H X, Lü F, Bak S, Liang Z X, Zhao S Z, Stavitski E, Luo J, Adzic R R, Xin H L. Angew. Chem. Int. Ed., 2019, 58(8):2321.

doi: 10.1002/anie.v58.8     URL    
[96]
Li J, Chen S, Quan F J, Zhan G M, Jia F L, Ai Z H, Zhang L Z. Chem, 2020, 6(4):885.

doi: 10.1016/j.chempr.2020.01.013     URL    
[97]
Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P. J. Am. Chem. Soc., 2014, 136(19):6978.

doi: 10.1021/ja500328k     URL    
[98]
Mistry H, Varela A S, Kühl S, Strasser P, Cuenya B R. Nat. Rev. Mater., 2016, 1(4):1.
[99]
Shi M M, Bao D, Wulan B R, Li Y H, Zhang Y F, Yan J M, Jiang Q. Adv. Mater., 2017, 29(17):1606550.

doi: 10.1002/adma.v29.17     URL    
[100]
Dou S, Wang X, Wang S Y. Small Methods, 2019, 3(1):1800211.

doi: 10.1002/smtd.v3.1     URL    
[101]
Gao S, Sun Z T, Liu W, Jiao X C, Zu X L, Hu Q T, Sun Y F, Yao T, Zhang W H, Wei S Q, Xie Y. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6     URL    
[102]
Yao J X, Bao D, Zhang Q, Shi M M, Wang Y, Gao R, Yan J M, Jiang Q. Small Methods, 2019, 3(6):1800333.

doi: 10.1002/smtd.v3.6     URL    
[103]
Fang Y F, Liu Z C, Han J R, Jin Z Y, Han Y Q, Wang F X, Niu Y S, Wu Y P, Xu Y H. Adv. Energy Mater., 2019, 9(16):1803406.

doi: 10.1002/aenm.v9.16     URL    
[104]
Abghoui Y, Skúlason E. J. Phys. Chem. C, 2017, 121(11):6141.

doi: 10.1021/acs.jpcc.7b00196     URL    
[105]
Li Q Y, He L Z, Sun C H, Zhang X W. J. Phys. Chem. C, 2017, 121(49):27563.

doi: 10.1021/acs.jpcc.7b10522     URL    
[106]
Lv C, Qian Y M, Yan C S, Ding Y, Liu Y Y, Chen G, Yu G H. Angew. Chem. Int. Ed., 2018, 57(32):10246.

doi: 10.1002/anie.v57.32     URL    
[107]
Li X H, Li T S, Ma Y J, Wei Q, Qiu W B, Guo H R, Shi X F, Zhang P, Asiri A M, Chen L, Tang B, Sun X P. Adv. Energy Mater., 2018, 8(30):1801357.

doi: 10.1002/aenm.v8.30     URL    
[108]
Suryanto B H R, Wang D B, Azofra L M, Harb M, Cavallo L, Jalili R, Mitchell D R G, Chatti M, MacFarlane D R. ACS Energy Lett., 2019, 4(2):430.

doi: 10.1021/acsenergylett.8b02257     URL    
[109]
Huang J W, Sun Y H, Zhang Y D, Zou G F, Yan C Y, Cong S, Lei T, Dai X, Guo J, Lu R F, Li Y R, Xiong J. Adv. Mater., 2018, 30(5):1705045.

doi: 10.1002/adma.201705045     URL    
[110]
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Adv. Energy Mater., 2017, 7(7):1602086.

doi: 10.1002/aenm.201602086     URL    
[111]
Du X C, Huang J W, Zhang J J, Yan Y C, Wu C Y, Hu Y, Yan C Y, Lei T, Chen W, Fan C, Xiong J. Angew. Chem. Int. Ed., 2019, 58(14):4484.

doi: 10.1002/anie.v58.14     URL    
[112]
Wan Y C, Xu J C, Lv R. Mater. Today, 2019, 27:69.

doi: 10.1016/j.mattod.2019.03.002     URL    
[113]
Wu T W, Kong W H, Zhang Y, Xing Z, Zhao J X, Wang T, Shi X F, Luo Y L, Sun X P. Small Methods, 2019, 3(11):1900356.

