English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1017-1048 DOI: 10.7536/PC200428 前一篇   后一篇

• 综述 •

凝聚态化学的研究对象与主要科学问题

徐如人1,**(), 于吉红1, 闫文付1   

  1. 1. 吉林大学无机合成与制备化学国家重点实验室 化学学院 长春 130012
  • 收稿日期:2020-04-01 修回日期:2020-04-22 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 徐如人
  • 基金资助:
    国家自然科学基金项目(U1967215); 国家自然科学基金项目(21835002); 国家自然科学基金项目(21621001)

Goals and Major Scientific Issues in Condensed Matter Chemistry

Ruren Xu1,**(), Jihong Yu1, Wenfu Yan1   

  1. 1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
  • Received:2020-04-01 Revised:2020-04-22 Online:2020-08-24 Published:2020-04-23
  • Contact: Ruren Xu
  • About author:
    ** e-mail:
  • Supported by:
    the National Natural Science Foundation of China(U1967215); the National Natural Science Foundation of China(21835002); the National Natural Science Foundation of China(21621001)

本文提出了“凝聚态化学(Condensed Matter Chemistry)”的概念,提出其研究对象是由传统化学上被视为反应主体的原子、离子以及分子等“基本粒子”,藉“稳定的粘连关系”凝聚形成的具有特定组成、多层次结构与性质、功能的物质凝聚态。本文以固态为例,讨论了(1)凝聚态的多层次结构;(2)凝聚态的化学性质与化学反应;(3)凝聚态构筑化学中的前沿科学问题;(4)凝聚态化学中的高新表征方法与技术的发展与开拓。并对四个领域中的主要科学问题进行了比较深入的探讨,为进一步再认识传统化学,特别是对其中心问题,即化学反应的再认识提供了方向与基础,为开展“凝聚态的多层次结构-化学性质与化学反应-凝聚态物质的构筑定向合成与精准制备”三个方面的关系研究,总结规律与“分态”建立“凝聚态结构理论”与“凝聚态化学反应理论”,建设“凝聚态化学”提供了科学体系与内容,并为进一步开展“凝聚态工程学”研究提供了前提与基础。

The concept of condensed matter chemistry is proposed as a new scientific discipline. It studies the composition, the multi-level structure, properties and chemical reactions of matters in condensed states formed via stable adhesions. This compares to the classical chemistry, which studies more localized issues, namely the properties of basic particles like atoms, ions and molecules and their electron-moving reactions. In this article, we use examples from solid state matters to illustrate cutting-edge research issues related to(1) the multi-level structures,(2) chemical properties and reactions,(3) constructive chemistry, and(4) novel characterization techniques of condensed matters. In-depth discussions regarding key scientific questions of the new discipline are presented, to set a stage enabling us to reexamine the core scientific issues in the classical chemistry, namely chemical reactions, in the new and larger context and to study the relationships among multi-level structures of condensed matters, chemical properties and reactions, and construction rational synthesis and precision preparation for materials in condensed matter states. The goals are to develop theories of “condensed matter organization” and “chemical reactions”, leading to the full development of the science of condensed matter chemistry as well as condensed matter engineering.

Contents

1 Goals of condensed matter chemistry

2 Major scientific issues in condensed matter chemistry

2.1 Multi-level structures of condensed matter

2.2 Chemical properties and chemical reactions of condensed matter

2.2.1 Chemical reactions in multilevel structured atomic(ionic) crystalline matter

2.2.2 Chemical reactions in molecular crystalline coordination compounds

2.2.3 Chemical reactions in isomeric atomic crystal solid matter

2.2.4 Properties and chemical reactions in allotropes of(molecular and atomic crystals) solid matter

2.2.5 “State” - “state” reactions in atomic(ionic) and molecular crystals in solid matter

