English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1753-1765 DOI: 10.7536/PC200682 前一篇   后一篇

• •

仿生邻醌催化

张瑞璞2,3, 张润泽1, 罗三中1,2,**()   

  1. 1. 清华大学化学系基础分子科学中心 北京 100084
    2. 中国科学院化学研究所 分子识别与功能院重点实验室 北京 100190
    3. 中国科学院大学 北京 100049
  • 收稿日期:2020-06-28 修回日期:2020-07-10 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 罗三中
  • 作者简介:

    罗三中

    清华大学化学系教授;清华大学基础分子科学中心主任。1999年本科毕业于郑州大学;2002年在南开大学获硕士学位,2005年在中国科学院化学研究所获博士学位,美国俄亥俄州立大学和斯坦福大学访问学者。2005~2017年在中国科学院化学所工作,2018年到清华大学工作。主要从事仿生催化、不对称催化以及催化理论和物理有机研究。

    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21672217, 21521002)

Bio-Inspired ortho-Quinone Catalysis

Ruipu Zhang2,3, Runze Zhang1, Sanzhong Luo1,2,**()   

  1. 1. Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
    2. Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-06-28 Revised:2020-07-10 Online:2020-11-24 Published:2020-09-01
  • Contact: Sanzhong Luo
  • Supported by:
    the National Natural Science Foundation of China(21672217, 21521002)

醌酶是一类以邻醌结构作为辅酶因子,能够参与生物体内醇类和胺类氧化代谢的氧化还原酶。在醌酶发现之初,由于其独特的氧化能力就备受化学家关注。在过去的二十年间,有机化学家受到醌酶中铜胺氧化酶的启发,设计发展出多种用于胺类化合物氧化的小分子邻醌催化剂。这些催化剂不仅能够模拟铜胺氧化酶的氧化能力,更有一些显示出了超越醌酶的反应活性,将底物从伯胺拓展到了α-支链伯胺、仲胺、叔胺等等。此外,在最近十年内,新发现的以稀土元素为中心金属的甲醇脱氢酶更是极大地拓展了醌酶的种类与范围。本文将对醌酶进行概述,主要介绍以此为基础的仿生邻醌催化的研究进展,并展望邻醌催化的未来发展。

Quinoproteins are an important type of redox enzymes for the oxidative metabolism of alcohols and amines, which employ ortho-quinones as the cofactors. On the basis of catalytic principles and strategies of quino-enzymes, a number of molecular quinone catalysts have been developed during the past two decades. With copper amine oxidases(CuAOs) as a blueprint, small molecular ortho-quinone catalysts have been developed for amine oxidation. These catalysts could mimic the catalytic performance of CuAOs, and expand the substrate scope to α-branched primary amines, secondary amines and tertiary amines. Recent studies have also uncovered a new type of quinoproteins, methanol dehydrogenase(MDH), utilizing rare earth elements as the active metal. In this review, we summarize the major types of quinoproteins, the development of their mimics ortho-quinone catalyst as well as perspective on the future development of bio-inspired ortho-quinone catalysis.

