English
新闻公告
More
化学进展 2019, Vol. 31 Issue (10): 1396-1405 DOI: 10.7536/PC190323 前一篇   后一篇

• •

贵金属多孔纳米结构的模板法制备及生物检测应用

刘畅, 吴峰, 苏倩倩, 钱卫平**()   

  1. 东南大学生物科学与医学工程学院 生物电子学国家重点实验室 南京 210096
  • 收稿日期:2019-03-21 出版日期:2019-10-15 发布日期:2019-08-05
  • 通讯作者: 钱卫平
  • 基金资助:
    国家重点研发项目(2017YFE0100200); 国家自然科学基金项目(21775020)

Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures

Chang Liu, Feng Wu, Qianqian Su, Weiping Qian**()   

  1. School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
  • Received:2019-03-21 Online:2019-10-15 Published:2019-08-05
  • Contact: Weiping Qian
  • About author:
    ** E-mail:
  • Supported by:
    National Key Research and Development Program of China(2017YFE0100200); National Natural Science Foundation of China(21775020)

贵金属多孔纳米材料是一类非常重要的新型多功能纳米材料,其具有独特的空心内部、多孔的外壁以及可调的形貌等,表现出优异的光、电、催化等特性。调制贵金属多孔纳米材料的尺寸、形状、排列和空间取向等对促进其在拉曼光谱、生物传感等方面的应用至关重要。模板法是利用与目标产物的纳米尺度特征相匹配的预制结构来指导纳米材料的合成,可以制备出其他方法难以制备的新型多孔纳米结构材料。基于模板的多样性,能够便捷的调节多孔贵金属的孔径、尺寸和组分,充分的开发贵金属纳米结构的特性。本文着重介绍了贵金属多孔纳米材料的类型和调控这些纳米结构的各种模板方法,分析了各种制备方法的优势和不足,并简要综述了贵金属多孔纳米结构在生物检测方面的一些应用进展。

Porous noble metal nanostructures are a class of new-type multi-functional nanostructures, which have unique optical, electrical and catalytic properties, due to their unique interior, porous walls and adjustable morphology. How to regulate the size, morphology, arrangement and spatial orientation of porous noble metal nanomaterials is critical for their applications in Raman spectroscopy, biosensing, etc. Some novel porous nanostructures, which are difficult to prepare by other methods, can be obtained easily by template methods. The synthesis of products can be guided by the pre-structures which match the nanoscale characteristics of target products. Based on the diversity of templates, the pore diameter, size and composition of porous noble metal nanostructures can be conveniently adjusted to fully develop the advantages of noble metals. In this review, we summarize a series of template methods for the synthesis of porous noble metal nanostructures, and the advantages and disadvantages of these methods are discussed. Furthermore, the applications of porous noble metal nanostructures in biological detection fields are also briefly discussed.

