English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2476-2488 DOI: 10.7536/PC220321 前一篇   后一篇

• 综述 •

光响应Janus粒子体系的构建与应用

郑明心, 谭臻至, 袁金颖*()   

  1. 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
  • 收稿日期:2022-03-23 修回日期:2022-07-06 出版日期:2022-11-24 发布日期:2022-07-15
  • 通讯作者: 袁金颖
  • 基金资助:
    国家自然科学基金项目(22071131); 国家自然科学基金项目(21871162)

Construction and Application of Photoresponsive Janus Particles

Mingxin Zheng, Zhenzhi Tan, Jinying Yuan()   

  1. Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University,Beijing 100084, China
  • Received:2022-03-23 Revised:2022-07-06 Online:2022-11-24 Published:2022-07-15
  • Contact: Jinying Yuan
  • Supported by:
    National Natural Science Foundation of China(22071131); National Natural Science Foundation of China(21871162)

Janus粒子通常由两种或两种以上不同物理或化学性质的部分组成,其结构的不对称性导致了粒子形貌和性质具有不对称性。与“静态”Janus粒子相比,具有刺激响应性的“动态”Janus粒子能够与环境发生相互作用,在外界刺激下表达特殊功能。光响应Janus粒子是一类可以在光刺激下发生特定响应的Janus粒子,其两侧不同的组成不仅可以结合多种类型的光响应性,也能与其他类型的刺激响应进行配合,从而实现对特定体系的精确调控。由于光能易于调节的特性,光响应Janus粒子可以与无机纳米团簇或有机官能团产生特定反应,具有光热效应、色彩调节、光动力治疗等独特特性。它们还可以应用于药物递送、生物传感与成像、微纳米马达和光致发光等领域,为解决生物医学和光学器件相关的问题提供了新的方法。本文主要介绍光响应Janus粒子近期发展的制备方法,并着重阐述其独特调控机理以及其在生物医药、发光材料等领域的突出应用,最后对目前该领域的发展前景做出展望。

Janus particles are usually composed of parts with two or more different physical or chemical properties, and are characterized by structural asymmetry, which leads to asymmetries in particle morphology and physical properties. Compared with static Janus particles, dynamic Janus particles, which can realize stimuli-response, can interact with the environment well to express their special role in a specific environment under external stimulus. Photoresponsive Janus particles are asymmetric particles that can respond to specific light stimuli. Different materials on both sides of Janus particles can not only compound with different types of photoresponse, but also can compound with other types of stimuli-responses, to achieve precise regulation of specific systems. Because the energy of light can be easily regulated, photoresponsive Janus particles can produce specific reactions to inorganic nanoclusters or organic functional groups. So photoresponsive Janus particles can present photothermal effect, color adjustment, photodynamic therapy and other unique properties. They can also be applicated in drug delivery, biological sensing and imaging, micro nanomotors and photoluminescence, which provides a new way to solve problems in the field of biomedicine and optical devices. In this paper, the recent development of preparation methods of inorganic and polymeric photoresponsive Janus particles are introduced, and their unique regulatory mechanism and outstanding applications in the fields of biomedicine and luminescent materials are emphasized. Finally, the challenges and development prospects in this field are discussed.

