English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2094-2107 DOI: 10.7536/PC211215 前一篇   后一篇

• 综述 •

大气中的单环芳香族硝基化合物

薛宗涵1,2,3, 马楠1,3,*(), 王炜罡2,*()   

  1. 1 暨南大学环境与气候研究院 广州 511443
    2 中国科学院化学研究所 分子动态与稳态结构实验室 北京 100190
    3 粤港澳环境质量协同创新联合实验室 广州 511443
  • 收稿日期:2022-12-10 修回日期:2022-02-16 出版日期:2022-09-20 发布日期:2022-04-01
  • 作者简介:

    马楠 暨南大学环境与气候研究院研究员,博士生导师,主要研究方向有黑碳气溶胶、气溶胶-云相互作用、气溶胶观测技术研发等,已在ScienceProc. Natl. Acad. Sci.等国际高水平期刊发表SCI论文70余篇。

    王炜罡 中国科学院化学研究所研究员,主要研究方向有VOCs大气化学、二次气溶胶、气溶胶物理化学性质、大气化学动力学等,已在Nature Communications等国际高水平期刊发表SCI论文80余篇。

  • 基金资助:
    广东省“珠江人才计划”引进创新创业团队项目(2016ZT06N263); 广东省科技创新战略专项资金项目(2019B121205004)

Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere

Zonghan Xue1,2,3, Nan Ma1,3(), Weigang Wang2()   

  1. 1 Institute for Environmental and Climate Research, Jinan University,Guangzhou 511443, China
    2 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    3 Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality,Guangzhou 511443, China
  • Received:2022-12-10 Revised:2022-02-16 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: wangwg@iccas.ac.cn (Weigang Wang);nan.ma@jnu.edu.cn (Nan Ma)
  • Supported by:
    Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06N263); Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(2019B121205004)

单环芳香族硝基化合物(Nitrated mono-aromatic hydrocarbons,NMAHs)是大气中备受研究关注的一类物质,其同系物种类繁多且理化性质具有显著差异。随着研究技术的进步,外场观测能识别更丰富的NMAHs物种,实验室研究也逐渐能揭示不同NMAHs物种的生成机制。基于此,本文调研了过去近15年国内外已发表有关大气中NMAHs的文献。我们首先归纳和梳理了大气NMAHs在欧洲地区和中国地区以及其他地区的时空分布、主要来源、“气-粒”分配等特征。其次,我们结合实验室实验和外场观测结果总结了NMAHs的生成及损耗机制,并探讨了在光吸收特性、环境健康效应以及相关测量技术等方面的研究进展。最后,本文总结并提出大气NMAHs研究中仍需要解决的科学问题和未来可能的研究方向。

Nitrated mono-aromatic hydrocarbons(NMAHs)are a class of pollutants with a wide variety of homologous species and complex physical and chemical properties,which are getting increasingly concerned in the researches of atmospheric chemistry.With the advance of measurement technology,more and more types of NMAHs species can be identified in field observations,and the generation mechanisms of different NMAHs are revealed in laboratory research.Base on this, we collected the published literatures of domestic and foreign research in the past 15 years on NMAHs in this paper. Firstly, We summarized its characteristics of temporal and spacial distribution, main sources, gas-particle partitioning in Europe and China as well as other places. Secondly, combing with laboratory experiments and field observations, we summarized generation and loss mechanism of NMAHs,and discussed the research progress in optical absorption, environment and health effects, as well as measurement techniques. Finally, the important scientific problems that need to be solved and future potential research directions are summarized.