doi: 10.1002/smtd.v3.11     URL    
[114]
Wu T W, Zhu X J, Xing Z, Mou S Y, Li C B, Qiao Y X, Liu Q, Luo Y L, Shi X F, Zhang Y N, Sun X P. Angew. Chem. Int. Ed., 2019, 58(51):18449.

doi: 10.1002/anie.v58.51     URL    
[115]
Lv X W, Liu Y P, Hao R, Tian W W, Yuan Z Y. ACS Appl. Mater. Interfaces, 2020, 12(15):17502.

doi: 10.1021/acsami.0c00647     URL    
[116]
Zhang J, Tian X Y, Liu M J, Guo H, Zhou J D, Fang Q Y, Liu Z, Wu Q, Lou J. J. Am. Chem. Soc., 2019, 141(49):19269.

doi: 10.1021/jacs.9b02501     pmid: 31701745
[117]
Yan D F, Dou S, Tao L, Liu Z J, Liu Z G, Huo J, Wang S Y. J. Mater. Chem. A, 2016, 4(36):13726.

doi: 10.1039/C6TA05863A     URL    
[118]
Mukherjee S, Cullen D A, Karakalos S, Liu K X, Zhang H, Zhao S, Xu H, More K L, Wang G F, Wu G. Nano Energy, 2018, 48:217.

doi: 10.1016/j.nanoen.2018.03.059     URL    
[119]
Qin Q, Zhao Y, Schmallegger M, Heil T, Schmidt J, Walczak R, Gescheidt-Demner G, Jiao H J, Oschatz M. Angew. Chem. Int. Ed., 2019, 58(37):13101.

doi: 10.1002/anie.v58.37     URL    
[120]
Nazemi M, Panikkanvalappil S R, El-Sayed M A. Nano Energy, 2018, 49:316.

doi: 10.1016/j.nanoen.2018.04.039     URL    
[121]
Ye S R, Rathmell A R, Chen Z F, Stewart I E, Wiley B J. Adv. Mater., 2014, 26(39):6670.

doi: 10.1002/adma.v26.39     URL    
[122]
Hong W, Shang C S, Wang J, Wang E K. Energy Environ. Sci., 2015, 8(10):2910.

doi: 10.1039/C5EE01988E     URL    
[123]
Yang D J, Zhang L J, Yan X C, Yao X D. Small Methods, 2017, 1(12):1700209.

doi: 10.1002/smtd.v1.12     URL    
[124]
Yang L, Guo Z L, Huang J, Xi Y N, Gao R J, Su G, Wang W, Cao L X, Dong B H. Adv. Mater., 2017, 29(46):1704574.

doi: 10.1002/adma.v29.46     URL    
[125]
Cai P W, Huang J H, Chen J X, Wen Z H. Angew. Chem. Int. Ed., 2017, 56(17):4858.

doi: 10.1002/anie.201701280     URL    
[126]
Lv C, Yan C S, Chen G, Ding Y, Sun J X, Zhou Y S, Yu G H. Angew. Chem. Int. Ed., 2018, 57(21):6073.

doi: 10.1002/anie.v57.21     URL    
[127]
Li S J, Bao D, Shi M M, Wulan B R, Yan J M, Jiang Q. Adv. Mater., 2017, 29(33):1700001.

doi: 10.1002/adma.v29.33     URL    
[128]
Andersen S Z, Čolić V, Yang S, Schwalbe J A, Nielander A C, McEnaney J M, Enemark-Rasmussen K, Baker J G, Singh A R, Rohr B A, Statt M J, Blair S J, Mezzavilla S, Kibsgaard J, Vesborg P C K, Cargnello M, Bent S F, Jaramillo T F, Stephens I E L, Nørskov J K, Chorkendorff I. Nature, 2019, 570(7762):504.

doi: 10.1038/s41586-019-1260-x     URL    
[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[4] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[5] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[6] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[7] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[8] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[9] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[10] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[11] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[12] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[13] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[14] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[15] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.