Contents

1 Introduction

2 Preparation of photoresponsive Janus particles

2.1 Preparation of inorganic photoresponsive Janus particles

2.2 Preparation of polymeric photoresponsive Janus particles

2.3 Preparation of hybrid photoresponsive Janus particles

3 Regulation of photoresponsive Janus particles

3.1 Structure regulation

3.2 Performance regulation

3.3 Other regulation

4 Application of photoresponsive Janus particles

4.1 Drug delivery

4.2 Biosensing and imaging

4.3 Micro/nano-motor

4.4 Photoluminescence

5 Conclusion and outlook

()
图1 (a)交联两亲嵌段共聚物溶液自组装形成Janus粒子方法[33]。(b)三嵌段[34]和(c)两种两嵌段两亲性共聚物形成Janus粒子[35]
Fig. 1 (a) Self-assembly of crosslinking amphiphilic block copolymer to form Janus particles. Copyright 2012, American Chemical Society[33]. (b) Triblock[34] and (c) two diblock amphiphilic copolymers to form Janus particles[35]. Copyright 2016, Wiley-VCH. Copyright 2017, American Chemical Society
图2 (a)基于PAZO-ADMA的光致形变Janus粒子的合成。(b)~(d)在不同光极化下光致形变Janus粒子的形变方向和程度[44]
Fig.2 (a)Synthesis of photodeformed Janus particles based on PAZO-ADMA. (b)-(d) Direction and degree of photodeformation of Janus particles under different optical polarization[44]. Copyright 2018, American Chemical Society
图3 (a)紫外光下和(b)可见光下PMAAz光致形变Janus粒子的形貌;(c)PMAAz Janus粒子各嵌段组成;(d)PMAAz Janus粒子紫外-可见形变机制[47]
Fig.3 Morphology of PMAAz photodeformed Janus particles under (a) ultraviolet light and (b) visible light. (c) Composition of the PMAAz Janus particles in each segment. (d) UV-visible deformation mechanism of PMAAz Janus particles[47]. Copyright 2018, American Chemical Society
图4 B-L结构Janus粒子由于其两侧不对称的结构特征可反射不同波长的光:(a)B-L Janus粒子合成路线示意图;(b)B-L层的SEM显微图;(c),(d)不同PEO-b-PCL含量的B-L Janus粒子的显色图像[54]
Fig.4 The B-L structure Janus particles can reflect different wavelengths of light due to their asymmetric structure. (a) B-L Janus particle synthesis route. (b) SEM micrograph of B-L layer. (c), (d) Different color patterns of B-L Janus particles with different PEO-b-PCL contents[54]. Copyright 2021, Wiley-VCH
图5 FA-PEG-MNS Janus粒子治疗癌症的机理和其形貌[62]
Fig.5 Mechanism and morphology of FA-PEG-MNS Janus particles in cancer therapy[62]. Copyright 2019, American Chemical Society
图6 UCNPs与PCN-224(Fe)结合的核-壳-壳Janus粒子的癌症治疗机理[67]
Fig.6 Cancer therapeutic mechanisms of UCNPs and PCN-224(Fe) core-shell-shell Janus particles[67]. Copyright 2021, American Chemical Society
图7 (a~c)MPCM-JMSNM 制备流程、作用机理及粒子形貌[75];(d~f)掺杂Gd(Ⅲ)的Au Janus粒子结构和癌细胞杀伤机制[76]
Fig.7 (a~c) The preparation process, action mechanism and particle morphology of MPCM-JMSNM[75]. Copyright 2018, Wiley-VCH. (d~f) The structure and cancer cell killing mechanism of Au Janus particle doped with Gd(Ⅲ)[76]. Copyright 2021, Wiley-VCH
图8 Au-WO3@C Janus粒子制备路线及催化染料分解机理[79]
Fig.8 Preparation route of Au-WO3@C Janus particle and catalytic decomposition mechanism of dyes[79]. Copyright 2017, American Chemical Society
图9 (a,b)Ag2S-ZnS 光致发光Janus粒子[85];(c~e)利用帽状SiO2稳定CsPbBr3光致发光Janus粒子的制备及形貌特征[87]。
Fig.9 (a,b) Ag2S-ZnS photoluminescent Janus particles[85]. Copyright 2011, Wiley-VCH. (c~e) Preparation and morphology of CsPbBr3 photoluminescent Janus particles stabilized by Cap-like SiO2[87]. Copyright 2018, American Chemical Society.
[1]
Lattuada M, Hatton T A. Nano Today, 2011, 6(3): 286.

doi: 10.1016/j.nantod.2011.04.008     URL    
[2]
Synytska A, Ionov L. Part. Part. Syst. Charact., 2013, 30(11): 922.