Contents

1 Introduction

2 Quinoprotein

2.1 Alcohol dehydrogenase

2.2 Copper amine oxidase

3 Bio-inspired ortho-quinone catalysis

3.1 Amine oxidation

3.2 Alcohol oxidation

4 Conclusion and outlook

()
图1 生物体中醌类辅基结构
Fig.1 Quinone cofactors in nature
图2 甲醇脱氢酶活性位点的比较(左:MxaF-MDH,1W6S;右:XoxF-MDH,6DAM)
Fig.2 Comparison of active sites of methanol dehydrogenase(left: MxaF-MDH, 1W6S; right: XoxF-MDH, 6DAM)
图式1 PQQ催化脱氢可能的两种机制[8, 15, 25~30]
Scheme 1 Possibile reaction pathway of alcohol dehydrogenation catalyzed by PQQ[8, 15, 25~30]
图3 铜胺氧化活性位点(PDB: 1IU7)
Fig.3 Active site of copper amine oxidase(PDB: 1IU7)
图式2 铜胺氧化酶催化氧化机制[35, 36]
Scheme 2 Reaction mechanism of copper amine oxidase[35, 36]
图式3 电化学条件下脂肪伯胺的氧化[38]
Scheme 3 Oxidation of nonactivated primary amines under electrochemical conditions[38]
图式4 邻醌催化剂Q1的取代基效应[39]
Scheme 4 Substituents effects of Q1[39]
图式5 Largeron等报道的协同催化体系[41]
Scheme 5 Cooperative catalytic system reported by Largeron et al[41]
图式6 有机催化的伯胺的有氧氧化反应[42]
Scheme 6 Organocatalytic aerobic oxidation of primary amines[42]
图式7 邻醌与纳米管协同的非均相催化体系[43]
Scheme 7 Heterogeneous catalysis combining ortho-quinone catalyst and nanotube[43]
图式8 α-支链伯胺的有氧氧化反应[44]
Scheme 8 Aerobic oxidation of α-branched primary amines[44]
图式9 萘醌催化的伯胺的有氧氧化反应[46]
Scheme 9 o-Naphthoquinone-catalyzed aerobic oxidation of amines[46]
图式10 伯胺的选择性氧化交叉偶联反应[48]
Scheme 10 Chemoselective oxidative cross-coupling of primary amines[48]
图式11 四氧嘧啶催化的伯胺氧化反应[49]
Scheme 11 Aerobic oxidation of amines catalyzed by alloxan[49]
图式12 新型邻醌催化剂催化的伯胺交叉偶联反应[50]
Scheme 12 Cross-coupling of amines catalyzed by a novel ortho-quinone catalyst[50]
图式13 萘醌催化的伯胺与硝基烷烃的交叉偶联反应[52]
Scheme 13 Aerobic deaminative cross-coupling between primary amines and nitroalkanes catalyzed by naphthoquinone[52]
图式14 金属纳米簇与邻二酚衍生物协同催化体系[53]
Scheme 14 Cooperative catalytic system of metal nanoclusters and catechol derivatives[53]
图式15 仲胺和氮杂环的有氧氧化反应[54]
Scheme 15 Oxidation of secondary amines and nitrogen heterocycles[54]
图式16 改进后的用于四氢喹啉脱氢反应的邻醌催化体系[55]
Scheme 16 Modified quinone catalyst system for dehydrogenation of tetrahydroquinolines[55]
图式17 萘醌催化的仲胺的有氧氧化反应[46]
Scheme 17 o-Naphthoquinone-catalyzed aerobic oxidation of secondary amines[46]
图式18 Doris小组报道的协同催化体系[56]
Scheme 18 Cooperative catalyst system reported by Doris and co-workers[56]
图式19 Luo小组报道的仲胺氧化体系[45]
Scheme 19 Aerobic oxidation of secondary amines reported by Luo and co-workers[45]
图式20 Luo等报道的叔胺氧化体系[45]
Scheme 20 Aerobic oxidation of tertiary amines reported by Luo and co-workers[45]
图式21 Stahl等报道的叔胺氧化体系[57]
Scheme 21 Aerobic oxidation of tertiary amines reported by Stahl and co-workers[57]
图式22 邻醌催化的苯并咪唑的合成[58]
Scheme 22 Synthesis of benzimidazole catalyzed byortho-quinone[58]
图式23 1-甲基苯乙胺的氧化三聚反应[44,60]
Scheme 23 Oxidative trimerization of 1-phenylethanamines[44,60]
图式24 1-甲基苯乙胺的氧化三聚反应[44,46]
Scheme 24 Oxidative trimerization of 1-phenylethanamines[44,46]
图式25 聚多巴胺催化的氮杂环化合物合成[61]
Scheme 25 Synthesis of nitrogen heterocycles catalyzed by polydopamine[61]
图式26 萘醌催化的胺类化合物的亚硝化反应[52]
Scheme 26 N-Nitrosation of amine catalyzed by naphthoquinon[52]
图式27 伯胺氧化机制
