English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1294-1306 DOI: 10.7536/PC200121 前一篇   后一篇

• 综述 •

HMF催化合成生物基聚酯单体FDCA

刘雪晨1,2, 邢娟娟1, 王海鹏2, 周沅逸2, 张玲2,**(), 王文中2,**()   

  1. 1. 上海大学材料科学与工程学院 上海 200072
    2. 中国科学院上海硅酸盐研究所 上海 200050
  • 收稿日期:2020-01-08 修回日期:2020-05-15 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 张玲, 王文中
  • 作者简介:
    ** Corresponding author e-mail: (Ling Zhang); (Wenzhong Wang)
  • 基金资助:
    *国家自然科学基金面上项目(51972327, 51772312)

Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA

Xuechen Liu1,2, Juanjuan Xing1, Haipeng Wang2, Yuanyi Zhou2, Ling Zhang2,**(), Wenzhong Wang2,**()   

  1. 1. School of Material Science & Engineering, Shanghai University, Shanghai 200072, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2020-01-08 Revised:2020-05-15 Online:2020-09-24 Published:2020-06-30
  • Contact: Ling Zhang, Wenzhong Wang
  • Supported by:
    the General Program of National Natural Science Foundation of China(51972327, 51772312)

在石油资源日渐紧缺的背景下,充分利用自然界中可再生的生物质资源无疑是缓解当前和未来资源危机的有效手段,基于生物质平台分子的绿色化工正在逐渐替代传统石化产品的生产模式。来源于生物质的5-羟甲基糠醛(HMF)经过催化氧化可合成高附加值化学品2,5-呋喃二甲酸(FDCA)。FDCA是生产绿色聚合物聚2,5-呋喃二甲酸乙二酯(PEF)的重要单体。综合近年来利用热、电、光与生物催化模式进行的HMF氧化研究成果,热催化在产率与产品纯度方面显示出明显优势,但其对高能耗与高氧压的依赖限制了在工业中的应用。以电催化和光催化为基础的催化模式能够高效利用电能和太阳能,氧化活性物种丰富可调,有广阔应用前景。此外,生物催化模式虽目前产率较低,但具有反应条件温和、选择性高的突出特点,是未来有效利用生物质资源的重要发展方向。本文对氧化途径与相应反应机理进行讨论,并全面地总结了目前由HMF催化氧化生产FDCA的研究现状,包括已取得的进展与将面临的挑战,最后对未来发展方向与前景进行了展望。

Under the background of limited petroleum reserves, the conversion of renewable biomass to valuable chemicals is undoubtedly an effective strategy to alleviate the current and future resource crisis. The green chemical industry based on biomass platform molecules is gradually replacing traditional petroleum chemistry. The value-added 2,5-furandicarboxylic acid(FDCA) fabricated from the selective oxidation of the bio-based 5-hydroxymethylfurfural(HMF) is considered as an important monomer in green polymer production, such as polyethylene 2,5-furandicarboxylate(PEF). The production of FDCA from HMF generally involves thermal-, electro-, photo-, and bio-catalytic methods. Thermocatalysis is prized for the high yield and purity of FDCA but suffers from the harsh conditions, limiting its application in industry. Electrocatalysis and photocatalysis become promising for HMF conversion to FDCA due to the effective utilization of electric and solar energy to generate abundant reactive species for oxidation. In addition, the biocatalytic processes produce FDCA under mild conditions with high selectivity, which is an important development direction utilizing the biomass resources effectively in the future, although the productivity is unsatisfied at this stage. In this review, we discuss various oxidation routes and the corresponding chemical mechanisms and comprehensively review the current progress on the production of FDCA from HMF, focusing on its development and challenges. Finally, we envisage the future of selective catalytic oxidation of HMF, which might be helpful for the researchers.