doi: 10.1002/ppsc.201300146     URL    
[3]
Zhang Y X, Bao Y, Ma J Z. Prog. Chem., 2021, 33: 254.
(张元霞, 鲍艳, 马建中, 化学进展, 2021, 33: 254.).

doi: 10.7536/PC200449    
[4]
Zou D Q, Wang C, Xiao F, Wei Y C, Geng L, Wang L. Prog. Chem., 2021, 33:2056.
(邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊, 化学进展, 2021, 33: 2056.).

doi: 10.7536/PC200919    
[5]
Zhang X, Fu Q R, Duan H W, Song J B, Yang H H. ACS Nano, 2021, 15(4): 6147.

doi: 10.1021/acsnano.1c01146     pmid: 33739822
[6]
Kirillova A, Marschelke C, Synytska A. ACS Appl. Mater. Interfaces, 2019, 11(10): 9643.

doi: 10.1021/acsami.8b17709     URL    
[7]
Haarindraprasad R, Gopinath S C B, Veeradassan P. Biotechnol. Appl. Biochem., 2022, doi: 10.1002/bab.2316.

doi: 10.1002/bab.2316    
[8]
Duan W, Qiu Z W, Cao S F, Guo Q, Huang J K, Xing J Y, Lu X Q, Zeng J B. Biosens. Bioelectron., 2022, 196: 113724.

doi: 10.1016/j.bios.2021.113724     URL    
[9]
Hartley G S. Nature, 1937, 140(3537): 281.
[10]
Abdollahi A, Roghani-Mamaqani H, Herizchi A, Alidaei-Sharif H, Enayati A, Sajedi-Amin S. Polym. Chem., 2020, 11(12): 2053.

doi: 10.1039/D0PY00078G     URL    
[11]
Li S N, Zhang L Y, Liang X, Wang T T, Chen X J, Liu C M, Li L, Wang C G. Chem. Eng. J., 2019, 378: 122175.

doi: 10.1016/j.cej.2019.122175     URL    
[12]
Gao P C, Sun S, Wang Y, Wei Y Y, Jiang Y. Chem. Eng. J., 2022, 428: 131284.

doi: 10.1016/j.cej.2021.131284     URL    
[13]
Niehues M, Engel S, Ravoo B J. Langmuir, 2021, 37(37): 11123.

doi: 10.1021/acs.langmuir.1c01979     URL    
[14]
Wen W, Chen A H. Polym. Chem., 2021, 12(16): 2447.

doi: 10.1039/D1PY00223F     URL    
[15]
Wang H, Cai L J, Zhang D G, Shang L R, Zhao Y J. Research, 2021, 2021: 9829068.
[16]
Zhang D, Lin Z G, Lan S Y, Sun H Y, Zeng Y Y, Liu X L. Mater. Chem. Front., 2019, 3(4): 656.

doi: 10.1039/C8QM00623G     URL    
[17]
Zhou X, Huang X H, Wang B C, Tan L H, Zhang Y, Jiao Y P. Chem. Eng. J., 2021, 408: 127897.

doi: 10.1016/j.cej.2020.127897     URL    
[18]
Rostami-Tapeh-Esmail E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H. Mater. Sci. Eng. C, 2020, 110: 110745.

doi: 10.1016/j.msec.2020.110745     URL    
[19]
Hao L W, Liu J D, Li Q, Qing R K, He Y Y, Guo J Z, Li G, Zhu L L, Xu C, Chen S. J. Mater. Sci. Technol., 2021, 81: 203.

doi: 10.1016/j.jmst.2020.11.063     URL    
[20]
Gao W, D'Agostino M, Garcia-Gradilla V, Orozco J, Wang J. Small, 2013, 9(3): 467.

doi: 10.1002/smll.201201864     URL    
[21]
Huang Y Y, Li T, Gao W T, Wang Q, Li X Y, Mao C, Zhou M, Wan M M, Shen J. J. Mater. Chem. B, 2020, 8(26): 5765.