Contents

1 Introduction

2 Emission and distribution characteristics of NMAHs in the atmosphere

2.1 Temporal and spatial distribution

2.2 Main sources

2.3 Gas-particle partitioning

3 Mechanisms of generation and loss of NMAHs

3.1 Mechanisms of generation and loss in gas phase

3.2 Mechanisms of generation in particle phase

4 Optical absorption of NMAHs

5 Environment and health effects of NMAHs

6 Measurement technology of NMAHs

6.1 Outline measurement technology

6.2 Online measurement technology

7 Conlusions and outlook

()
表1 文献报道的国内外外场观测中NMAHs浓度及其季节变化
Table 1 The concentration of NMAHs and their seasonal variation in domestic and foreign field observations reported in the literatures
表2 NMAHs物种与左旋葡聚糖的相关性
Table 2 Correlation between NMAHs and levoglucan
图1 春夏季颗粒相NMAHs物种占比[12]
Fig. 1 The fractions of NMAHs species in particle phase in spring and summer[12]
图2 NMAHs物种在气相和颗粒相中生成及迁移的途径(以部分物种为例)[8,16,25,28,62⇓~64]
Fig. 2 The pathways by which NMAHs species are generated and migrated in the gas phase and particle phase(take some species as an example)[8,16,25,28,62⇓~64]
表3 部分NMAHs物种的最大吸收波长[1]
Table 3 The maximum absorption wavelength of some NMAHs species[1]
表1 物质名称
中文名称 英文名称 英文缩略语
单环芳香族硝基化合物 Nitrated Mono-aromatic Hydrocarbons NMAHs
硝基苯酚类 Nitrophenols NPs
硝基苯酚类甲基衍生物 Methy-Nitrophenols MNPs
硝基儿茶酚类 Nitrocatechols NCs
硝基儿茶酚类甲基衍生物 Methy-Nitrocatechols MNCs
二硝基苯酚类 Dinitrophenols DNPs
二硝基苯酚类甲基衍生物 Methy-Dinitrophenols MDNPs
硝基水杨酸类 Nitrosalicylic Acids NSAs
硝基愈创木酚类 Nitroguaiacols NGs
4-硝基儿茶酚 4-Nitrocatechol 4NC
4-硝基苯酚 4-Nitrophenol 4NP
3-甲基-4-硝基苯酚 3-Methy-4-Nitrophenol 3M4NP
2-甲基-4-硝基苯酚 2-Methy-4-Nitrophenol 2M4NP
3-硝基水杨酸 3-Nitrosalicylic Acid 3NSA
5-硝基水杨酸 5-Nitrosalicylic Acid 5NSA
4-硝基愈创木酚 4-Nitroguaiacol 4NG
2-硝基苯酚 2-Nitrophenol 2NP
3-甲基-6-硝基儿茶酚 3-Methy-6-Nitrocatechol 3M6NC
3-甲基-5-硝基儿茶酚 3-Methy-5-Nitrocatechol 3M5NC
4-甲基-5-硝基儿茶酚 4-Methy-5-Nitrocatechol 4M5NC
2,4-二硝基苯酚 2,4-Dinitrophenol 2,4DNP
4-甲基-2,6-二硝基苯酚 4-Methy-2,6-Dinitrophenol 4M2,6DNP
2,6-二甲基-4-硝基苯酚 2,6-Dimethy-4-Nitrophenol 2,6DM4NP
4-甲基-2-硝基苯酚 4-Methy-2-Nitrophenol 4M2NP
5-甲基-2-硝基苯酚 5-Methy-2-Nitrophenol 5M2NP
4,6-二硝基愈创木酚 4,6-Dinitroguaiacol 4,6DNG
5-硝基愈创木酚 5-Nitroguaiacol 5NG
3-甲基儿茶酚 3-Methycatechol 3MC
4-甲基儿茶酚 4-Methycatechol 4MC
3-甲基硝基儿茶酚类 3-Methy-Nitrocatechols 3MNCs
愈创木酚 Guaiacol GUA
6-硝基愈创木酚 6-Nitroguaiacol 6NG
表2 仪器名称
[1]
Mohr C, Lopez-Hilfiker F D, Zotter P, PrÉvôt A S H, Xu L, Ng N L, Herndon S C, Williams L R, Franklin J P, Zahniser M S, Worsnop D R, Knighton W B, Aiken A C, Gorkowski K J, Dubey M K, Allan J D, Thornton J A. Environ. Sci. Technol., 2013, 47(12): 6316.

doi: 10.1021/es400683v     URL    
[2]
Kitanovski Z, Shahpoury P, Samara C, Voliotis A, Lammel G. Atmos. Chem. Phys., 2020, 20(4): 2471.

doi: 10.5194/acp-20-2471-2020     URL    
[3]
Shahpoury P, Kitanovski Z, Lammel G. Atmos. Chem. Phys., 2018, 18(18): 13495.

