English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1766-1803 DOI: 10.7536/PC200607 前一篇   后一篇

• •

邻菲罗啉类配体在铁系元素催化反应中的应用

邹慧娜1, 朱守非1,**()   

  1. 1. 南开大学化学学院元素有机化学国家重点实验室 天津 300071
  • 收稿日期:2020-06-02 修回日期:2020-06-21 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 朱守非
  • 作者简介:

    朱守非

    南开大学化学学院教授。长期从事催化有机合成化学研究,重点研究了几类以氢转移为关键步骤的有机合成反应,提出了“手性质子梭催化剂”概念,发现了催化硼氢键插入新反应,发展了多种新型负氢转移催化剂。

    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21625204,21971119); 教育部111引智基地项目(B06005); 国家万人计划项目()

Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis

Huina Zou1, Shoufei Zhu1,**()   

  1. 1. State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2020-06-02 Revised:2020-06-21 Online:2020-11-24 Published:2020-09-01
  • Contact: Shoufei Zhu
  • Supported by:
    the National Natural Science Foundation of China(21625204,21971119); the “111” Project of the Ministry of Education of China,(B06005); the National Program for Special Support of Eminent Professionals.()

邻菲罗啉是一类经典的双氮配体,可与多种过渡金属形成稳定的络合物,被广泛用于催化有机合成反应中。铁系元素(铁、钴、镍)具有自然丰度高、价格低廉、生物兼容性好、催化性能独特等优点,其络合物是理想的备选催化剂。近年来,邻菲罗啉类配体在铁系元素催化的有机反应中得到越来越多的应用,表现出独特的配体效应。在本文中,我们系统梳理了邻菲罗啉类配体在铁系元素催化有机反应中的应用研究进展,并对该领域的未来发展进行了展望。

1,10-Phenanthroline and its derivatives, classic bidentate N-donor ligands, can form stable complexes with a variety of transition metals and have been widely used as catalysts in various organic reactions. Ferritic elements(iron, cobalt, nickel) have the advantages of high natural abundance, low cost, low toxicity and unique catalytic performance. The complexes of 1,10-phenanthroline type ligands and ferritic elements are ideal alternative catalysts. In recent years, 1,10-phenanthroline type ligands have been widely used in Fe/Co/Ni-catalyzed organic reactions,especially in cross-coupling reactions, addition reactions,and redox reactions,showing unique ligand effects. More and more studies revealed that the rigid aromatic structure of 1,10-phenanthroline plays an important role in improving the stability of the catalyst, and the substituents of 1,10-phenanthroline have a significant impact on the activity and selectivity of corresponding catalyst. More interestingly, a few recent studies disclosed that 1,10-phenanthroline ligands might change the spin state and three-dimensional electronic structure of the Fe/Co/Ni catalysts, which accounts for their unique reactivity as well as selectivity.Although with the above-mentioned progresses, there are still several important challenges in this field, including the poor structural diversity of 1,10-phenanthroline type ligands and poor understanding of the electron effect of 1,10-phenanthroline ligands to corresponding metal catalysts.In this review, we summarized the applications of 1,10-phenanthroline ligands in Fe/Co/Ni-catalyzed organic reactions, and gave an outlook of this promising field.