Contents

1 Introduction

2 The mechanism of FDCA fabrication by selective HMF oxidation

3 Influence factors of FDCA fabrication by selective HMF oxidation

3.1 The choice of oxidant

3.2 The choice of reaction medium

3.3 Substrate adsorption over the catalysts

4 Thermocatalytic oxidation

4.1 Noble metal catalysts

4.2 Transition metal catalysts

4.3 Metal-free catalysts

4.4 The mechanism of base addition

5 Electrocatalytic oxidation

6 Photocatalytic oxidation

7 Biocatalytic oxidation

8 Conclusion and outlook

()
表1 HMF与FDCA的基本物理性质
Table 1 Basic physical properties of HMF and FDCA
图1 HMF在氧化为FDCA过程中可能经历的反应路线
Fig.1 Possible pathways of HMF oxidation into FDCA
图2 在HMF氧化FDCA的反应中加入18O标记试剂 (18O:蓝色),所观察到的产物由椭圆虚线圈出[1]
Fig.2 Incorporation of 18O in the reaction steps:18O(blue) and observed units in dashed ellipses[1]
图3 (a) HMF在Au/CNT催化剂上转化的过程;(b) HMF在Au-Pd/CNT催化剂上转化的过程;(反应条件:HMF为0.50 mmol;HMF/Au(摩尔比)200/1;H2O 20 mL; O2 0.5 MPa; 温度373 K)[33]
Fig.3 (a) Time course for the conversion of HMF over the Au/CNT catalyst;(b) Time course for the conversion of HMF over the Au-Pd/CNT(Au/Pd=1/1) catalyst(Reaction conditions: HMF, 0.50 mmol; HMF/Au(molar ratio), 200/1; H2O, 20 mL; O2, 0.5 MPa; temperature, 373 K)[33]
图4 在过量碱(OH-)和Pt或Au的存在下,HMF在水溶液中氧化可能的反应机理示意图[26]
Fig.4 Overall reaction scheme and proposed mechanism for the oxidation of HMF in aqueous solution in the presence of excess base(OH-) and Pt or Au[26]
图5 在1.6 V(vs RHE)下使用MnO x 阳极(a)与在2.0 V(vs RHE)使用Pt阳极(b)的HMF随时间变化的转化率与各产物选择性(反应在含20 mM HMF的pH=1的H2SO4溶液进行)[56]
Fig.5 Conversion of HMF(%) and yield(%) of oxidation products obtained by using MnO x anodes at 1.6 V(vs RHE)(a) and Pt anodes at 2.0 V(vs RHE)(b) during the course of electrochemical oxidation of HMF in a pH=1 H2SO4 solution containing 20 mM HMF at various amounts of charge passed[56]
图6 在泡沫镍基底上不同比例Ni x Co3-xO4催化剂的3D模拟与SEM图像: (a) NiO,(b) Ni2CoO4,(c) Ni1.5Co1.5O4,(d) NiCo2O4和(e) Co3O4 [62]
Fig.6 SEM images of nanostructured Ni x Co3- x O4 catalysts on 3D NF: (a) NiO,(b) Ni2CoO4,(c) Ni1.5Co1.5O4,(d) NiCo2O4, and(e) Co3O4 [62]
图7 CoPz/g-C3N4光催化氧化HMF制备FDCA的可能机理[82]
Fig.7 Possible mechanism of the photocatalytic oxidation of HMF into FDCA with the CoPz/g-C3N4 catalyst[82]
图8 串联氧化酶法合成FDCA的两步反应过程[86]
Fig.8 Enzymatic synthesis of FDCA via tandem oxidations[86]
[1]
Sajid M , Zhao X , Liu D. , Green Chem. 2018, 20: 5427.
[2]
Bender T A , Dabrowski J A , Gagné M R. Nat. Rev. Chem., 2018, 2: 35.
[3]
Galkin K I , Krivodaeva E A , Romashov L V , Zalesskiy S S , Kachala V V , Burykina J V , Ananikov V P. Angew. Chem. Int. Ed. Engl., 2016, 55: 8338.
[4]
Sun Z , Wang S , Wang X , Jiang Z. Fuel, 2016, 164: 262.
[5]
Lv G , Wang H , Yang Y , Deng T , Chen C , Zhu Y , Hou X. , ACS Catal. 2015, 5: 5636.
[6]
Liu X , Xiao J , Ding H , Zhong W , Xu Q , Su S , Yin D. Chem. Eng. J., 2016, 283: 1315.
[7]
Chidambaram M , Bell A T. Green Chem., 2010, 12: 1253.
[8]