()
图1 几种常见的有序贵金属多孔纳米结构的扫描电镜图:(a)Au纳米孔阵列[12];(b)有序多孔Au纳米结构[13];(c)Ag/Pt纳米孔阵列[14];(d)有序Au纳米阵列[15]
Fig. 1 SEM images of several ordered porous noble metal nanostructures:(a) Au nanohole arrays[12],(b) ordered porous Au nanostructures[13],(c) Ag/Pt nanohole arrays[14], and (d) ordered Au nanoarrays[15]
图2 几种无序贵金属多孔纳米结构的透射电镜图[19]
Fig. 2 TEM images of several unordered porous noble metal nanostructures[19]
图3 (a)双陀螺形(DG)介孔Pt纳米结构的制备过程,(b,c)DG Pt纳米结构的扫描电镜图,(d)DG Pt纳米结构的透射电镜图[33]
Fig. 3 (a) Synthesis procedure and structural model for mesoporous double gyroid(DG) platinum,(b,c) SEM images of DG platinum,(d) TEM image of DG platinum[33]
图4 (a)有序多孔Ag“刺体”的制备过程,(b)单层胶体晶模板的扫描电镜图,(c)双层胶体晶模板的扫描电镜图,(d)Ag“刺体”的扫描电镜图[34]
Fig. 4 (a) Synthesis procedure of ordered porous Ag “brochosomal”,(b) SEM image of MCC template,(c) SEM image of DCC template,(d) SEM image of Ag “brochosomal”[34]
图5 (a)有序多孔PS/Au的制备过程,(b)有序多孔PS/Au的扫描电镜图[35]
Fig. 5 (a) Synthesis procedure of ordered porous PS/Au nanostructures,(b) SEM image of ordered porous PS/Au nanostructure[35]
图6 (a~c)三维多孔Au纳米带的透射电镜图,(d)侧面透射电镜图,(e,f)三维多孔Au纳米带的示意图[39]
Fig. 6 (a~c) TEM images of 3D porous Au nanobelts,(d) TEM image of the cross-section of a 3D Au nanobelt,(e,f) schematically illustrations of the cross-section and the 3D structure of these Au NDs, respectively[39]
图7 基于蝴蝶翅鳞的三维多孔Ag纳米结构的制备过程[42]
Fig. 7 Synthesis procedure of 3D porous Ag based on butterfly wing scales[42]
图8 (a~f)墨鱼骨三维多孔模板的制备过程,(g)三维多孔Au纳米结构的实物图[44]
Fig. 8 (a~f) Synthesis procedure of 3D porous templates based on cuttlebone, and(g) Photos of 3D porous Au nanostructures[44]
图9 柯肯达尔效应的原理图[45]
Fig. 9 Schematic of mechanisms of the Kirkendall effect[45]
图10 基于柯肯达尔效应制备的贵金属多孔纳米结构[46]
Fig. 10 Various porous noble metal nanostructures based on Kirkendall effect[46]
图11 (a)Cu2O八面体的扫描电镜图,(b)介孔八面体PtCu纳米笼的扫描电镜图,(c~e)介孔八面体PtCu纳米笼的透射电镜图,(f,g)介孔八面体PtCu纳米笼的元素mapping图[50]
Fig. 11 (a)SEM image of Cu2O Octahedrons,(b) SEM images of octahedral PtCu meso-nanocages,(c~e) TEM images of octahedral PtCu meso-nanocages,(f,g) element mapping of octahedral PtCu meso-nanocages[50]
图12 在室温下,分别以10 mA电流沉积5 min一次和两次后,所得产物的扫描电镜图:(a)树枝状CuNi,(b~d)CuNi-Pt异质结构[51]
Fig. 12 SEM images of the products obtained by the first and the second deposition at the current of 10 mA for 5 min in air at room temperature, respectively:(a) Cu-Ni dendrites and (b~d) Cu-Ni-Pt dendrites[51]
图13 (a)三维有序多孔Au纳米结构的制备过程,(b)产物表面的归一化电场振幅分布,(c)不同峰位置处的拉曼强度和电磁增强因子模拟[58]
Fig. 13 (a) Synthesis procedure of 3D ordered porous Au nanostructures,(b) Normalized electric field(E-field) amplitude distribution at the surface,(c) Raman intensities at different peaks and the simulated EM enhancement factors[58]
图14 SERS免疫探针的构建过程示意图[60]
Fig. 14 Schematic illustration of the SERS immunoprobe fabrication procedure[60]
图15 基于金纳米碗SERS基底的癌坯抗原(CEA)的检测[61]
Fig. 15 Detection of carcinoembryonic antigen(CEA) based on gold nanobowl array-based SERS substrate[61]
[1]
Perego C, Millini R . Chem. Soc. Rev., 2013,42(9):3956.
[2]