2.2.6 Chemical reactions between organic solid matter

2.2.7 Chemical reactions of crystalline polymorphs and amorphous forms in solid matter

2.2.8 Influence of multi-level structure on catalysis in solid matter

2.2.9 Influence of crystal intergrowth on catalysis in crystalline solid matter

2.2.10 Influence of polymorphs on catalysis in crystalline solid matter

2.3 Emerging scientific issues in the constructive chemistry of condensed matter

2.4 State-of-the-art characterization techniques for condensed matter

3 Conclusion and outlook

()
图1 铁-氧相图的一部分(垂直虚线相应于化学计量组成FeO)[5]
Fig.1 Part of phase diagram of Fe-O(Dashed line indicates the stoichiometric composition of FeO)[5]
表1 Pr n O2 n -2组成和稳定范围[8]
Table 1 Composition of Pr n O2 n -2 at varied temperatures[8]
表2 纳米金催化剂原粉中金颗粒的担载量和表面积[33]
Table 2 Loading and surface area of As-synthesized catalysts[33]
图2 包含空位对的链状M7O12 结构(6配位金属立方体可表示为MO6(Vo)2)[8]
Fig.2 Chain-like structure of M7O12 containing vacancy pair(octahedrally coordinated metal atom is presented as MO6(Vo)2)[8]
图3 在体心立方的c型氧化物中金属链沿所有(111)轴的交织堆积[8]
Fig.3 Alternative stacking of metal chain along all(111) axes in c-type cubic-centered oxides[8]
图4 KBrO3在等离子体和热作用下的分解反应(1)和(2)的反应温度与反应ΔG的关系[9]
Fig.4 The dependence of the ΔG on the temperature of the reactions (1) and (2)[9]
图5 晶体固态MBrO3的机械化学分解:1-NaBrO3, 2-KBrO3, 3-CsBrO3, 4-RbBrO3 [9]
Fig.5 Mechanochemical decomposition of MBrO3, 1-NaBrO3, 2-KBrO3, 3-CBrO3, 4-RbBrO3 [9]
图6 稀土二元硫族化合物的晶胞常数[10]
Fig.6 Lattice constant for the mono-chalcogenides of the rare earth elements[10]
图7 沿b轴的一维链状配位聚合物[Fe(μ-atrz)(atrz)2(H2O)2]·4H2O(BF4)2(平衡阴离子和水分子已略去)脱水形成三维[Fe(μ-atrz)3(BF4)2]框架结构[14, 15]
Fig.7 The formation of 3D framework of [Fe(μ-atrz)3(BF4)2] by the linear 1D chain coordination polymer of [Fe(μ-atrz)(atrz)2(H2O)2]·4H2O(BF4)2 along the b-axis(counter anions, water molecules in the lattice and hydrogen atoms are omitted) via dehydration[14, 15]
图8 (a) 催化剂原粉活性:P25>锐钛矿>金红石>板钛矿;(b) 在8%O2-He气氛下300 ℃处理30 min后催化剂活性[33]
Fig.8 CO oxidation activity over Au-TiO2 catalysts with different supports:(a) from the as-synthesized sample;(b) following treatment in 8% O2-He pretreated at 573 K for 30 min[33]
图9 SiO2相变和稳定度[37]
Fig.9 Phase transition of SiO2 at ambient pressure[37]
图10 BaO和SiO2的反应相图[38]
Fig.10 Phase diagram of BaO and SiO2 [38]
图11 黑磷的结构:(a)正交黑磷,(b)斜方黑磷,(c)立方黑磷[39]
Fig.11 Structure of black phosphorus:(a) orthorhombic,(b) rhombohedral, and(c) cubic black phosphorus[39]
图12 TiO2摩尔含量>60%的BaO-TiO2相图[40, 41]
Fig.12 Phase relations in the BaO-TiO2 system for compositions with > 60 % mole fraction TiO2. Abbreviations and symbols used include: BT(BaTiO3); B6T17(Ba6Ti17O40); B4T13(Ba4Ti13O30); BT4(BaTi4O9); B2T9(Ba2Ti9O20); L(liquid);(·) solid phases, quenched;(o) melted, quenched[40, 41]
图13 三元交互体系Ag,Pb‖Cl,Br[42]
Fig.13 Diagonal cross section of triternary mutual system Ag,Pb‖Cl,Br-liquidus[42]
图14 三元交互体系K,Na‖Cl,SO4-liquids[43]
Fig.14 Diagonal cross section of triternary mutual system K,Na‖Cl,SO4-liquids[43]
表3 三元交互体系K,Na‖Cl,SO4对角线上的组成、温度与固相[43]
Table 3 Diagonal cross section of triternary mutual system K,Na‖Cl,SO4 liquidus[43]
表4 三元交互体系K,Na‖Cl,SO4复分解反应的二元低共融点[43]
Table 4 Nonvarint point and solid phase in(KCl)2-Na2SO4 [43]
表5 三元交互体系K,Na‖Cl,SO4的三元低共融点[43]
Table 5 Eutectic temperature and composition, solid phase in(KCl)2-Na2SO4 [43]
表6 第一列过渡金属在高氧压条件下不常见氧化态的稳定性[47]
Table 6 Stabilization of unusual oxidation states of transition metals of the first raw under high oxygen pressures[47]
图15 BaFeO3- x 的生成相图。加点的区域是BaFeO3- x 的高温和低温形式纯相形成区域。氧等压线为空心圆圈所标直线,破折线表示为推测的关系[46]
Fig.15 Phase relations involving BaFeO3- x . Stippled areas are single-phase regions for high- and low-temperature forms of BaFeO3- x . Oxygen isobars are shown as light lines with experimental points as open circles. Dashed lines indicate inferred relations[46]
图16 cis-[Pt(NO3)2(en)2](1b)与4,4'-bpy(2) 的固体和cis-[Pd(NO3)2(en)2](1a)与三嗪基配体(4)的固体通过室温固相研磨制备超分子材料[56, 57]
Fig.16 Preparation of supramolecular materials via grinding the mixture of cis-[Pt(NO3)2(en)2](1b) and 4,4'-bpy(2) and cis-[Pd(NO3)2(en)2](1a) and triazine based ligand(4) at ambient temperature[56, 57]
表7 固态反应类型[59]
Table 7 Solid-state reaction types[59]
表8 固相反应定量合成一些亚胺类化合物[66]
Table 8 Quantitatively formed azomethines by solid-solid reaction[66]
图17 机械化学:富勒烯的反应[67]
Fig.17 Mechanochemistry: reactions of fullerene[67]
图18 三甲氧基苯45的固态和液态氧化反应的差异[68]
Fig.18 Difference in the oxidation of 45 by mechanochemical activation and in solution phase[68]
图19 (a) 扁桃体环磷胺“59”的固相合成;(b)从同样的化合物“58”出发,在液相中就得不到扁桃体环磷胺“59”[68]
Fig.19 (a) First synthesis of adamantoid cyclophosphazanes 59 facilitated by mechanochemical activation.(b) Initial unsuccessful attempts to prepare 59[68]
图20 由羧酸二聚合成子结合成的结构 (a)一维直线条带;(b)一维曲折条带;(c)二维层状;(d)三维骨架[69]
Fig.20 (a)One-dimensional linear tape and(b)crinkled(or zigzag) tape,(c) two dimensional sheet(or layer) and(d) three dimensional network(or framework) held together by the carboxylic acid dimer synthon[69]
图21 浓碱溶液中存在的硅酸根物种[72]
Fig.21 Aqueous silicate structures identified in concentrated alkaline solution. Each line in the stick figures represents a Si-O-Si(siloxane) linkage. Of these 48 structures, 41 contain multiple chemically distinct Si sites, making them amenable to characterization by29Si-29Si COSY NMR spectroscopy. All the structural assignments are definitive except for species 6B, 6C, and 7A, for which they were unable to resolve the various isomeric forms[72]