Song D , An S , Lu B , Guo Y , Leng J. Appl.Catal. B-Environ., 2015, 179: 445.
[9]
Yin S , Sun J , Liu B , Zhang Z. J Mater. Chem. A, 2015, 3: 4992.
[10]
Xia Q N , Cuan Q , Liu X H , Gong X Q , Lu G Z , Wang Y Q. Angew. Chem. Int. Ed. Engl., 2014, 53: 9755.
[11]
Auvergne R , Caillol S , David G , Boutevin B , Pascault J P. Chem. Rev., 2014, 114: 1082.
[12]
Swan S H. Environ. Res., 2008, 108: 177.
[13]
Eerhart A J J E, Faaij A P C , Patel M K . Energy Environ. Sci., 2012, 5: 6407.
[14]
Sousa A F , Vilela C , Fonseca A C , Matos M , Freire C S R, Gruter G-J M, Coelho J F J, Silvestre A J D. Polym. Chem., 2015, 6: 5961.
[15]
Mishra D K , Lee H J , Kim J , Lee H S , Cho J K , Suh Y W , Yi Y , Kim Y J. Green Chem., 2017, 19: 1619.
[16]
Nguyen C V , Liao Y T , Kang T C , Chen J E , Yoshikawa T , Nakasaka Y , Masuda T , Wu K C W. Green Chem., 2016, 18: 5957.
[17]
Zhu M M , Du X L , Zhao Y , Mei B B , Zhang Q , Sun F F , Jiang Z , Liu Y M , He H Y , Cao Y. ACS Catal., 2019, 9: 6212.
[18]
Ait Rass H , Essayem N , Besson M. , Green Chem. 2013, 15.
[19]
Chen C T , Nguyen C V , Wang Z Y , Bando Y , Yamauchi Y , Bazziz M T S, Fatehmulla A, Farooq W A, Yoshikawa T, Masuda T, Wu K C W. ChemCatChem, 2018, 10: 361.
[20]
Hansen T S , Sádaba I , García-Suárez E J, Riisager A. Appl. Catal. A-Gen., 2013, 456: 44.
[21]
Miura T , Kakinuma H , Kono T , Matsuhisa H. JP5012348- B2, 2008.
[22]
Araji N , Madjinza D D , Chatel G , Moores A , Jérôme F , De Oliveira Vigier K. Green Chem., 2017, 19: 98.
[23]
Gawade A B , Nakhate A V , Yadav G D. Catal. Today, 2018, 309: 119.
[24]
Tong X , Sun Y , Bai X , Li Y. , RSC Adv.2014, 4: 44307.
[25]
Choudhary H , Nishimura S , Ebitani K. Appl. Catal. A-Gen., 2013, 458: 55.
[26]
Davis S E , Zope B N , Davis R J. Green Chem., 2012, 14: 143.
[27]
Siankevich S , Savoglidis G , Fei Z , Laurenczy G , Alexander D T L, Yan N, Dyson P J. J. Catal., 2014, 315: 67.
[28]
Shuai L , Luterbacher J. ChemSusChem, 2016, 9: 133.
[29]
Ghezali W , De Oliveira Vigier K, Kessas R, Jérôme F. Green Chem., 2015, 17: 4459.
[30]
Liu H , Cao X , Wang T , Wei J , Tang X , Zeng X , Sun Y , Lei T , Liu S , Lin L. J. Ind. Eng. Chem., 2019, 77: 209.
[31]
Tsilomelekis G , Josephson T R , Nikolakis V , Caratzoulas S. ChemSusChem, 2014, 7: 117.
[32]
Sang B , Li J , Tian X , Yuan F , Zhu Y. Mol. Catal., 2019, 470: 67.
[33]
Wan X , Zhou C , Chen J , Deng W , Zhang Q , Yang Y , Wang Y. , ACS Catal. 2014, 4: 2175.
[34]
Nishimura Y , Suda M , Kuroha M , Kobayashi H , Nakajima K , Fukuoka A. , Carbohydr. Res. 2019, 486: 107826.
[35]
Hu L , Lin L , Wu Z , Zhou S , Liu S. Renew. Sust. Energ. Rev., 2017, 74: 230.
[36]
Lu Z , Chen G , Siahrostami S , Chen Z , Liu K , Xie J , Liao L , Wu T , Lin D , Liu Y , Jaramillo T F , Nørskov J K , Cui Y. , Nat. Catal. 2018, 1: 156.
[37]
Zhou C , Deng W , Wan X , Zhang Q , Yang Y , Wang Y. ChemCatChem, 2015, 7: 2853.http://doi.wiley.com/10.1002/cctc.v7.18