Contents

1 Introduction

2 Application of 1,10-phenanthroline type ligands in Fe-catalyzed reactions

2.1 Coupling reactions

2.2 Oxidation reactions

2.3 Reduction reactions

2.4 Addition reactions

2.5 Other reactions

3 Application of 1,10-phenanthroline type ligands in Co-catalyzed reactions

3.1 Addition reactions

3.2 Cycloaddition reactions

3.3 C—H functionalization reactions

3.4 Carboxylation reactions

3.5 Coupling reactions

3.6 Other reactions

4 Application of 1,10-phenanthroline type ligands in Ni-catalyzed reactions

4.1 Cross-coupling reactions

4.2 Reductive coupling reactions

4.3 Oxidation reactions

4.4 Hydrogen-borrowing reactions

4.5 Decarboxylative coupling reactions

4.6 Addition reactions

4.7 Oxidative reactions

5 Conclusion and outlook

()
图1 邻菲罗啉(1,10-菲罗啉)
Fig.1 1,10-Phenanthroline
图2 用于铁系元素催化的邻菲罗啉类配体
Fig.2 1,10-Phenanthroline ligands used in ferritic elements catalysis
图式1 (A)C—H键活化直接芳基化[32];(B)格氏试剂与炔烃的[2 + 2 + 2]氧化环化反应[33]
Scheme 1 (A) Direct arylation through directed C—H bond activation[32];(B) Oxidative [2 + 2 + 2] annulation of Grignard reagents with alkynes[33]
图式2 (A)芳基自由基转移芳基化[34];(B)非活化芳烃的直接芳基化反应[35];(C)芳基硼酸和苯衍生物的氧化偶联反应[36];(D)式(C)可能的机理[36]
Scheme 2 (A) Direct arylation through an aryl radical transfer pathway[34];(B) Direct arylation of unactivated arenes[35];(C) Oxidative coupling of arylboronic acids with benzene derivatives[36];(D) Proposed mechanism of(C)[36]
图式3 苯酚和α-取代-β-酮酯的交叉脱氢偶联反应[37]
Scheme 3 Cross dehydrogenative coupling of α-substituted β-ketoesters with phenols[37]
图式4 磷氧化合物与醇的放氢交叉偶联反应[38]
Scheme 4 Cross-coupling hydrogen evolution reactions of alcohols with P(O)-H compounds[38]
图式5 α-芳基-α-重氮酯的芳基化反应[39]
Scheme 5 Arylation of α-aryl-α-diazoesters[39]
图式6 (A)多组分脱氢偶联反应合成嘧啶类化合物[40];(B)可能的机理[40]
Scheme 6 (A) Synthesis of pyrimidines by multicomponent dehydrogenative coupling[40];(B) Proposed mechanism[40]
图式7 N-甲基苯胺的区域选择性α-烷基化[41]
Scheme 7 Regioselective α-C—H alkylation of N-methylanilines[41]
图式8 (杂)芳基氯代物与Et3SiBpin的硅化反应[42]
Scheme 8 Silylation of(hetero)aryl chlorides with Et3SiBpin[42]
图式9 β,β-二取代烯酮的不对称环氧化反应[43]
Scheme 9 Asymmetric epoxidation of β,β-disubstituted enones[43]
图式10 仲苄醇脱氢气反应[44]
Scheme 10 Dehydrogenation of secondary benzylic alcohols[44]
图式11 (A)芳基/烷基伯酰胺的还原反应[45];(B)可能的机理[45]
Scheme 11 (A) Reduction of aromatic and aliphatic primary amides[45];(B) Proposed mechanism[45]
图式12 光催化CO2还原为CO[46]
Scheme 12 Photocatalytic CO2reduction[46]
图式13 (A)邻硝基苯乙烯的还原环化反应[47];(B)可能的机理[47]
Scheme 13 (A) Reductive cyclization of o-nitrostyrenes[47];(B) Proposed mechanism[47]
图式14 (A)烯烃分子内的羟胺化反应[48];(B)烯烃分子间的胺氧化反应[49];(C)烯烃分子内的胺氯化反应[50]
Scheme 14 (A) Intramolecular amino-hydroxylation of olefins[48];(B) Intermolecular amino-oxygenation of olefins[49];(C) Intramolecular amino-chlorination of olefins[50]
图式15 苯乙烯的氢化[51]
Scheme 15 Hydrogenation of styrene[51]
图式16 (A)炔烃氰基三氟甲磺酰基化反应[52];(B)建议的机理[52]
Scheme 16 (A) Cyanotri?ation of alkynes[52];(B) Proposed mechanism[52]
图式17 内炔与硫代水杨酸的分子间氢硫化反应及连续的分子内环化反应[53]
Scheme 17 Intermolecular hydrothiolation of internal alkynes with thiosalicylic acids and sequential intramolecular cyclization reaction[53]
图式18 (A)烯烃的选择性硅氢化反应[54];(B)可能的机理[54]
Scheme 18 (A) Highly regioselective alkene hydrosilylation[54];(B) Proposed mechanism[54]
图式19 (A)端炔的二次硅氢化[55];(B)第二次硅氢化的可能机理[55]
Scheme 19 (A) Dihydrosilylation of terminal alkynes[55];(B) Proposed mechanism of the second hydrosilylation[55]
图式20 (A)电性不匹配的环加成反应[56];(B)可能的机理[56]
Scheme 20 (A) Electronically mismatched cycloaddition reactions[56];(B) Proposed mechanism[56]
图式21 脒与饱和羰基化合物合成嘧啶类化合物[57]
Scheme 21 Modular pyrimidine synthesis of saturated carbonyl compounds with amidines[57]
图式22 (A)1,6-烯炔的还原环化反应[58];(B)可能的机理[58]
Scheme 22 Reductive cyclization reaction of 1,6-enynes[58];(B) Proposed mechanism[58]
图式23 由亚砜直接合成亚氨基砜衍生物[59]
Scheme 23 Direct synthesis of NH sulfoximines from sulfoxides[59]
图式24 (A)N-乙烯基-α,β-不饱和硝酮的环化裂解反应[60];(B)可能的机理[60]