doi: 10.5194/acp-18-13495-2018     URL    
[4]
Kitanovski Z, Hovorka J, Kuta J, Leoni C, Prokeš R, Sáñka O, Shahpoury P, Lammel G. Environ. Sci. Pollut. Res., 2021, 28(42): 59131.

doi: 10.1007/s11356-020-09540-3     URL    
[5]
Chow K S, Huang X H H, Yu J Z. Environ. Chem., 2016, 13(4): 665.

doi: 10.1071/EN15174     URL    
[6]
Teich M, van Pinxteren D, Wang M, Kecorius S, Wang Z B, Müller T, Močnik G, Herrmann H. Atmos. Chem. Phys., 2017, 17(3): 1653.

doi: 10.5194/acp-17-1653-2017     URL    
[7]
Xie M J, Chen X, Hays M D, Lewandowski M, Offenberg J, Kleindienst T E, Holder A L. Environ. Sci. Technol., 2017, 51(20): 11607.

doi: 10.1021/acs.est.7b03263     URL    
[8]
Wang Y J, Hu M, Wang Y C, Zheng J, Shang D J, Yang Y D, Liu Y, Li X, Tang R Z, Zhu W F, Du Z F, Wu Y S, Guo S, Wu Z J, Lou S R, Hallquist M, Yu J Z. Atmos. Chem. Phys., 2019, 19(11): 7649.

doi: 10.5194/acp-19-7649-2019     URL    
[9]
Kahnt A, Behrouzi S, Vermeylen R, Safi Shalamzari M, Vercauteren J, Roekens E, Claeys M, Maenhaut W. Atmos. Environ., 2013, 81: 561.

doi: 10.1016/j.atmosenv.2013.09.041     URL    
[10]
Majewska M, Khan F, Pieta I S, WrÓblewska A, Szmigielski R, Pieta P. Chemosphere, 2021, 266: 128996.

doi: 10.1016/j.chemosphere.2020.128996     URL    
[11]
Kroflič A, Anders J, Drventić I, Mettke P, Böge O, Mutzel A, Kleffmann J, Herrmann H. ACS Earth Space Chem., 2021, 5(5): 1083.

doi: 10.1021/acsearthspacechem.1c00014     pmid: 34084985
[12]
Li M, Wang X F, Lu C Y, Li R, Zhang J, Dong S W, Yang L X, Xue L K, Chen J M, Wang W X. Sci. Total. Environ., 2020, 714: 136760.

doi: 10.1016/j.scitotenv.2020.136760     URL    
[13]
Lu C Y, Wang X F, Li R, Gu R R, Zhang Y X, Li W J, Gao R, Chen B, Xue L K, Wang W X. Atmos. Environ., 2019, 203: 10.

doi: 10.1016/j.atmosenv.2019.01.047     URL    
[14]
Harrison M A J, Barra S, Borghesi D, Vione D, Arsene C, Iulian Olariu R. Atmos. Environ., 2005, 39(2): 231.

doi: 10.1016/j.atmosenv.2004.09.044     URL    
[15]
Marussi G, Vione D. Molecules, 2021, 26(9): 2550.

doi: 10.3390/molecules26092550     URL    
[16]
Vidović K, Lašič Jurković D, Šala M, Kroflič A, Grgić I. Environ. Sci. Technol., 2018, 52(17): 9722.

doi: 10.1021/acs.est.8b01161     URL    
[17]
Zhang X L, Lin Y H, Surratt J D, Weber R J. Environ. Sci. Technol., 2013, 47(8): 3685.

doi: 10.1021/es305047b     URL    
[18]
Claeys M, Vermeylen R, Yasmeen F, GÓmez-González Y, Chi X G, Maenhaut W, MÉszáros T, Salma I. Environ. Chem., 2012, 9(3): 273.

doi: 10.1071/EN11163     URL    
[19]
Twohy C H, Anderson J R, Crozier P A. Geophys. Res. Lett., 2005, 32(19): L19805.
[20]
Pflieger M, Kroflič A. J. Hazard. Mater., 2017, 338: 132.