doi: 10.1002/cctc.v7.18     URL    
[38]
Wang Y , Zhou W , Gao J , Ding Y , Kou K. J. Electroanal. Chem., 2019, 833: 258.
[39]
Yan Y , Miao J , Yang Z , Xiao F X , Yang H B , Liu B , Yang Y. Chem. Soc. Rev., 2015, 44: 3295.
[40]
Liu Z Q , Ma J , Cui Y H , Zhao L , Zhang B P. Appl. Catal.B-Environ., 2010, 101: 74.
[41]
Zhou J , An X , Lan H , Liu H , Qu J. Appl. Surf. Sci., 2020, 509.
[42]
Megías-Sayago C , Chakarova K , Penkova A , Lolli A , Ivanova S , Albonetti S , Cavani F , Odriozola J A. ACS Catal., 2018, 8: 11154.
[43]
Yi G , Teong S P , Zhang Y. , Green Chem. 2016, 18: 979.
[44]
Villa A , Schiavoni M , Campisi S , Veith G M , Prati L. ChemSusChem, 2013, 6: 609.
[45]
Antonyraj C A , Huynh N T T, Park S K, Shin S, Kim Y J, Kim S, Lee K Y, Cho J K. Appl. Catal. A-Gen., 2017, 547: 230.
[46]
Siyo B , Schneider M , Pohl M M , Langer P , Steinfeldt N. , Catal. Lett. 2014, 144: 498.
[47]
Hayashi E , Yamaguchi Y , Kamata K , Tsunoda N , Kumagai Y , Oba F , Hara M. J. Am. Chem. Soc., 2019, 141: 890.
[48]
Han X , Li C , Liu X , Xia Q , Wang Y. , Green Chem. 2017, 19: 996.
[49]
Ventura M , Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A. Green Chem., 2018, 20: 3921.
[50]
Verma S , Nadagouda M N , Varma R S. Sci. Rep., 2017, 7: 13596.
[51]
Sahu R , Dhepe P L. React. Kinet. Mech.Cat., 2014, 112: 173.
[52]
Ventura M , Aresta M , Dibenedetto A. ChemSusChem, 2016, 9: 1096.
[53]
Liu W J , Dang L , Xu Z , Yu H Q , Jin S , Huber G W. ACS Catal., 2018, 8: 5533.
[54]
Chadderdon D J , Xin L , Qi J , Qiu Y , Krishna P , More K L , Li W. , Green Chem. 2014, 16: 3778.
[55]
Vuyyuru K R , Strasser P. Catal. Today, 2012, 195: 144.
[56]
Kubota S R , Choi K S. ChemSusChem, 2018, 11: 2138.
[57]
Cao T , Wu M , Ordomsky V V , Xin X , Wang H , Metivier P , Pera-Titus M. ChemSusChem, 2017, 10: 4851.
[58]
Li K , Sun Y. Chem. Eur. J., 2018, 24: 18258.
[59]
Chernysheva D V , Klushin V A , Zubenko A F , Pudova L S , Kravchenko O A , Chernyshev V M , Smirnova N V. Mendeleev Commun., 2018, 28: 431.
[60]
Grzegorz Grabowski J L a R S. Electrochim. Acta, 1991, 36: 1995.
[61]
Kang M J , Park H , Jegal J , Hwang S Y , Kang Y S , Cha H G. Appl. Catal.B -Environ., 2019, 242: 85.
[62]
Gao L , Bao Y , Gan S , Sun Z , Song Z , Han D , Li F , Niu L. ChemSusChem, 2018, 11: 2547.
[63]
Weidner J , Barwe S , Sliozberg K , Piontek S , Masa J , Apfel U P , Schuhmann W. Beilstein J. Org. Chem., 2018, 14: 1436.
[64]
Nam D H , Taitt B J , Choi K S. ACS Catal., 2018, 8: 1197.
[65]
Taitt B J , Nam D H , Choi K S. ACS Catal., 2018, 9: 660.
[66]
Gao L , Liu Z , Ma J , Zhong L , Song Z , Xu J , Gan S , Han D , Niu L. Appl. Catal.B-Environ., 2020, 261.
[67]
Li W , Jiang N , Hu B , Liu X , Song F , Han G , Jordan T J , Hanson T B , Liu T L , Sun Y. Chem, 2018, 4: 637.
[68]
Chen C W , Ho C T. Agric. Food Chem., 1996, 44: 2078.
[69]
Nosaka Y , Nosaka A Y. Chem. Rev., 2017, 117: 11302.
[70]
Heugebaert T S , Stevens C V , Kappe C O. ChemSusChem, 2015, 8: 1648.
[71]