表9 不同模数R硅酸钠溶液中多硅酸根离子的存在状态与分布[71]
Table 9 Effect of silicate ratio on the percentage of SiO2 in a given silicate ion[71]
图式1 Pt/SiO2催化剂的浸渍还原制备过程[78]
Scheme 1 Pt/SiO2 catalyst prepared by direct reduction[78]
图式2 SMSI效应对Pt/SiO2催化丙烷脱氢活性的影响[78]
Scheme 2 The effect of SMSI on the catalytic behaviors of Pt/SiO2 catalysts in propane dehydrogenation[78]
图22 SMSI效应对Pt/SiO2催化丙烷脱氢活性的影响[78]
Fig.22 The effect of reduction temperature in a H2 atmosphere on the activity of Pt/SiO2 catalysts[78]
表10 Pt/SiO2催化剂的物理性质以及对CO的吸附值[78]
Table 10 Physical properties and CO adsorption values of Pt/SiO2 catalysts[78]
图23 氧化硅表面的悬空键≡Si·(E’s中心)模型(a),一个金属原子(Cu、Pd、Cs)吸附在悬空键上的结构模型≡Si-M(b)[79]
Fig.23 Cluster models of(a) a E’s center, ≡Si·, at the silica surface and(b) a metal atom(Cu, Pd, Cs) adsorbed on the E’s center, ≡Si-M[79]
图式3 用Mo掺杂的W18O49纳米管光催化固氮合成NH3·H2O的反应路径示意图[92]
Scheme 3 Proposed reaction pathway for photocatalytic N2 fixation to NH3·H2O using MWO-1 UTNWs as a catalyst[92]
图24 孔道拓扑结构图:(a)ZSM-5(MFI);(b) ZSM-11(MEL);(c) 与共生结构(比例可变)[106]
Fig.24 Topology of channels in(a) ZSM-5(MFI);(b) ZSM-11(MEL);(c) intergrowth of MFI and MEL with varied ratios[106]
图25 ZSM-5以及具有不同共生比例的ZSM-5/ZSM-11共生结构(共生相)的模拟XRD谱图(2θ角从6°到55°,未包括石英相的模拟XRD谱图)[107]
Fig.25 Simulated XRPD patterns for the evaluation of MFI/MEL contribution of ZSM-5, composite-a, -b and -c, from 6° to 55° 2 h(quartz phase was not included in the simulation)[107]
图26 ZSM-5以及具有不同共生比例的ZSM-5/ZSM-11共生结构(共生相)在MTP反应中的选择性[107]
Fig.26 Product selectivity of ZSM-5, composite-a, -b and -c. at 450 ℃ at a representative time on stream of 4 h. Propene is the dominant product. The product grouping was carried out in order to highlight the most relevant products in the MTA reaction. C4-C5 isomers: C4 are the 2-butene(cis and trans) and C5 are pentenes derivatives(1-, 2- and the corresponding cis and trans forms). C6-C8 isomers: comprises: hexene isomers, epatanes/eptenes, octanes/octanes with all their possible combinations of double bond in different position, cis and trans form and branched alkanes. C9+ isomers: include branched and unsaturated aromatics products either with alkyl chain or unsaturated branched substituents[107]
图27 ZSM-5以及具有不同共生比例的ZSM-5/ZSM-11共生结构(共生相)在MTP反应中对丙烯的选择性以及转化率[107]
Fig.27 Catalytic behaviour of: ZSM-5(squares), composite-a(circles), composite-b(triangles), and composite-c(diamonds) versus time on stream at 450 ℃. Filled and open symbols correspond to conversion and selectivity to propene respectively[107]
表11 MFI以及具有不同共生比例的ZSM-5/ZSM-11共生结构(共生相)的相对结晶度、孔容、比表面、晶粒尺寸以及Si/Al比[107]
Table 11 MFI and MEL contributions, relative crystallinity, micropore volume, surface area and crystallite size for ZSM-5, composite-a, -b and -c[107]
图28 EMT/FAU共生分子筛担载CoMo纳米催化剂精炼FCC汽油的辛烷值(右侧纵坐标)和硫含量(左侧纵坐标)[108]
Fig.28 The RON values and the sulfur contents of the hydrogenated gasoline products over different catalysts[108]
图29 EMT/FAU共生分子筛担载CoMo纳米催化剂精炼FCC汽油的异构化选择性[108]
Fig.29 The isomerization(ISO) selectivity over different catalysts[108]
图30 EMT/FAU共生分子筛担载CoMo纳米催化剂精炼FCC汽油的辛烷值和烯烃滞留率的关系[108]
Fig.30 The relationship of RON and the retentions of olefin over different catalysts[108]
表12 EMT/FAU共生分子筛担载CoMo纳米催化剂精炼FCC汽油结果[108]
Table 12 The hydro-upgrading results of FCC gasoline over different catalysts[108]
图31 Beta沸石的多形体A、B和C的层堆积及孔道走向[109]
Fig.31 The projections and channel stacking sequences of polymorphs A, B, and C along the a or b direction: the 12-ring channel stacking sequences are ABAB...(a), ABCABC...(b) and AA...(c) types, respectively[109]
图32 Ti-β和Ti-ITQ-17对烯烃环氧化的催化活性[110]
Fig.32 Intrinsic activity of Ti-β and Ti-ITQ-17, expressed as turnover frequency number(mmol alkene converted/mmol Ti.h), on the epoxidation of different substrates with H2O2 [110]
表13 Ti-β and Ti-ITQ-17催化环己烯和正己烯环氧化结果[110]
Table 13 Cyclohexene and 1-hexene epoxidation over Ti-β and Ti-ITQ-17(Ti-PolC)[110]
表14 Beta型沸石和ITQ-17的孔道尺寸以及由分子动力学计算的扩散系数[111]
Table 14 Channel sizes and diffusion coefficients obtained from the molecular dynamics[111]
表15 Beta型沸石和ITQ-17的物理化学性质[111]
Table 15 Physicochemical characteristics of zeolites tested in the present work[111]
表16 Beta型沸石和ITQ-17催化2-甲氧基萘和乙酐酰化反应结果a[111]
Table 16 Acylation of 2-methoxynaphthalene with acetic anhydride over ITQ-17 in a batch reactor and comparison with Beta zeolitea[111]
图33 2-甲氧基萘和乙酐反应示意图[111]
Fig.33 Reaction scheme of the acylation of 2-MN with acetic anhydride over zeolites and possible alternative processes:(1) direct acylation;(2) intermolecular transacylation of 1-AMN with 2-MN;(3) protodeacylation of 1-AMN;(4) intramolecular transacylation of 1-AMN;(5) consecutive acylation of monoacylated products;(6) hydrolysis of the terminal O—C bond of 2-MN;(7) transalkylation of 2-MN[111]
[1]
Xu R R . Natl. Sci. Rev., 2018,5:1.
[2]
Xu R R , Wang K , Chen G , Yan W . Natl. Sci. Rev., 2019,6:191.
[3]
莫志深(Mo Z S), 张宏放(Zhang H F), 张吉东 (Zhang J D). 晶态聚合物结构和X射线衍射(Structure of Crystalline Polymers by X-Ray diffraction). 北京: 科学出版社(Beijing:Science Press), 2010
[4]
Gawande M B , Bonifácio V D B , Luque R , Branco P S , Varma R S . ChemSusChem, 2014,7:24. https://www.ncbi.nlm.nih.gov/pubmed/24357535