Scheme 27 Reaction mechanism of primary amine oxidation
图式28 仲胺氧化机制
Scheme 28 Reaction mechanism of secondary amine oxidation
图式29 Schelter小组报道的稀土酶模拟体系(省略了其他两个硝酸根离子)[62]
Scheme 29 Synthetic model of XoxF-MDHreported by Schelter and co-workers(the two other nitric anions were omitted for clarity)[62]
[1]
Anthony C. Biochem. J ., 1996,320:697.
[2]
Mure M. Acc. Chem. Res., 2004,37:131.
[3]
Hauge J G .. Biol. Chem., 1964,239:3630.
[4]
Largeron M. Org.Biomol. Chem ., 2017,15:4722.
[5]
Zhang R P , Luo S Z. Chin. Chem. Lett., 2018,29:1193.
[6]
Largeron M. Pure Appl . Chem., 2019,92:233.
[7]
Anthony C , Zatman L J. Biochem. J., 1967,104:960.
[8]
Salisbury S A, Forrest H S , Cruse W B T, Kennard O. Nature, 1979,280:843.
[9]
Itoh S, Kawakami H, Fukuzumi S .. Am. Chem. Soc., 1997,119:439.
[10]
Itoh S, Kawakami H, Fukuzumi S . Biochemistry, 1998,37:6562.
[11]
Fukuzumi S, Itoh S, Komori T, Suenobu T, Ishida A, Fujitsuka M, Ito O .. Am. Chem. Soc., 2000,122:8435.
[12]
Rodriguez E J, Bruice T C .. Am. Chem. Soc., 1989,111:7947.
[13]
Bruice T C. Proc. Natl. Acad. Sci. U. S. A., 1997,94:11881.
[14]
Zheng Y J, Xia Z, Chen Z, Mathews F S , Bruice T C. Proc. Natl. Acad. Sci. U. S. A., 2001,98:432.
[15]
Itoh S, Ogino M, Fukui Y, Murao H, Komatsu M, Ohshiro Y, Inoue T, Kai Y, Kasai N .. Am. Chem. Soc., 1993,115:9960.
[16]
Frank J, Krimpen S H , Verwiel P E J, Jongejan J A, Mulder A C, Duine J A. Eur.[J]. Biochem., 1989,184:187.
[17]
Fitriyanto N A, Fushimi M, Matsunaga M, Pertiwiningrum A, Iwama T, Kawai K .. Biosci. Bioeng., 2011,111:613.
[18]
Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K .. Biosci. Bioeng., 2011,111:547.
[19]
Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S, Iwama T, Hayakawa T, Kawai K . PLoS One, 2012,7:e50480.
[20]
Chistoserdova L, Lidstrom M E . Microbiology, 1997,143:1729.
[21]
Pol A, Barends T R, Dietl A, Khadem A F, Eygensteyn J, Jetten M S , Op den Camp H[J]. Environ. Microbiol., 2014,16:255.
[22]
Good N M, Vu H N, Suriano C J, Subuyuj G A, Skovran E , Martinez-Gomez N C.[J]. Bacteriol., 2016,198:3109.
[23]
Huang J, Yu Z, Groom J, Cheng J F, Tarver A, Yoshikuni Y, Chistoserdova L. ISME J ., 2019,13:2005.
[24]
Featherston E R, Rose H R , McBride M J, Taylor E M, Boal A K,Cotruvo J A Jr. ChemBioChem, 2019,20:2360.
[25]
Xia Z X, He Y N, Dai W W, White S A, Boyd G D, Mathews F S . Biochemistry, 1999,38:1214.
[26]
Dekker R H, Duine J A, Frank J, Verwiel P E , Westerling J. Eur. J. Biochem., 1982,125:69.
[27]
Leopoldini M, Russo N , Toscano M. Chem. Eur. J., 2007,13:2109.
[28]
Prejano M, Marino T , Russo N. Chem. Eur. J., 2017,23:8652.
[29]
Zhang X, Reddy S Y , Bruice T C. Proc. Natl. Acad. Sci. U. S. A., 2007,104:745.
[30]
Idupulapati N B, Mainardi D S . J. Phys. Chem. A, 2010,114:1887.
[31]
Oubrie A, Rozeboom H J, Kalk K H, Olsthoorn A J, Duine J A , Dijkstra B W. EMBO J., 1999,18:5187.
[32]
Li J, Gan J H, Mathews F S , Xia Z X. Biochem. Biophys. Res. Commun., 2011,406:621.
[33]
Klinman J P. Chem. Rev., 1996,96:2541.
[34]
Janes S, Mu D, Wemmer D, Smith A, Kaur S, Maltby D, Burlingame A, Klinman J . Science, 1990,248:981.
[35]