Scheme 24 (A) Cyclization-fragmentation of N-vinyl-α,β-unsaturated ketonitrones[60];(B) Proposed mechanism[60]
图式25 (A)环烷烃硅基过氧化物与α,β-不饱和羧酸的脱羧烯基化反应[61];(B)可能的机理[61]
Scheme 25 Decarboxylative olefination cycloalkyl silyl peroxide with α,β-unsaturated carboxylic acids[61];(B) Proposed mechanism[61]
图式26 (A)末端炔烃E式选择性的交叉二聚反应[62];(B)可能的机理[62]
Scheme 26 (A) E-selective cross-dimerization of terminal alkynes[62];(B) Proposed mechanism[62]
图式27 邻卤代芳亚胺和烯烃/炔烃的[3+2]环化反应[63]
Scheme 27 [3 + 2] annulation of o-haloaryl imines with alkenes andalkynes[63]
图式28 二炔和腈类化合物区域选择性合成茚并[2,1-c]吡啶衍生物[64]
Scheme 28 Regioselective syntheses of indeno[2,1-c]pyridines from nitriles and diynes[64]
图式29 N,N-二烯丙基胺的环化异构化反应[65]
Scheme 29 Cycloisomerization of N,N-diallylanilines[65]
图式30 (A)1,6-二炔类化合物与频哪醇硼烷的环化/硼氢化反应[66];(B)可能的机理[66]
Scheme 30 (A) Cyclization/hydroboration of 1,6-diynes with pinacolborane[66];(B) Proposed mechanism[66]
图式31 芳基亚胺的选择性邻位单烷基化反应[67]
Scheme 31 Monoselective ortho alkylation of aromatic imines[67]
图式32 芳基酰胺与乙基铝试剂的邻位乙基化[68]
Scheme 32 Monoselective ortho ethylation of aromatic carboxamides with organoaluminum reagent[68]
图式33 (A)乙酸丙炔酯类化合物的羧化反应[69];(B)烯基/大位阻芳基三氟甲磺酸酯的羧化反应[70]
Scheme 33 (A) Carboxylation of propargyl acetates[69];(B) Carboxylation of alkenyl and sterically hindered aryl tri?ates[70]
图式34 末端炔烃的自偶联:合成1,3-二炔化合物[71]
Scheme 34 Homocoupling of terminal alkynes: synthesis of 1,3-diynes[71]
图式35 (A)由芳基硼酸和醛合成双芳基酮[72];(B)可能的机理[72]
Scheme 35 (A) Synthesis of biarylketones from organoboronic acids and aldehydes[72];(B) Proposed mechanism[72]
图式36 5-芳基口恶唑/苯并噻唑与非活化仲烷基对甲基苯磺酰腙的直接烷基化反应[73]
Scheme 36 Direct alkylation of 5-aryloxazoles and benzothiazoles with N-tosylhydrazones bearing unactivated alkyl groups[73]
图式37 (A)有机锌试剂与炔基溴化物的偶联反应[74];(B)有机锌试剂,迈克尔受体与羰基化合物的三组分偶联反应[75]
Scheme 37 (A) Cross-coupling of organozinc halides with bromoalkynes[74];(B) Three-component coupling of mixed aromatic organozinc species, carbonyl compounds and michael acceptors[75]
图式38 烷基锌试剂与烷基碘化物的Negishi偶联反应[76]
Scheme 38 Negishi-type cross-coupling of alkylzinc reagents with alkyl iodides[76]
图式39 (A)脂肪胺的烷氧羰基化反应[77];(B)可能的机理[77]
Scheme 39 (A) Alkoxycarbonylation of aliphatic amines[77];(B) Proposed mechanism[77]
图式40 合成喹唑啉-4(3H)-酮类化合物[78]
Scheme 40 Synthesis of quinazolin-4(3H)-ones[78]
图式41 (杂)芳基溴代物与铟制备芳基铟试剂[79]
Scheme 41 Preparation of arylindium reagents from aryl and heteroaryl bromides[79]
图式42 (A)芳基氯代物的胺化反应[80];(B)(杂)芳基氯的胺化反应[81]
Scheme 42 Amination of aryl chlorides[80];(B) Amination of aryl and heteroaryl chlorides[81]
图式43 硝基烷烃与非活化碘代烷烃的C-烷基化反应[82]
Scheme 43 C-alkylation of nitroalkanes with unactivated alkyl iodides[82]
图式44 (A)唑类化合物与芳基溴代物的直接芳基化反应[83];(B)可能的机理[83]
Scheme 44 (A) Direct arylation of azoles with aryl bromides[83];(B) Proposed mechanism[83]
图式45 (A)杂芳环C—H键炔基化反应[84];(B)可能的机理[84]
Scheme 45 (A) C—H bond alkynylation of heteroarenes[84];(B) Proposed mechanism[84]
图式46 苯并口恶唑与非活化仲烷基对甲基苯磺酰腙的直接烷基化反应[73]
Scheme 46 Direct alkylation of benzoxazoles with N-tosylhydrazones bearing unactivated alkyl groups[73]
图式47 (A)芳基卤代物与C—H键亲核试剂的光氧化还原、氢原子转移与镍催化交叉偶联反应[85];(B)可能的机理[85]
Scheme 47 (A) Photoredox, HAT, and nickel-catalyzed cross-coupling: aryl halide and C—H nucleophiles[85];(B) Proposed mechanism[85]
图式48 (A)C(sp3)-H与C(sp2)-O亲电试剂的偶联反应[86];(B)苯胺C—H键与酚的芳基化反应[87];(C)可能的机理[87]
Scheme 48 (A) Coupling of C(sp3)-H bonds with C(sp2)-O electrophiles[86];(B) Arylation of aniline C—H bonds with phenols by an in-situ activation strategy[87];(C) Proposed mechanism of (B)[87]
图式49 对甲基苯磺酰氯活化的酚与酰胺/脲的C—H键芳基化反应[88]
Scheme 49 Arylation of amide and urea C—H bonds with aryl tosylates generated in situ from phenols[88]
图式50 (A)光氧化还原/镍双催化的烯基/芳基C—O键的磷酸化反应[89];(B)可能的机理[89]
Scheme 50 (A) Phosphorylation of alkenyl and aryl C—O bonds via photoredox/nickel dual catalysis[89];(B) Proposed mechanism[89]
图式51 (A)1,3-二羰基化合物与末端炔烃发生C—H键官能团化和串联环化反应[90];(B)可能的机理[90]