doi: 10.1016/j.jhazmat.2017.05.023     URL    
[21]
Caumo S E S, Claeys M, Maenhaut W, Vermeylen R, Behrouzi S, Safi Shalamzari M, Vasconcellos P C. Atmos. Environ., 2016, 145: 272.

doi: 10.1016/j.atmosenv.2016.09.046     URL    
[22]
Lee B H, Mohr C, Lopez-Hilfiker F D, Lutz A, Hallquist M, Lee L C, Romer P, Cohen R C, Iyer S, KurtÉn T, Hu W W, Day D A, Campuzano-Jost P, Jimenez J L, Xu L, Ng N L, Guo H Y, Weber R J, Wild R J, Brown S S, Koss A, de Gouw J, Olson K, Goldstein A H, Seco R, Kim S, McAvey K, Shepson P B, Starn T, Baumann K, Edgerton E S, Liu J M, Shilling J E, Miller D O, Brune W, Schobesberger S, D’Ambro E L, Thornton J A. PNAS, 2016, 113(6): 1516.

doi: 10.1073/pnas.1508108113     URL    
[23]
Iinuma Y, Böge O, Gräfe R, Herrmann H. Environ. Sci. Technol., 2010, 44(22): 8453.

doi: 10.1021/es102938a     URL    
[24]
Li X, Jiang L, Hoa L P, Lyu Y, Xu T T, Yang X, Iinuma Y, Chen J M, Herrmann H. Atmos. Environ., 2016, 145: 115.

doi: 10.1016/j.atmosenv.2016.09.030     URL    
[25]
Yuan B, Liggio J, Wentzell J, Li S M, Stark H, Roberts J M, Gilman J, Lerner B, Warneke C, Li R, Leithead A, Osthoff H D, Wild R, Brown S S, de Gouw J A. Atmos. Chem. Phys., 2016, 16(4): 2139.

doi: 10.5194/acp-16-2139-2016     URL    
[26]
Herterich R, Herrmann R. Environ. Technol., 1990, 11(10): 961.

doi: 10.1080/09593339009384948     URL    
[27]
Kitanovski Z, Grgić I, Vermeylen R, Claeys M, Maenhaut W. J. Chromatogr. A, 2012, 1268: 35.

doi: 10.1016/j.chroma.2012.10.021     pmid: 23122275
[28]
Frka S, Šala M, Kroflič A, Huš M, Čusak A, Grgić I. Environ. Sci. Technol., 2016, 50(11): 5526.

doi: 10.1021/acs.est.6b00823     URL    
[29]
Su L M, Zhang X J, Yuan X, Zhao Y H, Zhang D M, Qin W C. J. Hazard. Mater., 2012, 241-242: 450.

doi: 10.1016/j.jhazmat.2012.09.065     URL    
[30]
Kampf C J, Jakob R, Hoffmann T. Atmos. Chem. Phys., 2012, 12(14): 6323.

doi: 10.5194/acp-12-6323-2012     URL    
[31]
Zhang Y Y, Müller L, Winterhalter R, Moortgat G K, Hoffmann T, Pöschl U. Atmos. Chem. Phys., 2010, 10(16): 7859.

doi: 10.5194/acp-10-7859-2010     URL    
[32]
Delhomme O, Morville S, Millet M. Atmos. Pollut. Res., 2010, 1(1): 16.

doi: 10.5094/APR.2010.003     URL    
[33]
Cecinato A, di Palo V, Pomata D, Tomasi Scianò M C, Possanzini M. Chemosphere, 2005, 59(5): 679.

pmid: 15792665
[34]
Kitanovski Z, Grgić I, Yasmeen F, Claeys M, Čusak A. Rapid Commun. Mass Spectrom., 2012, 26(7): 793.