doi: 10.1039/D0TB00789G     URL    
[22]
Qin W W, Peng T H, Gao Y J, Wang F, Hu X C, Wang K, Shi J Y, Li D, Ren J C, Fan C H. Angew. Chem. Int. Ed., 2017, 56(2): 515.

doi: 10.1002/anie.201609121     URL    
[23]
Mogulkoc Y, Caglayan R, Ciftci Y O. Phys. Rev. Applied, 2021, 16(2): 024001.

doi: 10.1103/PhysRevApplied.16.024001     URL    
[24]
Montes-García V, Samorì P. Chem. Sci., 2022, 13(2): 315.

doi: 10.1039/d1sc05836c     pmid: 35126966
[25]
Guo X Y, Liu S, Wang W J, Zhu C T, Li C Y, Yang Y, Tian Q H, Liu Y. J. Colloid Interface Sci., 2021, 600: 838.

doi: 10.1016/j.jcis.2021.05.073     URL    
[26]
Cozzoli P D, Pellegrino T, Manna L. Chem. Soc. Rev., 2006, 35(11): 1195.

doi: 10.1039/b517790c     URL    
[27]
Casavola M, Buonsanti R, Caputo G, Cozzoli P D. Eur. J. Inorg. Chem., 2008, 2008(6): 837.

doi: 10.1002/ejic.200701047     URL    
[28]
Iqbal M Z, Ren W Z, Saeed M, Chen T X, Ma X H, Yu X, Zhang J C, Zhang L L, Li A G, Wu A G. Nano Res., 2018, 11(10): 5735.

doi: 10.1007/s12274-017-1628-x     URL    
[29]
Singh G, Komal K, Singh G, Kaur M, Kang T S. J. Mater. Chem. A, 2019, 7(10): 5185.

doi: 10.1039/C9TA00178F     URL    
[30]
Singh G, Kamboj R, Singh Mithu V, Chauhan V, Kaur T, Kaur G, Singh S, Singh Kang T. J. Colloid Interface Sci., 2017, 496: 278.

doi: 10.1016/j.jcis.2017.02.021     URL    
[31]
Shao J X, Cao S P, Williams D S, Abdelmohsen L K E A, Hest J C M. Angew. Chem. Int. Ed., 2020, 59(39): 16918.

doi: 10.1002/anie.202003748     URL    
[32]
Zhang L L, Xiao Z Y, Chen X, Chen J Y, Wang W. ACS Nano, 2019, 13(8): 8842.

doi: 10.1021/acsnano.9b02100     URL    
[33]
Gröschel A H, Walther A, Löbling T I, Schmelz J, Hanisch A, Schmalz H, Müller A H E. J. Am. Chem. Soc., 2012, 134(33): 13850.

doi: 10.1021/ja305903u     pmid: 22834562
[34]
Zhang Z, Zhou C M, Dong H Y, Chen D Y. Angew. Chem. Int. Ed., 2016, 55(21): 6182.

doi: 10.1002/anie.201511768     pmid: 27071692
[35]
Zhang Z, Li H D, Huang X Y, Chen D Y. ACS Macro Lett., 2017, 6(6): 580.

doi: 10.1021/acsmacrolett.7b00296     URL    
[36]
Long S, Chen C Y, Luo J, Dong H Y, Wu L M, Chen D Y. Polym. Chem., 2016, 7(46): 7170.

doi: 10.1039/C6PY01816E     URL    
[37]
Romano A, Sangermano M, Rossegger E, Mühlbacher I, Griesser T, Giebler M, Palmara G, Frascella F, Roppolo I, Schlögl S. Polym. Chem., 2021, 12(27): 3925.

doi: 10.1039/D1PY00459J     URL    
[38]
Wei C, Du Y X, Liu Y Y, Lin X Q, Zhang C, Yao J N, Zhao Y S. J. Am. Chem. Soc., 2019, 141(13): 5116.