Zhang H , Feng Z , Zhu Y , Wu Y , Wu T. J. Photochem. Photobiol. A: Chem., 2019, 371: 1.
[72]
Lolli A , Maslova V , Bonincontro D , Basile F , Ortelli S , Albonetti S. Molecules, 2018, 23.
[73]
Yurdakal S , Tek B S , Alagöz O , Augugliaro V , Loddo V , Palmisano G , Palmisano L. ACS Sustain. Chem. Eng., 2013, 1: 456.
[74]
Marcì G , García-López E I, Palmisano L. Catal. Today, 2018, 315: 126.
[75]
Wang H , Zhang X , Xie Y. ACS Nano, 2018, 12: 9648.
[76]
Planas O , Macia N , Agut M , Nonell S , Heyne B. J. Am. Chem. Soc., 2016, 138: 2762.
[77]
Macia N , Bresoli-Obach R , Nonell S , Heyne B. J. Am. Chem. Soc., 2019, 141: 684.
[78]
Iqbal N , Choi S , You Y , Cho E J. Tetrahedron Lett., 2013, 54: 6222.
[79]
Wang H , Jiang S , Chen S , Li D , Zhang X , Shao W , Sun X , Xie J , Zhao Z , Zhang Q , Tian Y , Xie Y. , Adv. Mater. 2016, 28: 6940.
[80]
Wang H , Jiang S , Chen S , Zhang X , Shao W , Sun X , Zhao Z , Zhang Q , Luo Y , Xie Y. Chem. Sci., 2017, 8: 4087.
[81]
Xiao C , Zhang L , Hao H , Wang W. ACS Sustain. Chem. Eng., 2019, 7: 7268.
[82]
Xu S , Zhou P , Zhang Z , Yang C , Zhang B , Deng K , Bottle S , Zhu H. J. Am. Chem. Soc., 2017, 139: 14775.
[83]
Ilkaeva M , Krivtsov I , García-López E I, Marcì G, Khainakova O, García J R, Palmisano L, Díaz E, Ordóñez S. J. Catal., 2018, 359: 212.
[84]
van Deurzen M P J, van Rantwijk F , Sheldon R A . Tetrahedron, 1997, 53: 13183.
[85]
Zhang C , Chang X , Zhu L , Xing Q , You S , Qi W , Su R , He Z. Int. J. Biol. Macromol., 2019, 128: 132.
[86]
Qin Y Z , Li Y M , Zong M H , Wu H , Li N. Green Chem., 2015, 17: 3718.
[87]
Dijkman W P , Fraaije M W. Appl. Environ. Microbiol., 2014, 80: 1082.
[88]
Martin C , Ovalle Maqueo A , Wijma H J , Fraaije M W. Biotechnol Biofuels, 2018, 11: 56.
[89]
Dijkman W P , Binda C , Fraaije M W , Mattevi A. , ACS Catal. 2015, 5: 1833.
[90]
McKenna S M , Mines P , Law P , Kovacs-Schreiner K , Birmingham W R , Turner N J , Leimkühler S , Carnell A J . Green Chem., 2017, 19: 4660.
[91]
Dijkman W P , Groothuis D E , Fraaije M W. Angew. Chem. Int. Ed. Engl., 2014, 53: 6515.
[92]
Krystof M , Perez-Sanchez M , Dominguez de Maria P. ChemSusChem, 2013, 6: 826.
[93]
Yang Z Y , Wen M , Zong M H , Li N. , Catal. Commun. 2020, 139.
[94]
Koopman F , Wierckx N, de Winde J H, Ruijssenaars H J. Bioresour. Technol., 2010, 101: 6291.
[95]
Hossain G S , Yuan H , Li J , Shin H D , Wang M , Du G , Chen J , Liu L. Appl. Environ. Microbiol., 2017, 83.
[96]
Yuan H , Li J , Shin H D , Du G , Chen J , Shi Z , Liu L. , Bioresour. Technol. 2018, 247: 1184.
[97]
Jia H Y , Zong M H , Zheng G W , Li N. ChemSusChem, 2019, 12: 4764.
[98]
Guajardo N , Domínguez de María P. ChemCatChem, 2019, 11: 3128.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[7] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[10] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[13] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[14] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[15] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
阅读次数
全文


摘要

HMF催化合成生物基聚酯单体FDCA