doi: 10.1002/rcm.6170     URL    
[35]
zhuang M, Ma Y, Cheng Y, Zhou M, Dai H, Huang C, Yu J, Zhu S, Qiao L, Tong Z. Environ. Sci., 2021, 10: 1225.
( 庄旻, 马英歌, 程玉璜, 周敏, 戴海夏, 黄成, 郁建珍, 朱书慧, 乔利平, 童张法. 环境科学, 2021, 10: 1225).
[36]
Chen M J, Qian Z H, Gu C J, Zhang S M, Liu Z Y, Wang X F, Ge X L. Environ. Sci., 2022(4): 1738.
( 陈美娟, 钱姿合, 顾陈娟, 张书萌, 刘智艺, 王新锋, 盖鑫磊. 环境科学, 2022(4): 1738.).
[37]
Irei S, Stupak J, Gong X P, Chan T W, Cox M, McLaren R, Rudolph J. J. Anal. Methods Chem., 2017, 2017: 3504274.
[38]
Wang L W, Wang X F, Gu R R, Wang H, Yao L, Wen L, Zhu F P, Wang W H, Xue L K, Yang L X, Lu K D, Chen J M, Wang T, Zhang Y, Wang W X. Atmos. Chem. Phys., 2018, 18(6): 4349.

doi: 10.5194/acp-18-4349-2018     URL    
[39]
Asmi E, Kondratyev V, Brus D, Laurila T, Lihavainen H, Backman J, Vakkari V, Aurela M, Hatakka J, Viisanen Y, Uttal T, Ivakhov V, Makshtas A. Atmos. Chem. Phys., 2016, 16(3): 1271.

doi: 10.5194/acp-16-1271-2016     URL    
[40]
Zhao Y. Shandong University, 2019.
( 赵亚楠. 山东大学硕士论文, 2019.).
[41]
Lu C Y, Wang X F, Dong S W, Zhang J, Li J, Zhao Y N, Liang Y H, Xue L K, Xie H J, Zhang Q Z, Wang W X. Environ. Res., 2019, 179: 108709.

doi: 10.1016/j.envres.2019.108709     URL    
[42]
Inomata S, Tanimoto H, Fujitani Y, Sekimoto K, Sato K, Fushimi A, Yamada H, Hori S, Kumazawa Y, Shimono A, Hikida T. Atmos. Environ., 2013, 73: 195.

doi: 10.1016/j.atmosenv.2013.03.035     URL    
[43]
Inomata S, Fushimi A, Sato K, Fujitani Y, Yamada H. Atmos. Environ., 2015, 110: 93.

doi: 10.1016/j.atmosenv.2015.03.043     URL    
[44]
Lüttke J, Scheer V, Levsen K, Wünsch G, Cape J N, Hargreaves K J, Storeton-West R L, Acker K, Wieprecht W, Jones B. Atmos. Environ., 1997, 31(16): 2637.

doi: 10.1016/S1352-2310(96)00229-4     URL    
[45]
Kourtchev I, O’Connor I P, Giorio C, Fuller S J, Kristensen K, Maenhaut W, Wenger J C, Sodeau J R, Glasius M, Kalberer M. Atmos. Environ., 2014, 89: 525.

doi: 10.1016/j.atmosenv.2014.02.051     URL    
[46]
Knobloch T, Michael H, Engewald W. Trans.Ecol. Environ., 1999, 36: 282.
[47]
Chen Y J, Zhi G R, Feng Y L, Fu J M, Feng J L, Sheng G Y, Simoneit B R T. Geophys. Res. Lett., 2006, 33(20): L20815.

doi: 10.1029/2006GL026966     URL    
[48]
Yuan B, Koss A R, Warneke C, Coggon M, Sekimoto K, de Gouw J A. Chem. Rev., 2017, 117(21): 13187.

doi: 10.1021/acs.chemrev.7b00325     pmid: 28976748
[49]
Shinji T, Kazuyuki K, Hideyuki H, Noriko T, Koh-Ichi S, Akiyo S, Shin Y, Kouya Y, Masakatsu S, Yoki M, Akira K S. J. Heal. Sci., 2004, 50(2): 133.

doi: 10.1248/jhs.50.133     URL    
[50]
Sjögren M, Li H, Rannug U, Westerholm R. Fuel, 1995, 74(7): 983.

doi: 10.1016/0016-2361(95)00056-B     URL    
[51]
Tremp J, Mattrel P, Fingler S, Giger W. Water Air Soil Pollut., 1993, 68(1/2): 113.