doi: 10.1021/jacs.9b00362     URL    
[39]
Han S W, Choi S E, Chang D H, Lee D, Kim B, Yang H, Seo M, Kim J W. Adv. Funct. Mater., 2019, 29(6): 1805392.

doi: 10.1002/adfm.201805392     URL    
[40]
Lone S, Kim S H, Nam S W, Park S, Joo J, Cheong I W. Chem. Commun., 2011, 47(9): 2634.

doi: 10.1039/c0cc04517a     URL    
[41]
Kang C J, Honciuc A. ACS Nano, 2018, 12(4): 3741.

doi: 10.1021/acsnano.8b00960     URL    
[42]
Wang L, Liu Y J, He J, Hourwitz M J, Yang Y L, Fourkas J T, Han X J, Nie Z H. Small, 2015, 11(31): 3762.

doi: 10.1002/smll.201500527     pmid: 25925707
[43]
Wang Y, Shang M X, Wang Y N, Xu Z R. Anal. Methods, 2019, 11(31): 3966.

doi: 10.1039/C9AY01213C     URL    
[44]
Zhou X R, Du Y, Wang X G. ACS Macro Lett., 2016, 5(2): 234.

doi: 10.1021/acsmacrolett.5b00932     URL    
[45]
Rochon P, Batalla E, Natansohn A. Appl. Phys. Lett., 1995, 66(2): 136.

doi: 10.1063/1.113541     URL    
[46]
Kim D Y, Tripathy S K, Li L, Kumar J. Appl. Phys. Lett., 1995, 66(10): 1166.

doi: 10.1063/1.113845     URL    
[47]
Hou X J, Guan S, Qu T, Wu X F, Wang D, Chen A H, Yang Z Z. ACS Macro Lett., 2018, 7(12): 1475.

doi: 10.1021/acsmacrolett.8b00750     URL    
[48]
Cao Z Q, Wang G J, Chen Y, Liang F X, Yang Z Z. Macromolecules, 2015, 48(19): 7256.

doi: 10.1021/acs.macromol.5b01257     URL    
[49]
Eustis S, El-Sayed M A. Chem. Soc. Rev., 2006, 35(3): 209.

pmid: 16505915
[50]
Ding X G, Liow C H, Zhang M X, Huang R J, Li C Y, Shen H, Liu M Y, Zou Y, Gao N, Zhang Z J, Li Y G, Wang Q B, Li S Z, Jiang J. J. Am. Chem. Soc., 2014, 136(44): 15684.

doi: 10.1021/ja508641z     URL    
[51]
Huang X H, El-Sayed I H, Qian W, El-Sayed M A. J. Am. Chem. Soc., 2006, 128(6): 2115.

doi: 10.1021/ja057254a     URL    
[52]
Chu M Q, Shao Y X, Peng J L, Dai X Y, Li H K, Wu Q S, Shi D L. Biomaterials, 2013, 34(16): 4078.

doi: 10.1016/j.biomaterials.2013.01.086     URL    
[53]
Xuan M J, Wu Z G, Shao J X, Dai L R, Si T Y, He Q. J. Am. Chem. Soc., 2016, 138(20): 6492.

doi: 10.1021/jacs.6b00902     URL    
[54]
Guo Q L, Li Y L, Liu Q J, Li Y S, Song D P. Angewandte Chemie Int. Ed., 2022, 61(5): e202113759.
[55]
Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. JNCI J. Natl. Cancer Inst., 1998, 90(12): 889.

doi: 10.1093/jnci/90.12.889     URL    
[56]
Liang C, Zhang X L, Wang Z C, Wang W J, Yang M S, Dong X C. J. Mater. Chem. B, 2020, 8(22): 4748.

doi: 10.1039/d0tb00098a     pmid: 32129418
[57]
Li Y, Zhang W, Niu J F, Chen Y S. ACS Nano, 2012, 6(6): 5164.

doi: 10.1021/nn300934k     URL    
[58]
Hou Y J, Yang X X, Liu R Q, Zhao D, Guo C X, Zhu A C, Wen M N, Liu Z, Qu G F, Meng H X. Int. J. Nanomed., 2020, 15: 6827.