Scheme 51 (A) C—H functionalization and tandem cyclization of 1,3-dicarbonyls with terminal alkynes[90];(B) Proposed mechanism[90]
图式52 非活化仲烷基溴/碘代物的Suzuki偶联反应[91]
Scheme 52 Suzuki cross-couplings of unactivated secondary alkyl bromides and iodides[91]
图式53 (A)α-溴-α-氟酮化合物与芳基硼酸的偶联反应[92];(B)可能的机理[92]
Scheme 53 (A) Coupling reaction of α-bromo-α-?uoroketones with arylboronic acids[92];(B) Proposed mechanism[92]
图式54 烯基三氟硼酸钾和烷基亲电试剂的交叉偶联反应[93]
Scheme 54 Cross-coupling of potassium alkenyltri?uoroborates with alkyl halides[93]
图式55 (A)芳基硼酸的氟甲基化反应[94];(B)可能的机理[94]
Scheme 55 Fluoromethylation of arylboronic acids[94];(B) Proposed mechanism[94]
图式56 烷基吡啶鎓盐和芳基硼酸的交叉偶联反应[95]
Scheme 56 Cross-coupling of alkylpyridinium salts with aryl boronic acids[95]
图式57 (A)仲烷基亲电试剂与芳基硼酸的羰基化反应[96];(B)可能的机理[96]
Scheme 57 (A) Carbonylation of secondary aliphatic electrophiles with arylboronic acids[96];(B) Proposed mechanism[96]
图式58 叔碘代环丙烷与芳基/杂芳基硼酸的Suzuki-Miyaura反应[97]
Scheme 58 Suzuki-Miyaura coupling of a tertiary iodocyclopropane with wide boronic acid[97]
图式59 非活化仲烷基溴代物与有机硅试剂的交叉偶联反应[98]
Scheme 59 Cross-couplings of organosilicon reagents with unactivated secondary alkyl bromides[98]
图式60 镍/光氧化还原双重催化多卤代物的选择性交叉偶联反应[99]
Scheme 60 Haloselective cross-coupling via Ni/photoredox dual catalysis[99]
图式61 (A)Ts-氮杂环丙烷与烷基锌试剂的交叉偶联反应[100];(B)可能的机理[100]
Scheme 61 (A) Cross-coupling of N-tosylaziridines and alkylzinc reagents[100];(B) Proposed mechanism[100]
图式62 (A)烷基锌试剂与丙炔溴的交叉偶联反应区域选择性地制备联烯化合物[101];(B)可能的机理[101]
Scheme 62 (A) Regioselective cross-coupling of alkylzinc halides and propargyl bromides to allenes[101];(B) Proposed mechanism[101]
图式63 芳基溴代物与烷基溴代物的还原偶联反应[102]
Scheme 63 Reductive cross-coupling of aryl and alkyl bromides[102]
图式64 还原交叉偶联反应合成手性α-氨基酸[103]
Scheme 64 Synthesis of chiral α-amino acids through reductive cross-coupling[103]
图式65 (A)烷基碘化物与芳基酸酐的还原偶联反应[104];(B)烷基卤代物与芳基酰氯的还原偶联反应[105,106]
Scheme 65 (A) Direct reductive coupling of alkyl iodides with aryl acid anhydrides[104];(B) Reductive coupling of alkyl halides with aryl acid chlorides[105,106]
图式66 分子内的苄基酯与芳基卤化物的还原交叉偶联反应[107]
Scheme 66 Intramolecular nickel-catalyzed reductive cross coupling reactions of benzylic esters with aryl halides[107]
图式67 (A)镍催化的烷基亲电试剂和芳基溴代物的链行走还原交叉偶联反应[108];(B)可见光与镍共同催化的链行走还原交叉偶联反应[109];(C)芳基卤代物和烷基溴的电化学还原链行走交叉偶联反应[110]
Scheme 67 (A) Nickel-catalyzed reductive relay cross-coupling of alkyl bromides and aryl bromides[108];(B) Photochemical nickel-catalyzed reductive migratory cross-coupling of alkyl bromides with aryl bromides[109];(C) Electrochemical reductive relay cross-coupling of alkyl halides to aryl halides[110]
图式68 C-N和C-O亲电试剂的还原偶联反应[111]
Scheme 68 Reductive coupling between C-N and C-O electrophiles[111]
图式69 (A)芳香酰胺与Katritzky盐还原偶联合成酮类化合物[112];(B)建议的机理[112]
Scheme 69 (A) Reductive cross-coupling of aromatic amides and Katritzky salts for ketone synthesis[112];(B) Proposed mechanis[112]
图式70 芳基卤化物及三氟甲磺酸酯化合物与乙腈的氰基化反应[113]
Scheme 70 Cyanation of aryl halides and triflates with acetonitrile[113]
图式71 非活化伯烷基溴化物或烷基磺酸酯与CO2的还原羧化反应[114]
Scheme 71 Carboxylation of unactivated primary alkyl bromides and sulfonates with CO2[114]
图式72 非活化的烷基氯代物与CO2的还原羧化反应[115]
Scheme 72 Carboxylation of unactivated alkyl chlorides with CO2
图式73 溴代环丙烷与CO2的还原羧化反应[116]
Scheme 73 Carboxylation of cyclopropyl bromides with CO2
图式74 (A)光氧化还原与镍催化结合的溴代物与CO2的羧化反应[117];(B)光氧化还原与镍催化结合的远程C(sp3)-H键的羧化反应[118];(C)式(A)可能的机理[117]
Scheme 74 (A) Carboxylation of aromatic and aliphatic bromides with CO2 by dual visible-light-nickel catalysis[117];(B) Remote C(sp3)-H carboxylation enabled by the merger of photoredox and nickel catalysis[118];(C) Proposed mechanism of (A)[117]
图式75 非活化的伯/仲烷基卤代物与CO2的环化羧化反应[119]
Scheme 75 Divergent cyclization/carboxylation of unactivated primary and secondary alkyl halides with CO2[119]
图式76 (A)经串联溴化/羧化反应将生物质原料直接催化转化为单一脂肪酸类化合物[120];(B)未活化烷基溴代物的远端C(sp3)-H键处的选择性羧化[120];(C)可能的机理[120]