doi: 10.1007/BF00479396     URL    
[52]
Simoneit B R T, Schauer J J, Nolte C G, Oros D R, Elias V O, Fraser M P, Rogge W F, Cass G R. Atmos. Environ., 1999, 33(2): 173.

doi: 10.1016/S1352-2310(98)00145-9     URL    
[53]
Pankow J F. Atmos. Environ., 1994, 28(2): 189.

doi: 10.1016/1352-2310(94)90094-9     URL    
[54]
Pankow J F, Seinfeld J H, Asher W E, Erdakos G B. Environ. Sci. Technol., 2001, 35(6): 1164.

pmid: 11347929
[55]
Chandramouli B, Jang M, Kamens R M. Atmos. Environ., 2003, 37(6): 853.

doi: 10.1016/S1352-2310(02)00931-7     URL    
[56]
Leuenberger C, Ligocki M P, Pankow J F. Environ. Sci. Technol., 1985, 19(11): 1053.

doi: 10.1021/es00141a005     pmid: 22288749
[57]
Morville S, Scheyer A, Mirabel P, Millet M. Environ. Sci. Pollut. Res. Int., 2006, 13(2): 83.

doi: 10.1065/espr2005.06.264     URL    
[58]
Bannan T J, Booth A M, Jones B T, O’Meara S, Barley M H, Riipinen I, Percival C J, Topping D. Environ. Sci. Technol., 2017, 51(7): 3922.

doi: 10.1021/acs.est.6b06364     URL    
[59]
O’Meara S, Booth A M, Barley M H, Topping D, McFiggans G. Phys. Chem. Chem. Phys., 2014, 16(36): 19453.

doi: 10.1039/C4CP00857J     URL    
[60]
Topping D, Barley M, Bane M K, Higham N, Aumont B, Dingle N, McFiggans G. Geosci. Model Dev., 2016, 9(2): 899.

doi: 10.5194/gmd-9-899-2016     URL    
[61]
Le Breton M, Wang Y J, Hallquist Å M, Pathak R K, Zheng J, Yang Y D, Shang D J, Glasius M, Bannan T J, Liu Q Y, Chan C K, Percival C J, Zhu W F, Lou S R, Topping D, Wang Y C, Yu J Z, Lu K D, Guo S, Hu M, Hallquist M. Atmos. Chem. Phys., 2018, 18(14): 10355.

doi: 10.5194/acp-18-10355-2018     URL    
[62]
Vione D, Maurino V, Minero C, Pelizzetti E. Chemosphere, 2001, 45(6/7): 893.

doi: 10.1016/S0045-6535(01)00035-2     URL    
[63]
Jenkin M E, Saunders S M, Wagner V, Pilling M J. Atmos. Chem. Phys., 2003, 3(1): 181.

doi: 10.5194/acp-3-181-2003     URL    
[64]
Vione D, Maurino V, Minero C, Lucchiari M, Pelizzetti E. Chemosphere, 2004, 56(11): 1049.

doi: 10.1016/j.chemosphere.2004.05.027     URL    
[65]
Borrás E, Tortajada-Genaro L A. Atmos. Environ., 2012, 47: 154.

doi: 10.1016/j.atmosenv.2011.11.020     URL    
[66]
Atkinson R. J. Phys. Chem. Ref. Data, 1991, 20(3): 459.

doi: 10.1063/1.555887     URL    
[67]
Schauer J J, Kleeman M J, Cass G R, Simoneit B R T. Environ. Sci. Technol., 2001, 35(9): 1716.

pmid: 11355184
[68]
Atkinson R, Aschmann S M, Arey J. Environ. Sci. Technol., 1992, 26(7): 1397.

doi: 10.1021/es00031a018     URL    
[69]
Coeur-Tourneur C, Henry F, Janquin M A, Brutier L. Int. J. Chem. Kinet., 2006, 38(9): 553.

doi: 10.1002/kin.20186     URL    
[70]
Koch R, Knispel R, Elend M, Siese M, Zetzsch C. Atmos. Chem. Phys., 2007, 7(8): 2057.

doi: 10.5194/acp-7-2057-2007     URL    
[71]
Olariu R I, Klotz B, Barnes I, Becker K H, Mocanu R. Atmos. Environ., 2002, 36(22): 3685.