doi: 10.1002/cssc.201300485     URL     pmid: 24357535
[5]
Shriver D F, Atkins P W, Langford C H, 高忆慈(Gao Y C), 史启祯(Shi Q Z), 曾克慰(Zeng K W), 李丙瑞(Li B R) , 等译. 无机化学(第二版)(Inorganic Chemistry, 2nd Ed). 北京: 高等教育出版社(Beijing: Higher Education Press), 1997. 693.
[6]
日本化学会编, 曹惠民(Cao H M), 包文滁(Bao W C), 安家驹(An J J) 译. 无机化合物合成手册(第一卷)(Handbook of Synthesis for Inorganic Compounds, Volume 1). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 1983: 693.
[7]
麦松威(Mak T C W), 周公度(Zhou G D), 李伟基(Li W K) . 高等无机结构化学(第二版)(Advanced Structural Inorganic Chemistry, 2nd Ed.). 北京: 北京大学出版社(Beijing: Peking University Press), 2006
[8]
洪广言(Hong G Y) . 稀土化学导论(Introduction to Rare Earth Chemistry). 北京: 科学出版社(Beijng: Science Press), 2014: 403.
[9]
Boldyrew W W , Awwakumow E G , Strugowa L I , Harenz H , Heinicke G. Z . Anorg. Allg. Chem., 1972,393:152.
[10]
Rooymans C J M . Ber. Bunsenges. Phys. Chern., 1966,70:1036.
[11]
Rooymans C J M . The Behavior of Some Groups of Chalcogenides under Very-High-Pressure Conditions, In Advances in High Pressure Research, Bradley R S(Ed). New York: Academic Press, 1969, Vol. 2, 1.
[12]
日本材料科学会高压部门委员会(High Voltage Department Committee of Japan Society for Materials Science). 《高压实验技术そその应》(High Pressure Technology). 东京: 丸善出版社(Tokyo: Marushan Press), 1969.
[13]
杨玉良(Yang Y L), 胡汉杰(Hu H J) 主编. 跨世纪的髙分子科学——髙分子物理(Polymer Physics). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2001.
[14]
Chuang Y C , Liu C T , Sheu C F , Ho W L , Lee GH , Wang C C , Wang Y . Inorg. Chem., 2012,51:4663. https://www.ncbi.nlm.nih.gov/pubmed/22458342

doi: 10.1021/ic202626c     URL     pmid: 22458342
[15]
Chuang Y C , Ho W L , Sheu C F , Lee G H , Wang Y . Chem. Commun., 2012,48:10769. http://xlink.rsc.org/?DOI=c2cc35879d

doi: 10.1039/c2cc35879d     URL    
[16]
忻新泉(Xin X Q), 周益明(Zhou Y M), 牛云垠(Niu Y Y) 编著. 低热固相化学反应(Solid State Reactions at Low-Heating Temperature). 北京: 高等教育出版社(Beijing:Higher Education Press), 2010
[17]
Xin X Q , Zheng L M . Solid State Chem., 1993,106:451.
[18]
忻新泉(Xin X Q), 郑丽敏(Zheng L M) . 化学通报(Chemistry), 1992,(02):23.
[19]
Chomic J , Skoršepa J , Cernák J , Šafarik’s P J . Thermochim. Acta, 1985,93:113.
[20]
Wendlandt W W , D’Ascenzo G , Gore R H . J. Inorg. Nucl. Chem., 1970,32:3404. https://linkinghub.elsevier.com/retrieve/pii/0022190270802330