Scheme 76 (A) Application to the direct catalytic conversion of biomass-derived feedstocks into single fatty acids via a tandem bromination/carboxylation process[120];(B) Switchable site-selective carboxylation of unactivated alkyl bromides at remote C(sp3)-H sites[120];(C)Proposed mechanism[120]
图3 C—O键键能和来源比较[123]
Fig.3 C—O bond energy and availability comparison[123]
图式77 (A)烯基/大位阻的芳基三氟甲磺酸酯与CO2的羧化反应[70];(B)烯丙基酯与CO2的还原羧基化反应[121];(C)(杂)芳基氟磺酸酯与CO2的还原羧化反应[122];(D)式(C)可能的机理[122]
Scheme 77 (A) Carboxylation of alkenyl and sterically hindered aryl tri?ates utilizing CO2[70];(B) Reductive carboxylation of allyl esters with C[122];(C) Carboxylation of aryl and heteroaryl fluorosulfates with CO2[122];(D) Proposed mechanism of (C)[122]
图式78 (A)烯丙基醇与CO2的还原羧化反应[123];(B)烯丙基/炔丙基醇与CO2的还原羧化反应[124]
Scheme 78 (A) Carboxylation of allylic alcohols with CO2[123];(B) Carboxylation of allylic and propargylic alcohols with CO2[124]
图式79 苄基C—N键与CO2的羧化反应[125]
Scheme 79 Carboxylation of benzylic C—N bonds with CO2[125]
图式80 (A)C(sp2)-S键与CO2的羧化反应[126];(B)可能的机理[126]
Scheme 80 (A) Carboxylation of C(sp2)-S bonds with CO2[126];(B)Proposed mechanism[126]
图式81 (A)亚胺与共轭烯烃的还原偶联反应[127];(B)可能的机理[127]
Scheme 81 Reductive coupling reaction of imines and conjugated alkenes[127];(B) Proposed mechanism[127]
图式82 (A)醛类化合物与多卤代亲核试剂的选择性活化/偶联反应[128];(B)可能的机理[128]
Scheme 82 (A) Selective activation/coupling of polyhalogenated nucleophiles[128];(B) Proposed mechanism[128]
图式83 (A)酯与硝基芳烃的直接酰胺化反应[129];(B)可能的机理[130]
Scheme 83 (A) Direct amidation of esters with nitroarenes[129];(B) Proposed mechanism[130]
图式84 (A)镍催化光氧化还原介导的芳基亲电试剂和芳基叠氮化物的交叉偶联反应[131];(B)可能的机理[131]
Scheme 84 (A) Nickel-catalyzed photoredox-mediated cross-coupling of aryl electrophiles and aryl azides[131];(B) Proposed mechanism[131]
图式85 (A)芳基硼酸与口恶唑化合物的直接交叉偶联反应[132];(B)可能的机理[132]
Scheme 85 (A) Direct cross-coupling of azoles with arylboronic acids[132];(B) Proposed mechanism[132]
图式86 (A)酮与醇的α-烷基化反应合成支链偕二烷基酮[133];(B)甲基酮与醇的α-烷基化反应合成线性单取代酮[134];(C)可能的机理[134]
Scheme 86 (A) α-Alkylation of ketones with alcohols to prepare branched gem-bis(alkyl) ketones[133];(B) α-Alkylation of methyl ketones with alcohols for the synthesis of monoselective linear ketones[134];(C) Proposed mechanism of (B)[134]
图式87 (A)砜与醇直接合成烯烃的反应[135];(B)可能的机理[135]
Scheme 87 (A) Direct olefinations of alcohols with sulfones[135];(B) Proposed mechanism[135]
图式88 (A)丙炔酸化合物和有机硅化合物的Hiyama类型脱羧偶联反应[136];(B)可能的机理[136]
Scheme 88 (A) Hiyama-type decarboxylative coupling of propiolic acids and organosilanes[136];(B) Proposed mechanism[136]
图式89 (A)脂肪酸酐与烯基三氟甲磺酸酯/卤代物的脱羧偶联反应[137];(B)可能的机理[137]
Scheme 89 (A) Decarboxylative coupling of alkyl acid anhydrides with vinyl tri?ates and halides[137];(B) Proposed mechanism[137]
图式90 烯酮的还原共轭加成[139]
Scheme 90 Reductive conjugate addition to enones[139]
图式91 不饱和烃与CO2的氢羧化反应[140]
Scheme 91 Hydrocarboxylation of unsaturated hydrocarbons with CO2[140]
图式92 1,3-二烯化合物与CO2区域选择性二羧化反应[141]
Scheme 92 Site-selective dicarboxylation of 1,3-dienes with CO2[141]
图式93 (A)烯烃的还原双碳官能团化反应[142];(B)建议的机理[143]
Scheme 93 (A) Reductive 1,2-dicarbofunctionalization of alkenes[142];(B) Proposed mechanism[143]
图式94 (A)镍催化芳基乙烯化合物的1,2-芳硼化反应[144];(B)可能的机理[144]
Scheme 94 (A) Nickel-catalyzed 1,2-arylboration of vinylarenes[144];(B) Proposed mechanism[144]
图式95 (A)烯烃与硫醇的远程氢硫化反应[145];(B)可能的机理[145]
Scheme 95 (A) Remote hydrothiolation of alkenes with thiols[145];(B) Proposed mechanism[145]
图式96 (A)乙烯基酰胺的双官能团化反应[146];(B)可能的机理[146]
Scheme 96 (A) Difunctionalization of enamides[146];(B) Proposed mechanism[146]
图式97 (A)炔烃与CO2的区域选择性氢羧化反应[147];(B)可能的机理[147]
Scheme 97 (A) Regioselective hydrocarboxylation of alkynes with CO2[147];(B) Proposed mechanism[147]
图式98 炔烃和异氰酸酯的氢酰胺化反应[148]
Scheme 98 Hydroamidation of alkynes with isocyanates[148]
图式99 聚乙烯的催化羟基化[149]
Scheme 99 Catalytic hydroxylation of polyethylenes[149]
图式100 图式100 (A)远程C(sp3)-H键的Wacker氧化反应[150];(B)可能的机理[150]
Scheme 100 (A) Wacker-type oxidation at remote C(sp3)-H sites[150];(B) Proposed mechanism[150]