doi: 10.1016/S1352-2310(02)00202-9     URL    
[72]
Bejan I, Barnes I, Olariu R, Zhou S M, Wiesen P, Benter T. Phys. Chem. Chem. Phys., 2007, 9(42): 5686.

doi: 10.1039/b709464g     URL    
[73]
Minero C, Bono F, Rubertelli F, Pavino D, Maurino V, Pelizzetti E, Vione D. Chemosphere, 2007, 66(4): 650.

doi: 10.1016/j.chemosphere.2006.07.082     URL    
[74]
Krofli? A, Huš M, Grilc M, Grgić I. Environ. Sci. Technol., 2018, 52(23): 13756.

doi: 10.1021/acs.est.8b01903     URL    
[75]
Renbaum-Wolff L, Grayson J W, Bateman A P, Kuwata M, Sellier M, Murray B J, Shilling J E, Martin S T, Bertram A K. PNAS, 2013, 110(20): 8014.

doi: 10.1073/pnas.1219548110     pmid: 23620520
[76]
Zhang Y, Sanchez M S, Douet C, Wang Y, Bateman A P, Gong Z, Kuwata M, Renbaum-Wolff L, Sato B B, Liu P F, Bertram A K, Geiger F M, Martin S T. Atmos. Chem. Phys., 2015, 15(14): 7819.

doi: 10.5194/acp-15-7819-2015     URL    
[77]
Shrestha M, Zhang Y, Upshur M A, Liu P F, Blair S L, Wang H F, Nizkorodov S A, Thomson R J, Martin S T, Geiger F M. J. Phys. Chem. A, 2015, 119(19): 4609.

doi: 10.1021/jp510780e     pmid: 25514505
[78]
Booth A M, Murphy B, Riipinen I, Percival C J, Topping D O. Environ. Sci. Technol., 2014, 48(16): 9298.

doi: 10.1021/es501705c     URL    
[79]
Vaden T D, Imre D, Beránek J, Shrivastava M, Zelenyuk A. PNAS, 2011, 108(6): 2190.

doi: 10.1073/pnas.1013391108     URL    
[80]
Chen Y F, Ge X L, Chen H, Xie X C, Chen Y T, Wang J F, Ye Z L, Bao M Y, Zhang Y L, Chen M D. Atmos. Environ., 2018, 187: 230.

doi: 10.1016/j.atmosenv.2018.06.002     URL    
[81]
Zhang X L, Lin Y H, Surratt J D, Zotter P, PrÉvôt A S H, Weber R J. Geophys. Res. Lett., 2011, 38(21): L21810.
[82]
Song J Z, Li M J, Jiang B, Wei S Y, Fan X J, Peng P G. Environ. Sci. Technol., 2018, 52(5): 2575.

doi: 10.1021/acs.est.7b06126     URL    
[83]
Samburova V, Connolly J, Gyawali M, Yatavelli R L N, Watts A C, Chakrabarty R K, Zielinska B, Moosmüller H, Khlystov A. Sci. Total. Environ., 2016, 568: 391.

doi: 10.1016/j.scitotenv.2016.06.026     URL    
[84]
Dong S. Shandong University, 2020.
( 董书伟. 山东大学硕士论文, 2020).
[85]
Wang Y, Hu M, Li X, Xu N. Prog.Chem., 2019, 32 (5): 627.
( 王玉珏, 胡敏, 李晓, 徐楠. 化学进展, 2019, 32(5): 627).
[86]
Shafer W E, Schönherr J. Ecotoxicol. Environ. Saf., 1985, 10(2): 239.

doi: 10.1016/0147-6513(85)90071-5     URL    
[87]
Rippen G, Zietz E, Frank R, Knacker T, Klöpffer W. Environ. Technol. Lett., 1987, 8(1/12): 475.

doi: 10.1080/09593338709384508     URL    
[88]
Parvez S, Venkataraman C, Mukherji S. Environ. Int., 2006, 32(2): 265.

doi: 10.1016/j.envint.2005.08.022     URL    
[89]
Yang D. Current Biotechnology, 2014, 4: 171.
( 杨端红. 生物技术进展, 2014, 4: 171.).
[90]
Fernandez P, Grifoll M, Solanas A M, Bayona J M, Albaiges J. Environ. Sci. Technol., 1992, 26(4): 817.