doi: 10.1016/0022-1902(70)80233-0     URL    
[21]
汪信(Wang X), 忻新泉(Xin X Q), 陈汉文(Chen H W), 戴安邦(Dai A B), 张毓昌(Zhang Y C) . 科学通报(Chinese Science Bulletin), 1985,(11):834.
[22]
Yuan J , Xin X , Dai A . Thermochim. Acta, 1988,130:77.
[23]
袁进华(Yuan J H), 王晓平(Wang X P), 忻新泉(Xin X Q), 戴安邦(Dai A B), 张凯华(Zhang K H), 任家英(Ren J Y) . 无机化学学报(Chinese Journal of Inorganic Chemistry), 1991,7(3):281.
[24]
谢玉明(Xie Y M), 黄生荣(Huang S R), 忻新泉(Xin X Q), 戴安邦(Dai A B) . 南京大学学报(自然科学)(Journal of Nanjing University Natural Science), 1989,25(03):68.
[25]
Reiff W M , Long G J . Mössbauer Spectroscopy and the Coordination Chemistry of Iron, In Mössbauer Spectroscopy Applied to Inorganic Chemistry. Long G J(Ed.). Boston: Springer, 1984,245.
[26]
Tadatsugu Y , Ryokichi T , Akira U , Eishin K . Bull. Chem. Soc. Jpn., 1977,50:883.
[27]
Fujiwara T , Yamamoto Y . Inorg. Chem., 1980,19(7):1903.
[28]
Wendlandt W W , Woodlock J H . Inorg. Nucl. Chem., 1965,27(1):259.
[29]
Chowdhury D M , Harris G M . Phys. Chem., 1969,73(10):3366.
[30]
Kukushkin Y N , Kalyukova E N , Yustratora V F . Koord. Khim., 1983,9:1107.
[31]
Ryokichi T , Katsuhide M , Shigeru S , Akira U , Eishin K . Bull. Chem. Soc. Jpn., 1975,48(10):2805. http://www.journal.csj.jp/doi/10.1246/bcsj.48.2805

doi: 10.1246/bcsj.48.2805     URL    
[32]
Simmons E L , Wendlandt W W . Coordin. Chem. Rev., 1971,7(1):11.
[33]
Yan W , Chen B , Mahurin S M , Schwartz V , Mullins D R , Lupini A R , Pennycook S J , Dai S , Overbury S H . J. Phys. Chem. B, 2005,109(21):10676. https://www.ncbi.nlm.nih.gov/pubmed/16852296

URL     pmid: 16852296
[34]
Bond G C , Sermon P A , Webb G , Buchanan D A , Wells P B . Chem. Soc. Chem. Commun., 1973,(13):444b.
[35]
Guo Q , Zhou C , Ma Z , Ren Z , Fan H , Yang X . Chem. Soc. Rev., 2016,45:3701. https://www.ncbi.nlm.nih.gov/pubmed/26335268

doi: 10.1039/c5cs00448a     URL     pmid: 26335268
[36]
Xu C B , Yang W S , Guo Q , Dai D X , Chen M D , Yang X M . Am. Chem. Soc., 2014,136(2):602.
[37]
洪广言(Hong G Y)编著. 《无机固体化学》(Inorganic Solid Chemistry). 北京: 科学出版社(Science Press), 2002. 189.
[38]
[2020-04]. Nuclear-Thermodynamic-Database. http://www.crct.polymtl.ca/fact/documentation/TDNucl/TDnucl_Figs.htm http://www.crct.polymtl.ca/fact/documentation/TDNucl/TDnucl_Figs.htm
[39]
Li W K , Zhou G D , Mak T C W . Advanced Structural Inorganic Chemistry. New York: Oxford University Press, 2008. 580.
[40]
Negas T , Roth R S , Parker H S , Minor D . Solid State Chem., 1974,9(3):297.
[41]
Wong Ng W , Roth R S , Vanderah T A , McMurdie H F . Res. Natl. Inst. Stand. Technol., 2001,106(6):1097.
[42]
BocкpeceнкaяH K , Ebceeвa H H , Бepyлb C И , Bepeщmинa ИП . Handbook—Inorganic Molten Salt System. Vol II Ternary System, Ternary Reciprocal and Multiple System, Moscow, Leningrad: ИЭЛATEЛbCTBO AKAДEMИИ HAyK CCCP, 1961. 175.
[43]
BocкpeceнкaяH K , Ebceeвa H H , Бepyлb C И , Bepeщmинa ИП . Handbook—Lnorganic Molten Salt System. Vol II Ternary System, Ternary Reciprocal and Multiple System, Moscow, Leningrad: ИЭЛATEЛbCTBO AKAДEMИИ HAyK CCCP, 1961. 361.
[44]
Pei Z W , Su Q , Zhang J Y . Alloys Compd., 1993,198(1/2):51. https://linkinghub.elsevier.com/retrieve/pii/092583889390143B

doi: 10.1016/0925-8388(93)90143-B     URL    
[45]
Peng M Y , Pei Z W , Hong G Y , Su Q . Mater. Chem., 2003,13(5):1202. http://xlink.rsc.org/?DOI=b211624c