[1]
Bullock R M ( Ed.). Catalysis Without Precious Metals, Wiley-VCH, 2010.
[2]
Schröder D, Shaik S , Schwarz H. Acc. Chem. Res., 2000,33:139.
[3]
Poli R , Harvey J N. Chem. Soc. Rev., 2003,32:1.
[4]
Chirik P J. Angew. Chem. Int. Ed., 2017,56:5170.
[5]
Stradiotto M, Lundgren R J .( eds) Ligand design in metal chemistry: Wiley-VCH, 2016.
[6]
Summers L A. Adv. Heterocycl. Chem., 1978,22:1.
[7]
Happ B, Winter A, Hager M D , Schubert U S. Chem. Soc. Rev., 2012,41:2222.
[8]
Schöne S, Radoske T, März J, Stumpf T, Ikeda-Ohno A. Inorg. Chem ., 2018,57:13318.
[9]
Ying C H, Yan S B , Duan W L. Org. Lett., 2014,16:500.
[10]
Alreja P, Kaur N. RSC Adv ., 2016,6:23169.
[11]
Sigman D S, Mazumder A , Perrin D M. Chem. Rev., 1993,93:2295.
[12]
Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin Complexes. London: Academic Press, 1991.
[13]
Vrábel M, Hocek M, Havran L, Fojta M, Votruba I , Klepetá ová B, Pohl R, Rulíšek L, Zendlová L, Hobza P. Eur. [J]. Inorg. Chem., 2007,2007:1752.
[14]
Teulade-Fichou M-P, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny J L, David A, Lehn J M, Wilson W D . . Am. Chem. Soc., 2003,125:4732.
[15]
Ma D L , Chan D S H, Leung C H. Acc. Chem. Res., 2014,47:3614.
[16]
Marko I E, Giles P R, Tsukazaki M, Brown S M, Urch C J . Science, 1996,274:2044.
[17]
ten Brink G J, Arends I W, Sheldon R A . Science, 2000,287:1636.
[18]
Oeschger R J, Larsen M A, Bismuto A, Hartwig J F .. Am. Chem. Soc., 2019,141:16479.
[19]
Chelucci G , Thummel R P. Chem. Rev., 2002,102:3129.
[20]
Schoffers E. Eur. J. Org. Chem., 2003,2003:1145.
[21]
Kwong H L, Yeung H L, Yeung C T, Lee W S, Lee C S , Wong W L. Coord. Chem. Rev., 2007,251:2188.
[22]
Blau F. Monatsh. Chem ., 1898,19:647.
[23]
Halcrow B E, Kermack W O .. Chem. Soc., 1946,155.
[24]
Belser P, Bernhard S, Guerig U . Tetrahedron., 1996,52:2937.
[25]
Riesgo E C, Jin X, Thummel R P .. Org. Chem., 1996,61:3017.
[26]
Lu Y , Jahng Y. Chin. J. Chem., 2019,37:221.
[27]
Larsen A F, Ulven T. Org. Lett ., 2011,13:3546.
[28]
Graf G I , Hastreiter D, da Silva L E, Rebelo R A, Montalban A G, McKillop A. Tetrahedron., 2002,58:9095.
[29]
De K, Legros J, Crousse B, Chandrasekaran S , Bonnet-Delpon D. Org. Biomol. Chem., 2011,9:347.
[30]
Wang T, Wang H, Li G, Li M, Bo Z, Chen Y . Macromolecules, 2016,49:4088.
[31]
Sun X T, Zhu J, Xia Y T, Wu L . Chem CatChem., 2017,9:2463.
[32]
Norinder J, Matsumoto A, Yoshikai N, Nakamura E .. Am. Chem. Soc., 2008,130:5858.
[33]
Ilies L, Matsumoto A, Kobayashi M, Yoshikai N, Nakamura E . Synlett., 2012,23:2381.
[34]
Valléé F, Mousseau J J, Charette A B .. Am. Chem. Soc., 2010,132:1514.
[35]
Huang Y, Moret M E , Klein Gebbink R J. Eur.[J]. Org. Chem., 2014,2014:3788.
[36]
Uchiyama N, Shirakawa E, Nishikawa R, Hayashi T. . Chem. Commun., 2011,47:11671.
[37]
Parnes R, Kshirsagar U A, Werbeloff A, Regev C, Pappo D. Org. Lett ., 2012,14:3324.
[38]
Li C, Chen T , Han L B. Dalton. Trans., 2016,45:14893.
[39]
Yang J M, Cai Y, Zhu S F , Zhou Q L. Org. Biomol. Chem., 2016,14:5516.
[40]
Mondal R, Sinha S, Das S, Chakraborty G , Paul N D. Adv. Synth. Catal., 2020,362:594.
[41]
Li Z L, Sun K K, Wu P Y, Cai C .. Org. Chem., 2019,84:6830.
[42]
Jia J, Zeng X, Liu Z, Zhao L, He C Y, Li X F, Feng Z. Org. Lett ., 2020,22:2816.
[43]
Nishikawa Y, Yamamoto H .. Am. Chem. Soc., 2011,133:8432.
[44]
Song H, Kang B , Hong S H. ACS Catal., 2014,4:2889.
[45]
Das S, Wendt B, Möller K, Junge K , Beller M. Angew. Chem. Int. Ed., 2012,51:1662.
[46]
Takeda H, Ohashi K, Sekine A, Ishitani O .. Am. Chem. Soc., 2016,138:4354.
[47]
Shevlin M, Guan X , Driver T G. ACS Catal., 2017,7:5518.
[48]
Liu G S, Zhang Y Q, Yuan Y A, Xu H .. Am. Chem. Soc., 2013,135:3343.
[49]
Lu D F, Zhu C L, Jia Z X, Xu H .. Am. Chem. Soc., 2014,136:13186.
[50]
Zhu C L, Tian J S, Gu Z Y, Xing G W, Xu H. Chem. Sci ., 2015,6:3044.
[51]
Guo N, Hu M Y, Feng Y , Zhu S F. Org. Chem. Front., 2015,2:692.
[52]
Wang X, Studer A .. Am. Chem. Soc., 2016,138:2977.