Li J, Peng J, Huang W H, Wu Y, Fu J, Cong Y, Xue L J, Han Y C . Langmuir, 2005,21(5):2017.
[3]
Wang L, Wang H J, Nemoto Y, Yamauchi Y . Chem. Mater., 2010,22(9):2835.
[4]
Horáček J, Št̓ávová G, Kelbichová V, Kubička D . Catal Today, 2013,204:38.
[5]
Fierro-Gonzalez J C, Gates B C . Langmuir, 2005,21(13):5693.
[6]
Kim S W, Kim M, Lee W Y, Lee W Y, Hyeon T . J. Am. Chem. Soc., 2002,124(26):7642.
[7]
Cui C H, Li H H, Yu S H . Chem Sci., 2011,2(8):1611.
[8]
Li W Y, Cai X, Kim C, Sun G R, Zhang Y, Deng R, Yang M X, Chen J Y, Achilefu S, Wang L, Xia Y N . Nanoscale, 2011,3(4):1724.
[9]
Chinen A B, Guan C M, Ferrer J R, Barnaby S N, Merkel T J, Mirkin C A . Chem. Rev., 2015,115:10530.
[10]
Luo X, Lian S M, Wang L Q, Yang S C, Yang Z M, Ding B J, Song X P . CrystEngComm, 2013,15(14):2588.
[11]
Dong S A, Yang S C, Tang C . Chem. Res. Chin. Univ., 2007,23(5):500.
[12]
Yu Q M, Golden G . Langmuir, 2007,23(17):8659.
[13]
Lu L H, Capek R, Kornowski A, Gaponik, N, Eychmüller, A . Angew. Chem. Int. Ed., 2005,117(37):6151.
[14]
Tessier P M, Velev O D, Kalambur A T, Rabolt J F, Lenhoff A M, Kaler E W . J. Am. Chem. Soc., 2000,122(39):9554.
[15]
Li Y, Cai W P, Duan G T . Chem. Mater., 2007(3), 20:615.
[16]
Rao Y Y, Tao Q, An M, Rong C H, Dong J, Dai R L, Qian W P . Langmuir, 2011,27(21):13308.
[17]
Chen B, Meng G W, Huang Q, Huang Z L, Xu X L, Zhu C H, Qian Y W, Ding Y . ACS Appl. Mater. Interfaces, 2014,6(18):15667.
[18]
Ding L X, Wang A L, Li G R, Liu Z Q, Zhao W X, Su C Y, Tong Y X . J. Am. Chem. Soc., 2012,134(13):5730.
[19]
Yang S C, Luo X . Nanoscale, 2014,6(9):4438.
[20]
Lv J J, Wang A J, Ma X H, Xiang R Y, Chwn J R, Feng J J . J. Mater. Chem. A., 2015,3(1):290.
[21]
Wang J M, Yang P, Cao M M, Kong N, Yang W R, Sun S, Meng Y, Liu J Q . Talanta, 2016,147:184.
[22]
Chapman C A R, Wang L, Biener J, Seker E, Biener M, Matthews M J . Nanoscale, 2016,8(2):785.
[23]
Liu K, Bai Y C, Zhang L, Yang Z B, Fan Q K, Zheng H Q, Yin Y D, Gao C B . Nano lett., 2016,16(6):3675.
[24]
Velev O D, Kaler E W . Adv. Mater., 2000,12(7):531.
[25]
Lu L, Eychmüller A . Acc. Chem. Res., 2008,41(2):244.
[26]
Jiang P . Angew. Chem. Int. Ed., 2004,43(42):5625.
[27]
Zhang X Y, Lu W, Dai J Y, Bourgeors L, Hao N, Wang H T, Zhao D Y, Webley P A . Angew. Chem. Int. Ed., 2010,49(52):10101.
[28]
Sugimoto W, Makino S, Mukai R, Tatsum Y, Fukuda K, Takasu Y, Yamauchi Y , et al. J. Power Sources, 2012,204:244.
[29]
Jiang J, Kucernak A . Chem. Mater., 2004,16(7):1362.
[30]
Li Y, Song Y Y, Yang C, Xia X H . Electrochem. Commun., 2007,9(5):981.
[31]
Zhu C Z, Du D, Eychmūller A, Lin Y H . Chem. Rev., 2015,115(16):8896.
[32]
Jiang P, Cizeron J, Bertone J F, Colvin V L . J. Am. Chem. Soc., 1999,121(34):7957.
[33]
Kibsgaard J, Gorlin Y, Chen Z B, Jaramillo T F . J. Am. Chem. Soc., 2012,134(18):7758.
[34]
Yang S K, Sun N, Stogin B B, Wang J, Huang Y, Wong T S . Nat. Commun., 2017,8(1):1285.
[35]
Ding S H, Qian W P, Tan Y, Wang Y . Langmuir, 2006,22(17):7105.
[36]
Yamauchi Y, Kuroda K . Chem.-Asian J., 2008,3(4):664.
[37]