doi: 10.1039/b211624c     URL    
[46]
Van Hook H J . Phys. Chem., 1964,68(12):3786.
[47]
Demazeau G . Eur. J. Solid State Chem., 1997,34:759.
[48]
王晓平(Wang X P), 朱慧珍(Zhu H Z), 忻新泉(Xin X Q), 戴安邦(Dai A B), 张汉辉(Zhang H H) . 化学学报(Acta Chimica Sinica), 1991,49(4):371.
[49]
郑丽敏(Zheng L M), 忻新泉(Xin X Q), 梅毓华(Mei Y H) . 化学学报(Acta Chimica Sinica), 1991,49(12):1473.
[50]
郑丽敏(Zheng L M) . 南京大学博士论文(Doctorial Disseration of Nanjing University), 1992.
[51]
庄稼(Zhuang J), 成全(Cheng Q), 郑丽敏(Zheng L M) . 应用化学(Applied Chemistry), 1992,9(2):33.
[52]
贾殿赠(Jia D Z), 忻新泉(Xin X Q) . 化学学报(Acta Chimica Sinica), 1993,51(4):358.
[53]
Zheng L M , Dai L D , Xin X Q . Thermochim. Acta, 1992,196(2):437.
[54]
王晓平(Wang X P), 郑丽敏(Zheng L M), 忻新泉(Xin X Q) . 无机化学学报(Chinese Journal of Inorganic Chemistry), 1992,8(3):288.
[55]
Li J G , Xin X Q , Zhou Z Y , Yu K B . Chem. Soc. Chem. Commun., 1991,(4):249.
[56]
Orita A , Jiang L S , Nakano T , Ma N C , Otera J . Chem. Commun., 2002,(13):1362.
[57]
Kole G K , Vittal J J . Chem. Soc. Rev., 2013,42(4):1755. https://www.ncbi.nlm.nih.gov/pubmed/23034597

doi: 10.1039/c2cs35234f     URL     pmid: 23034597
[58]
Kaupp G , Schmeyers J , Boy J . Tetrahedron, 2000,56(36):6899.
[59]
Kaupp G , Schmeyers J , Boy J . Chemosphere, 2001,43(1):55.
[60]
Kaupp G , Schmeyers J , Naimi-Jamal M R , Zoz H , Ren H . Chem. Eng. Sci., 2002,57(5):763. https://linkinghub.elsevier.com/retrieve/pii/S0009250901004304

doi: 10.1016/S0009-2509(01)00430-4     URL    
[61]
Kaupp G . Curr. Opin. Solid State Mater. Sci., 2002,6(2):131.
[62]
Kaupp G . CrystEngComm, 2009,11(3):388.
[63]
Kaupp G . Phys. Org. Chem., 2008,21(7/8):630.
[64]
Kaupp G . CrystEngComm, 2006,8:794.
[65]
Abdel Latif E , Kaupp G , Metwally M A . Chem. Res., 2005,2005(3):187.
[66]
Schmeyers J , Toda F , Boy J , Kaupp G . J. Chem. Soc. Perkin Trans. 2, 1998(4):989.
[67]
Zhu S E , Li F , Wang G W . Chem. Soc. Rev., 2013,42(18):7535. https://www.ncbi.nlm.nih.gov/pubmed/23677148

doi: 10.1039/c3cs35494f     URL     pmid: 23677148
[68]
Hernández J G , Bolm C . Org. Chem., 2017,82(8):4007.
[69]
Li WK , Zhou G D , Mak T C W . Advanced Structural Inorganic Chemistry. New York: Oxford University Press, 2008. 742.
[70]
(苏)捷里马尔斯基(Делнмарский, ЮК)著, 沈时英(Shen S Y)译. 离子熔体化学(Ionic Melt Chemistry). 北京: 冶金工业出版社(Beijing: Metallurgical Industry Press), 1986: 112.
[71]
McCormick A V , Bell A T , Radke C J . Application of 29Si and 27Al NMR to Determine the Distribution of Anions in Sodium Silicate and Sodium Alumino-Silicate Solutions, In Studies in Surface Science and Catalysis. Murakami Y, Iijima A, Ward J W(Eds.). Elsevier, 1986,28:247.
[72]
Knight C T G , Balec R J , Kinrade S D . Angew. Chem. Int. Ed., 2007,46(43):8148.
[73]
Ling T C , Balachandran C , Munoz J F , Youtcheff J . Mater. Struct., 2018,51(1):23.
[74]
Pfeiffer T , Sander S A H , Enke D , Roggendorf H . Chemie Ingenieur Technik, 2019,91(1/2):92.
[75]
Pfeiffer T , Enke D , Roth R , Roggendorf H . Adv. Chem. Eng. Sci., 2017,7:76.
[76]
Tsujiguchi M , Kobashi T , Utsumi Y , Kakimori N , Nakahira A . Ceram. Soc. Jpn., 2014,122(1421):104.
[77]
颜肖慈(Yan X C), 罗明道(Luo M D) 编著. 界面化学(Interface Chemistry). 北京: 化学工业出版社(Beijing:Chemical Industry Press), 2005.
[78]
Deng L D , Miura H , Shishido T , Hosokawa S , Teramura K , Tanaka T . Chem. Commun., 2017,53(51):6937.
[79]
Lopez N , Illas F , Pacchioni G J . Am. Chem. Soc., 1999,121(4):813. https://pubs.acs.org/doi/10.1021/ja981753c

doi: 10.1021/ja981753c     URL    
[80]
Potoczna Petru D , Kępiński L , Krajczyk L React. Kinet. Catal. Lett., 2009,97:321.
[81]
Rodrigues E L , Bueno J M C . Appl. Catal. A-Gen., 2002,232(1/2):147.
[82]
Potoczna Petru D , Krajczyk L . Catal. Lett., 2003,87:51.
[83]
Backhaus Ricoult M , Samet L , Thomas M , Trichet M F , Imhoff D . Acta Mater., 2002,50(16):4191.
[84]
Gong J , Yue H , Zhao Y , Zhao S , Zhao L , Lv J , Wang S , Ma X . Am. Chem. Soc., 2012,134(34):13922.
[85]
Van den Oetelaar L C A , Partridge A , Toussaint S L G , Flipse C F J , Brongersma H H . J. Phys. Chem. B, 1998,102(47):9541.
[86]
Lin J H , Zeng Z Y , Lai Y T , Chen C S . RSC Adv., 2013,3:1808.
[87]
Zhao Y , Zhao J , Su Z , Hao X , Li Y , Li N , Li Y . J. Mater. Chem. A, 2013,1(27):8029. http://xlink.rsc.org/?DOI=c3ta11281k