[53]
Sonehara T, Murakami S, Yamazaki S, Kawatsura M. Org. Lett ., 2017,19:4299.
[54]
Hu M Y, He Q, Fan S J, Wang Z C, Liu L Y, Mu Y J, Peng Q , Zhu S F. Nat. Commun., 2018,9:221.
[55]
Hu M Y, Lian J, Sun W, Qiao T Z, Zhu S F .. Am. Chem. Soc., 2019,141:4579.
[56]
Shin J H, Seong E Y, Mun H J, Jang Y J , Kang E J. Org. Lett., 2018,20:5872.
[57]
Chu X Q, Cao W B, Xu X P, Ji S J .. Org. Chem., 2017,82:1145.
[58]
Xia X F, He W, Zhang G W , Wang D. Org. Chem. Front., 2019,6:342.
[59]
Yu H, Li Z , Bolm C. Angew. Chem. Int. Ed., 2018,57:324.
[60]
Chen C H, Wu Q Y, Wei C, Liang C, Su G F , Mo D L. Green. Chem., 2018,20:2722.
[61]
Gao P, Wu H, Yang J C , Guo L N. Org. Lett., 2019,21:7104.
[62]
Ueda Y, Tsurugi H , Mashima K. Angew. Chem. Int. Ed., 2020,59:1552.
[63]
Paul J , Lisa Luong Van M, Behar-Pirès M, Guillaume C, Léonel E, Presset M, Le Gall E.[J]. Org. Chem., 2018,83:4078.
[64]
Xu M, Zheng Z, Wang M, Kong L, Ao Y , Li Y. Org. Biomol. Chem., 2018,16:8761.
[65]
Liu J, Yang Z, Zheng M, Wu H, Chen N, Xu J . Synthesis, 2019,51:3320.
[66]
Huang Q, Hu M Y , Zhu S F. Org. Lett., 2019,21:7883.
[67]
Gao K , Yoshikai N. Angew. Chem. Int. Ed., 2011,50:6888.
[68]
Wang H, Zhang S, Wang Z, He M, Xu K. Org. Lett ., 2016,18:5628.
[69]
Nogi K, Fujihara T, Terao J, Tsuji Y. . Chem. Commun., 2014,50:13052.
[70]
Nogi K, Fujihara T, Terao J, Tsuji Y .. Org. Chem., 2015,80:11618.
[71]
Krafft M, Hirosawa C, Dalal N, Ramsey C, Stiegman A. Tetrahedron. Lett ., 2001,42:7733.
[72]
Karthikeyan J, Parthasarathy K , Cheng C H. Chem. Commun., 2011,47:10461.
[73]
Yao T, Hirano K, Satoh T , Miura M. Angew. Chem. Int. Ed., 2012,51:775.
[74]
Corpet M, Bai X Z , Gosmini C. Adv. Synth. Catal., 2014,356:2937.
[75]
Paul J, Presset M, Le Gall E, Léonel E, Retailleau P . Synthesis, 2018,50:254.
[76]
Lutter F H, Grokenberger L, Benz M, Knochel P. Org. Lett ., 2020,22:3028.
[77]
Li C L, Jiang X, Lu L Q, Xiao W J , Wu X F. Org. Lett., 2019,21:6919.
[78]
Sinha S, Das S, Mondal R, Mandal S , Paul N D. Dalton Trans., 2020,49:8448.
[79]
Adak L, Yoshikai N .. Org. Chem., 2011,76:7563.
[80]
Wolfe J P, Buchwald S L .. Am. Chem. Soc., 1997,119:6054.
[81]
Manolikakes G, Gavryushin A, Knochel P .. Org. Chem., 2008,73:1429.
[82]
Rezazadeh S, Devannah V, Watson D A .. Am. Chem. Soc., 2017,139:8110.
[83]
Hachiya H, Hirano K, Satoh T, Miura M. Org. Lett ., 2009,11:1737.
[84]
Khake S M, Soni V, Gonnade R G , Punji B. Chem. Eur. J., 2017,23:2907.
[85]
Shaw M H, Shurtleff V W, Terrett J A, Cuthbertson J D , MacMillan D W. Science, 2016,352:1304.
[86]
Gui Y Y, Liao L L, Sun L, Zhang Z, Ye J H, Shen G, Lu Z P, Zhou W J , Yu D G. Chem. Commun., 2017,53:1192.
[87]
Gui Y Y, Wang Z X, Zhou W J, Liao L L, Song L, Yin Z B, Li J , Yu D G. Asian. J. Org. Chem., 2018,7:537.
[88]
Gui Y Y, Chen X W, Zhou W J, Yu D G . Synlett., 2017,28:2581.
[89]
Liao L L, Gui Y Y, Zhang X B, Shen G, Liu H D, Zhou W J, Li J , Yu D G. Org. Lett., 2017,19:3735.
[90]
Mohanty A , Roy S. Eur. J. Org. Chem., 2019,2019:6702.
[91]
Zhou J, Fu G C .. Am. Chem. Soc., 2004,126:1340.
[92]
Liang J, Han J, Wu J, Wu P, Hu J, Hu F, Wu F. Org. Lett ., 2019,21:6844.
[93]
Molander G A , Argintaru O A. Org. Lett., 2014,16:1904.
[94]
An L, Xiao Y L, Min Q Q , Zhang X. Angew. Chem. Int. Ed., 2015,54:9079.
[95]
Basch C H, Liao J, Xu J, Piane J J, Watson M P .. Am. Chem. Soc., 2017,139:5313.
[96]
Cheng R, Zhao H Y, Zhang S, Zhang X. ACS Catal ., 2019,10:36.
[97]
Yotsuji K, Hoshiya N, Kobayashi T, Fukuda H, Abe H, Arisawa M , Shuto S. Adv. Synth. Catal., 2015,357:1022.
[98]
Powell D A, Fu G C .. Am. Chem. Soc., 2004,126:7788.
[99]
Lin K, Wiles R J, Kelly C B, Davies G H , Molander G A. ACS. Catal., 2017,7:5129.
[100]
Jensen K L, Standley E A, Jamison T F .. Am. Chem. Soc., 2014,136:11145.
[101]
Soler-Yanes R , Arribas-Álvarez I, Guisán-Ceinos M, Buñuel E, Cárdenas D J. Chem. Eur. J., 2017,23:1584.
[102]
Everson D A, Jones B A, Weix D J .. Am. Chem. Soc., 2012,134:6146.