doi: 10.1021/es00028a024     URL    
[91]
Still K R, Jung A E, Ritchie G D, Jederberg W W, Wilfong E R, Briggs G B, Arfsten D P. Environ. Res., 2005, 98(3): 363.

doi: 10.1016/j.envres.2004.08.009     URL    
[92]
An Y F, Geng X R, Mo L H, Liu J Q, Yang L T, Zhang X W, Liu Z G, Zhao C Q, Yang P C. Toxicology, 2018, 395: 9.

doi: 10.1016/j.tox.2018.01.001     URL    
[93]
Yang L B, Ma S H, Wan Y F, Duan S Q, Ye S Y, Du S J, Ruan X W, Sheng X, Weng Q, Taya K, Xu M Y. J. Immunotoxicol., 2016, 13(4): 548.

doi: 10.3109/1547691X.2016.1140853     URL    
[94]
Mi Y L, Zhang C Q, Li C M, Taneda S, Watanabe G, Suzuki A K, Taya K. Toxicol. Lett., 2009, 190(1): 61.

doi: 10.1016/j.toxlet.2009.07.002     URL    
[95]
Li C M, Takahashi S, Taneda S, Furuta C, Watanabe G, Suzuki A K, Taya K. J. Reprod. Dev., 2007, 53(3): 673.

doi: 10.1262/jrd.18133     URL    
[96]
Li C M, Suzuki A K, Takahashi S, Taneda S, Watanabe G, Taya K. Biol. Pharm. Bull., 2008, 31(11): 2158.

doi: 10.1248/bpb.31.2158     URL    
[97]
Li C, Taneda S, Suzuki A K, Furuta C, Watanabe G, Taya K. J. Androl., 2007, 28(2): 252.

doi: 10.2164/jandrol.106.000802     URL    
[98]
Bu T L, Jia Y D, Lin J X, Mi Y L, Zhang C Q. J. Zhejiang Univ. Sci. B, 2012, 13(4): 318.

doi: 10.1631/jzus.B1100318     URL    
[99]
Danielsen P H, Møller P, Jensen K A, Sharma A K, Wallin H, Bossi R, Autrup H, Mølhave L, Ravanat J L, BriedÉ J J, de Kok T M, Loft S. Chem. Res. Toxicol., 2011, 24(2): 168.

doi: 10.1021/tx100407m     pmid: 21235221
[100]
Rubio M A, Lissi E, Herrera N, PÉrez V, Fuentes N. Chemosphere, 2012, 86(10): 1035.

doi: 10.1016/j.chemosphere.2011.11.046     URL    
[101]
Belloli R, Barletta B, Bolzacchini E, Meinardi S, Orlandi M, Rindone B. J. Chromatogr. A, 1999, 846(1/2): 277.

doi: 10.1016/S0021-9673(99)00030-8     URL    
[102]
Brophy P. Doctoral Dissertation of Colorado state nuiversity, 2016.
[103]
Brophy P, Farmer D K. Atmos. Meas. Tech., 2016, 9(8): 3969.

doi: 10.5194/amt-9-3969-2016     URL    
[104]
Cubison M, Sueper D, Jimenez J. Atmos. Meas. Tech., 2014, 7: 617.
[105]
Corbin J C, Othman A, Allan J D, Worsnop D R, Haskins J D, Sierau B, Lohmann U, Mensah A A. Atmos. Meas. Tech., 2015, 8(11): 4615.

doi: 10.5194/amt-8-4615-2015     URL    
[106]
Wang X F, Gu R R, Wang L W, Xu W X, Zhang Y T, Chen B, Li W J, Xue L K, Chen J M, Wang W X. Environ. Pollut., 2017, 230: 405.

doi: 10.1016/j.envpol.2017.06.072     URL    
[107]
Nałęcz-Jawecki G, Sawicki J. Chemosphere, 2003, 52 (1):249.

doi: 10.1016/S0045-6535(02)00865-2     URL    
[1] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[2] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
阅读次数
全文


摘要

大气中的单环芳香族硝基化合物