Finney J, Moon H J, Ronnebaum T, Lantz M , Mure M. Arch. Biochem. Biophys., 2014,546:19.
[36]
Brazeau B J, Johnson B J , Wilmot C M. Arch. Biochem. Biophys., 2004,428:22.
[37]
Largeron M, Fleury M B .. Org. Chem., 2000,65:8874.
[38]
Largeron M, Neudorffer A , Fleury M B. Angew. Chem. Int. Ed., 2003,42:1026.
[39]
Largeron M, Chiaroni A , Fleury M B. Chem. Eur. J., 2008,14:996.
[40]
Largeron M , Fleury M B. Org. Lett., 2009,11:883.
[41]
Largeron M , Fleury M B. Angew. Chem. Int. Ed., 2012,51:5409.
[42]
Wendlandt A E , Stahl S S. Org. Lett., 2012,14:2850.
[43]
Jawale D V, Gravel E, Villemin E, Shah N, Geertsen V, Namboothiri I N, Doris E. . Chem. Commun., 2014,50:15251.
[44]
Qin Y, Zhang L, Lv J, Luo S , Cheng J P. Org. Lett., 2015,17:1469.
[45]
Zhang R, Qin Y, Zhang L, Luo S .. Org. Chem., 2019,84:2542.
[46]
Goriya Y, Kim H Y, Oh K. Org. Lett ., 2016,18:5174.
[47]
Golime G, Bogonda G, Kim H Y, Oh K. ACS Catal ., 2018,8:4986.
[48]
Largeron M , Fleury M B. Chem. Eur. J., 2015,21:3815.
[49]
Murray A T, King R , Donnelly J V G, Dowley M J H, Tuna F, Sells D, John M P, Carbery D R. ChemCatChem, 2016,8:510.
[50]
Largeron M , Fleury M B. Chem. Eur. J., 2017,23:6763.
[51]
Largeron M, Deschamps P, Hammad K , Fleury M B. Green Chem., 2020,22:1894.
[52]
Si T, Kim H Y, Oh K. ACS Catal ., 2019,9:9216.
[53]
Yuan H, Yoo W J, Miyamura H, Kobayashi S .. Am. Chem. Soc., 2012,134:13970.
[54]
Wendlandt A E, Stahl S S .. Am. Chem. Soc., 2014,136:506.
[55]
Wendlandt A E, Stahl S S .. Am. Chem. Soc., 2014,136:11910.
[56]
Jawale D V, Gravel E, Shah N, Dauvois V, Li H, Namboothiri I N , Doris E. Chem. Eur. J., 2015,21:7039.
[57]
Li B, Wendlandt A E, Stahl S S, Org. Lett ., 2019,21:1176.
[58]
Nguyen K M , Largeron M. Chem. Eur. J., 2015,21:12606.
[59]
Nguyen K M H, Largeron M . Eur.[J]. Org. Chem., 2016,2016:1025.
[60]
Zhang R, Qin Y, Zhang L, Luo S. Org. Lett ., 2017,19:5629.
[61]
Pawar S A, Chand A N , Kumar A V. ACS Sustain. Chem. Eng., 2019,7:8274.
[62]
McSkimming A, Cheisson T, Carroll P J, Schelter E J . . Am. Chem. Soc., 2018,140:1223.
[63]
Zuilhof H, Gahtory D, Sen R, Kuzmyn A R , Escorihuela J. Angew. Chem. Int. Ed., 2018,57:10118.
[64]
Oliveira B L, Guo Z , Bernardes G J L. Chem. Soc. Rev., 2017,46:4895.
[1] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[2] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[3] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[4] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[5] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[6] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[7] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[8] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[9] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[10] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[11] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[12] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[13] 吴媛媛, 潘海华, 唐睿康. 胶原矿化与仿生修复[J]. 化学进展, 2018, 30(10): 1503-1510.
[14] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[15] 詹晓力, 金碧玉, 张庆华*, 陈丰秋. 多功能超润湿材料的设计制备与应用[J]. 化学进展, 2018, 30(1): 87-100.
阅读次数
全文


摘要

仿生邻醌催化