doi: 10.1039/c3ta11281k     URL    
[88]
Zhang C H , Wan H J , Yang Y , Xiang H W , Li Y W . Catal. Commun., 2006,7(9):733. https://linkinghub.elsevier.com/retrieve/pii/S156673670600094X

doi: 10.1016/j.catcom.2006.03.018     URL    
[89]
Zhang C X , Yue H R , Huang Z Q , Li S R , Wu G W , Ma X B , Gong J L . ACS Sustain. Chem. Eng., 2013,1:161. https://pubs.acs.org/doi/10.1021/sc300081q

doi: 10.1021/sc300081q     URL    
[90]
Ueckert T , Lamber R , Jaeger N I , Schubert U . Appl. Catal. A-Gen., 1997,155(1):75.
[91]
Zhang Y , Zhang J , Zhang B , Si R , Han B , Hong F , Niu Y , Sun L , Li L , Qiao B , Sun K , Huang J , Haruta M . Nat. Commun., 2020,11:558. https://www.ncbi.nlm.nih.gov/pubmed/31992700

doi: 10.1038/s41467-019-14241-8     URL     pmid: 31992700
[92]
Zhang N , Jalil A , Wu D , Chen S , Liu Y , Gao C , Ye W , Qi Z , Ju H , Wang C , Wu X , Song L , Zhu J , Xiong Y . Am. Chem. Soc., 2018,140:9434.
[93]
Bai S , Jiang J , Zhang Q , Xiong Y . Chem. Soc. Rev., 2015,44(10):2893. https://www.ncbi.nlm.nih.gov/pubmed/25904385

doi: 10.1039/c5cs00064e     URL     pmid: 25904385
[94]
Zhang N , Li X , Ye H , Chen S , Ju H , Liu D , Lin Y , Ye W , Wang C , Xu Q , Zhu J , Song L , Jiang J , Xiong Y . Am. Chem. Soc., 2016,138(28):8928.
[95]
Sun Y , Liu Q , Gao S , Cheng H , Lei F , Sun Z , Jiang Y , Su H , Wei S , Xie Y . Nat. Commun., 2013,4:2899. https://www.ncbi.nlm.nih.gov/pubmed/24280902

doi: 10.1038/ncomms3899     URL     pmid: 24280902
[96]
Nowotny J , Alim M A , Bak T , Idris M A , Ionescu M , Prince K , Sahdan M Z , Sopian K , Mat Teridi M . A, Sigmund W. Chem. Soc. Rev., 2015,44:8424. https://www.ncbi.nlm.nih.gov/pubmed/26446476

doi: 10.1039/c4cs00469h     URL     pmid: 26446476
[97]
Zhang Y , Zhao R , Sanchez Sanchez M , Haller G L , Hu J , Bermejo Deval R , Liu Y , Lercher J A . Catal., 2019,370:424. https://linkinghub.elsevier.com/retrieve/pii/S0021951719300089

doi: 10.1016/j.jcat.2019.01.006     URL    
[98]
Wang S , Zhang L , Li S , Qin Z , Shi D , He S , Yuan K , Wang P , Zhao T S , Fan S , Dong M , Li J , Fan W , Wang J . Catal., 2019,377:81.
[99]
Chen L , Falsig H , Janssens T V W , Jansson J , Skoglundh M , Grönbeck H . Catal. Sci. Technol., 2018,8:2131. http://xlink.rsc.org/?DOI=C8CY00083B

doi: 10.1039/C8CY00083B     URL    
[100]
Dědecek J , Tabor E , Sklenak S . ChemSusChem, 2019,12:556. https://www.ncbi.nlm.nih.gov/pubmed/30575302

doi: 10.1002/cssc.201801959     URL     pmid: 30575302
[101]
Bailleul S , Yarulina I , Hoffman A E J , Dokania A , Abou-Hamad E , Chowdhury A D , Pieters G , Hajek J , De Wispelaere K , Waroquier M , Gascon J , Van Speybroeck V. J . Am. Chem. Soc., 2019,141(37):14823. https://pubs.acs.org/doi/10.1021/jacs.9b07484

doi: 10.1021/jacs.9b07484     URL    
[102]
Zhao Z , Shi H , Wan C , Hu M Y , Liu Y , Mei D , Camaioni D M , Hu J Z , Lercher J A . Am. Chem. Soc., 2017,139(27):9178.
[103]
Liu H , Wang H , Xing A H , Cheng J H . J. Phys. Chem. C, 2019,123(25):15637.
[104]
Ravi M , Sushkevich V L, van Bokhoven J A. J. Phys. Chem. C, 2019,123(24):15139.
[105]
Sazama P , Dědeeck J , Gábová V , Wichterlová B , Spoto G , Bordiga S . Catal., 2008,254(2):180.
[106]
Barrer R M . Hydrothermal Chemistry of Zeolites. London and New York: Academic Press, 1982: 260.
[107]
Conte M , Xu B , Davies T E , Bartley J K , Carley A F , Taylor S H , Khalid K , Hutchings G J . Micropor. Mesopor. Mater., 2012,164:207.
[108]
Gao D W , Duan A J , Zhang X , Zhao Z E H , Qin Y C , Xu C M . Chem. Eng. J., 2015,270:176.
[109]
Tong M Q , Zhang D L , Zhu L K , Xu J , Deng F , Xu R L , Yan W F . CrystEngComm, 2016,18(10):1782.
[110]
Moliner M , Serna P , Cantín Á ., Sastre G , Díaz-Cabañas M J , Corma A. J . Phys. Chem. C, 2008,112(49):19547.
[111]
Botella P , Corma A , Navarro M T , Rey F , Sastre G . Catal., 2003,217(2):406.
[112]
Bharathi P , Waghmode S B , Sivasanker S , Vetrivel R . Bull. Chem. Soc. Jpn., 1999,72:2161.
[113]
Botella P , Corma A , Sastre G . Catal., 2001,197(1):81.
[114]
Murahashi S I , Imada Y . Chem. Rev., 2019,119(7):4684. https://www.ncbi.nlm.nih.gov/pubmed/30875202