[103]
Lu X, Yi J, Zhang Z Q, Dai J J, Liu J H, Xiao B, Fu Y , Liu L. Chem. Eur. J., 2014,20:15339.
[104]
Yin H, Zhao C, You H, Lin K, Gong H. . Chem. Commun., 2012,48:7034.
[105]
Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett ., 2012,14:3044.
[106]
Lu W, Liang Z, Zhang Y, Wu F, Qian Q, Gong H . Synthesis, 2013,45:2234.
[107]
Konev M O, Hanna L E , Jarvo E R. Angew. Chem. Int. Ed., 2016,55:6730.
[108]
Peng L, Li Y, Li Y, Wang W, Pang H, Yin G. ACS. Catal ., 2018,8:310.
[109]
Peng L, Li Z, Yin G. Org. Lett ., 2018,20:1880.
[110]
Jiao K J, Liu D, Ma H X, Qiu H, Fang P , Mei T S. Angew. Chem. Int. Ed., 2020,59:6520.
[111]
He R D, Li C L, Pan Q Q, Guo P, Liu X Y, Shu X Z .. Am. Chem. Soc., 2019,141:12481.
[112]
Yu C G, Matsuo Y. Org. Lett ., 2020,22:950.
[113]
Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci ., 2019,10:994.
[114]
Liu Y, Cornella J, Martin R .. Am. Chem. Soc., 2014,136:11212.
[115]
Börjesson M, Moragas T, Martin R .. Am. Chem. Soc., 2016,138:7504.
[116]
Moragas T, Martin R . Synthesis, 2016,48:2816.
[117]
Meng Q Y, Wang S , König B. Angew. Chem. Int. Ed., 2017,56:13426.
[118]
Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q Y, Crespi S, König B , Martin R. Chem. Eur. J., 2019,25:9001.
[119]
Wang X, Liu Y, Martin R .. Am. Chem. Soc., 2015,137:6476.
[120]
Juliá-Hernández F, Moragas T, Cornella J, Martin R . Nature., 2017,545:84.
[121]
Moragas T, Cornella J, Martin R .. Am. Chem. Soc., 2014,136:17702.
[122]
Ma C, Zhao C Q, Xu X T, Li Z M, Wang X Y, Zhang K , Mei T S. Org. Lett., 2019,21:2464.
[123]
van Gemmeren M, Börjesson M, Tortajada A, Sun S Z, Okura K, Martin R . Angew. Chem. Int. Ed., 2017,56:6558.
[124]
Chen Y G, Shuai B, Ma C, Zhang X J, Fang P , Mei T S. Org. Lett., 2017,19:2969.
[125]
Moragas T, Gaydou M , Martin R. Angew. Chem. Int. Ed., 2016,55:5053.
[126]
Yanagi T, Somerville R J, Nogi K, Martin R, Yorimitsu H. ACS. Catal ., 2020,10:2117.
[127]
Yeh C H, Prasad Korivi R , Cheng C H. Angew. Chem. Int. Ed., 2008,47:4892.
[128]
Yan W, Li Z, Kishi Y .. Am. Chem. Soc., 2015,137:6219.
[129]
Cheung C W, Ploeger M L, Hu X. Nat. Commun ., 2017,8:14878.
[130]
Ploeger M L, Darù A, Harvey J N, Hu X. ACS Catal ., 2020,10:2845.
[131]
Konev M O , McTeague T A, Johannes J W. ACS Catal., 2018,8:9120.
[132]
Hachiya H, Hirano K, Satoh T, Miura M . Chemcatchem., 2010,2:1403.
[133]
Das J, Singh K, Vellakkaran M, Banerjee D. Org. Lett ., 2018,20:5587.
[134]
Das J, Vellakkaran M, Banerjee D .. Org. Chem., 2019,84:769.
[135]
Waiba S, Das A, Barman M K, Maji B. ACS Omega ., 2019,4:7082.
[136]
Raja G C E, Irudayanathan F M, Kim H S, Kim J, Lee S . . Org. Chem., 2016,81:5244.
[137]
Chen H, Sun S, Liao X. Org. Lett ., 2019,21:3625.
[138]
Chen H, Liao X . Tetrahedron., 2019,75:4186.
[139]
Shrestha R , Dorn S C M, Weix D J.[J]. Am. Chem. Soc., 2013,135:751.
[140]
Gaydou M, Moragas T, Juliá-Hernández F, Martin R .. Am. Chem. Soc., 2017,139:12161.
[141]
Tortajada A, Ninokata R, Martin R .. Am. Chem. Soc., 2018,140:2050.
[142]
Kuang Y, Wang X, Anthony D, Diao T. . Chem. Commun., 2018,54:2558.
[143]
Lin Q, Diao T .. Am. Chem. Soc., 2019,141:17937.
[144]
Wang W, Ding C, Pang H, Yin G. Org. Lett ., 2019,21:3968.
[145]
Zhang Y, Xu X, Zhu S. Nat. Commun ., 2019,10:1752.
[146]
Xu C, Yang Z F, An L, Zhang X. ACS Catal ., 2019,9:8224.
[147]
Wang X, Nakajima M, Martin R .. Am. Chem. Soc., 2015,137:8924.
[148]
Wang X, Nakajima M, Serrano E, Martin R .. Am. Chem. Soc., 2016,138:15531.
[149]
Bunescu A, Lee S, Li Q , Hartwig J F. ACS Cent. Sci., 2017,3:895.
[150]
Liu B, Hu P, Xu F, Cheng L, Tan M, Han W. Commun. Chem ., 2019,2:5.
[151]
Zhang M, Hao P, Zuo W, Jie S, Sun W H .. Organomet. Chem., 2008,693:483.
[152]
Jie S, Zhang S, Wedeking K, Zhang W, Ma H, Lu X, Deng Y, Sun W H . C. R. Chimie., 2006,9:1500.
[153]
Yang Y, Yang P, Zhang C, Li G, Yang X J, Wu B, Janiak C . J. Mol. Catal. A: Chem., 2008,296:9.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.