Attard G S, Bartlett P N, Coleman N R B, Elliott J M, Owen J R, Wang J H . Science, 1997,278(5339):838.
[38]
Attard G S, Corker J M, Göltner C G, Henke S, Templer R H . Angew. Chem. Int. Ed. Engl., 1997,36(12):1315.
[39]
Yuan C H, Zhong L N, Yang C J, Chen G J, Jiang B j, Deng Y M, Xu Y T, Luo W A, Zeng B R, Liu J, Bai L Z . J. Mater. Chem., 2012,22(15):7108.
[40]
Yamauchi Y, Sugiyama A, Morimoto R, Takai A, Kurona K . Angew. Chem. Int. Ed., 2008,120(29):5451.
[41]
Lee M N, Mohraz A . J. Am. Chem. Soc., 2011,133(18):6945.
[42]
Tan Y W, Zang X N, Gu J J, Liu D X, Zhu S M, Su H L, Feng C L, Liu Q L, Lau W M, Moon W J, Zhang D . Langmuir, 2011,27(19):11742.
[43]
Song G F, Zhou H, Gu J J, Liu Q L, Zhang W, Su H L, Su Y S, Yao Q H, Zhang D . J. Mater. Chem. B., 2017,5(8):1594.
[44]
Xu G L, Li H, Ma X P, Jia X P, Dong J, Qian W P . Biosens. Bioelectron., 2009,25(2):362.
[45]
Wang W S, Dahl M, Yin Y D . Chem. Mater., 2012,25(8):1179.
[46]
González E, Arbiol J, Puntes V F . Science, 2011,334(6061):1377.
[47]
Yavuz M S, Cheng Y Y, Chen J Y, Cobley C M, Zhang Q, Rycenga M, Xie J W, Kim C, Song K H, Schwartz A G, Wang L V, Xia Y N . Nat. Mater., 2009,8(12):935.
[48]
Mahmoud M A, Qian W, El-Sayed M A . Nano Lett., 2011,11(8):3285.
[49]
Zhang W X, Yang X N, Zhu Q, Wang K, Lu J B, Chen M, Yang Z H . Ind. Eng. Chem. Res., 2014,53(42):16316.
[50]
Hong F, Sun S D, You H J, Yang S C, Fang J X, Guo S W, Yang Z M, Ding B J, Song X P . Cryst. Growth Des., 2011,11(9):3694.
[51]
Zhang H Y, Wang H P, Cao J J, Ni Y H . J. Alloy. Compd., 2017,698:654.
[52]
Ringe E, Langille M R, Sohn K, Zhang J, Huang J X, Mirkin C A, Duyne R P V, Marks L D . J. Phys. Chem. Lett., 2012,3(11):1479.
[53]
Zhang Z Y, Chen Z P, Qu C L, Chen L X . Langmuir, 2014,30(12):3625.
[54]
Zhang Y, Wang G, Yang L, Wang F, Liu A H . Coord. Chem. Rev., 2018,370:1.
[55]
Zhang Q, Cobley C M, Zeng J, Wen L P, Chen J Y, Xia Y N . J. Phys. Chem. C, 2010,114(14):6396.
[56]
Hong G, Li C . Adv. Func. Mater., 2010,20(21):3774.
[57]
Liu A H, Wang G Q, Wang F, Zhang Y . Coord. Chem. Rev., 2017,336:28.
[58]
Zhang X Y, Zheng Y H, Liu X, Lu W, Dai J Y, Lei D Y, MacFarlane D R . Adv. Mater., 2015,27(6):1090.
[59]
Yang D P, Chen S H, Huang P, Wang X S, Jian W Q, Pandoli D, Cui D X . Green Chem., 2010,12(11):2038.
[60]
Lu W B, Wang Y, Cao X W, Li L, Dong J, Qian W P . New J. Chem., 2015,39(7):5420.
[61]
Li L, Liu C, Cao X W, Wang Y, Dong J, Qian W P . Anal. Lett., 2017,50(6):982.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[4] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[5] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[6] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[9] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[10] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[11] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[12] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[13] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[14] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[15] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.