doi: 10.1021/acs.chemrev.8b00476     URL     pmid: 30875202
[115]
Penteado F , Lopes E F , Alves D , Perin G , Jacob R G , Lenardão E J . Chem. Rev., 2019,119(12):7113. https://www.ncbi.nlm.nih.gov/pubmed/30990680

doi: 10.1021/acs.chemrev.8b00782     URL     pmid: 30990680
[116]
Nivina A , Yuet K P , Hsu J , Khosla C . Chem. Rev., 2019,119:12524. https://www.ncbi.nlm.nih.gov/pubmed/31838842

doi: 10.1021/acs.chemrev.9b00525     URL     pmid: 31838842
[117]
Zeng M Q , Xiao Y , Liu J X , Yang K , Fu L . Chem. Rev., 2018,118(13):6236. https://www.ncbi.nlm.nih.gov/pubmed/29381058

doi: 10.1021/acs.chemrev.7b00633     URL     pmid: 29381058
[118]
Rosen B M , Wilson C J , Wilson D A , Peterca M , Imam M R , Percec V . Chem. Rev., 2009,109(11):6275. https://www.ncbi.nlm.nih.gov/pubmed/19877614

doi: 10.1021/cr900157q     URL     pmid: 19877614
[119]
Saper G , Hess H . Chem. Rev., 2020,120(1):288. https://www.ncbi.nlm.nih.gov/pubmed/31509383

doi: 10.1021/acs.chemrev.9b00249     URL     pmid: 31509383
[120]
Wang S Y S , Ellington A D . Chem. Rev., 2019(10), 119(10):6370. https://www.ncbi.nlm.nih.gov/pubmed/30865429

doi: 10.1021/acs.chemrev.8b00625     URL     pmid: 30865429
[121]
Yu J , Xu R . Acc. Chem. Res., 2010,43(9):1195. https://www.ncbi.nlm.nih.gov/pubmed/20575533

doi: 10.1021/ar900293m     URL     pmid: 20575533
[122]
Wang Z , Yu J , Xu R . Chem. Soc. Rev., 2012(5), 41:1729. https://www.ncbi.nlm.nih.gov/pubmed/22108910

doi: 10.1039/c1cs15150a     URL     pmid: 22108910
[123]
Li Y , Cao H , Yu J . ACS Nano, 2018,12(5):4096. https://www.ncbi.nlm.nih.gov/pubmed/29714474

doi: 10.1021/acsnano.8b02625     URL     pmid: 29714474
[124]
Shi J M , Anderson M W , Carr S W . Chem. Mater., 1996,8(2):369.
[125]
Taulelle F , Haouas M , Gerardin C , Estournes C , Loiseau T , Ferey G . Colloid Surf. A-Physicochem. Eng. Asp., 1999,158(1/2):299.
[126]
O’Brien M G , Beale A M , Catlow C R A , Weckhuysen B M . Am. Chem. Soc., 2006,128(36):11744.
[127]
Fan F , Feng Z , Li G , Sun K , Ying P , Li C . Chemistry. -Eur. J., 2008,14(17):5125.
[128]
Fan F T , Feng Z C , Sun K J , Guo M L , Guo Q , Song Y , Li W X , LLii C . Angew. Chem. Int. Ed., 2009,48(46):8743.
[129]
Fan F , Feng Z , Li C . Chem. Soc. Rev., 2010,39:4794. https://www.ncbi.nlm.nih.gov/pubmed/21038050

doi: 10.1039/c0cs00012d     URL     pmid: 21038050
[130]
Grandjean D , Beale A M , Petukhov A V , Weckhuysen B M . Am. Chem. Soc., 2005,127(41):14454.
[131]
Beale A M , van der Eerden A M J , Grandjean D , Petukhov A V , Smith A D , Weckhuysen B M . Chem. Commun., 2006,(42):4410.
[132]
Jia C L , Lentzen M , Urban K . Science, 2003,299:870. https://www.ncbi.nlm.nih.gov/pubmed/12574624

doi: 10.1126/science.1079121     URL     pmid: 12574624
[133]
Jia C L , Urban K . Science, 2004,303:2001. https://www.ncbi.nlm.nih.gov/pubmed/15044799

doi: 10.1126/science.1093617     URL     pmid: 15044799
[134]
Girit Ç Ö , Meyer J C , Erni R , Rossell M D , Kisielowski C , Yang L , Park C H , Crommie M F , Cohen M L , Louie S G , Zettl A . Science, 2009,323:1705. https://www.ncbi.nlm.nih.gov/pubmed/19325110

doi: 10.1126/science.1166999     URL     pmid: 19325110
[135]
Shechtman D , Blech I , Gratias D , Cahn J W , Gratias D . Phys. Rev. Lett., 1984,53:1951.
[136]
Iijima S . Nature, 1991,354:56.
[137]
Yan C , Wan R , Bai R , Huang G , Shi Y . Science, 2016,355:149. https://www.ncbi.nlm.nih.gov/pubmed/27980089

doi: 10.1126/science.aak9979     URL     pmid: 27980089
[138]
Wan R , Yan C , Bai R , Huang G , Shi Y . Science, 2016,353:895. https://www.ncbi.nlm.nih.gov/pubmed/27445308

doi: 10.1126/science.aag2235     URL     pmid: 27445308
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[9] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.