doi: 10.2147/IJN.S269321     URL    
[59]
Zhao L Y, Liu Y M, Xing R R, Yan X H. Angew. Chem. Int. Ed., 2020, 59(10): 3793.

doi: 10.1002/anie.201909825     URL    
[60]
Li J, Zhang W, Ji W H, Wang J Q, Wang N X, Wu W X, Wu Q, Hou X Y, Hu W B, Li L. J. Mater. Chem. B, 2021, 9(38): 7909.

doi: 10.1039/D1TB01310F     URL    
[61]
Mura S, Nicolas J, Couvreur P. Nat. Mater., 2013, 12(11): 991.

doi: 10.1038/nmat3776     URL    
[62]
Wang Z, Chang Z M, Shao D, Zhang F, Chen F M, Li L, Ge M F, Hu R, Zheng X, Wang Y S, Dong W F. ACS Appl. Mater. Interfaces, 2019, 11(38): 34755.

doi: 10.1021/acsami.9b12879     URL    
[63]
Niu C, An L, Zhang H J. ACS Appl. Polym. Mater., 2022, 4(6): 4189.

doi: 10.1021/acsapm.2c00161     URL    
[64]
Noh S H, Moon S H, Shin T H, Lim Y, Cheon J. Nano Today, 2017, 13: 61.

doi: 10.1016/j.nantod.2017.02.006     URL    
[65]
Johannsen M, Gneveckow U, Eckelt L, Feussner A, WaldÖFner N, Scholz R, Deger S, Wust P, Loening S A, Jordan A. Int. J. Hyperth., 2005, 21(7): 637.

doi: 10.1080/02656730500158360     URL    
[66]
Liu X L, Yang Y, Ng C T, Zhao L Y, Zhang Y, Bay B H, Fan H M, Ding J. Adv. Mater., 2015, 27(11): 1939.

doi: 10.1002/adma.201405036     URL    
[67]
Ma X W, Wang Y Y, Liu X L, Ma H J, Li G L, Li Y, Gao F, Peng M L, Fan H M, Liang X J. Nanoscale Horiz., 2019, 4(6): 1450.

doi: 10.1039/C9NH00233B     URL    
[68]
Espinosa A, Reguera J, Curcio A, Muñoz-Noval Á, Kuttner C, van de Walle A, Liz-Marzán L M, Wilhelm C. Small, 2020, 16(11): 1904960.

doi: 10.1002/smll.201904960     URL    
[69]
Wang Z, Liu B, Sun Q Q, Feng L L, He F, Yang P P, Gai S L, Quan Z W, Lin J. ACS Nano, 2021, 15(7): 12342.

doi: 10.1021/acsnano.1c04280     URL    
[70]
Wang L, Hortelão A C, Huang X, Sánchez S. Angew. Chem. Int. Ed., 2019, 58(24): 7992.

doi: 10.1002/anie.201900697     pmid: 30990243
[71]
Wang L, Marciello M, EstÉvez-Gay M, Soto Rodriguez P E D, Luengo Morato Y, Iglesias-Fernández J, Huang X, Osuna S, Filice M, Sánchez S. Angew. Chem. Int. Ed., 2020, 59(47): 21080.

doi: 10.1002/anie.202008339     URL    
[72]
Wang L, Villa K. Environ. Sci.: Nano, 2021, 8(12): 3440.
[73]
Jalilvand Z, Haider H, Cui J Q, Kretzschmar A I. Langmuir, 2020, 36(25): 6880.

doi: 10.1021/acs.langmuir.9b03454     pmid: 32050073
[74]
Valadares L F, Tao Y G, Zacharia N S, Kitaev V, Galembeck F, Kapral R, Ozin G A. Small, 2010, 6(4): 565.

doi: 10.1002/smll.200901976     pmid: 20108240
[75]
Xuan M J, Shao J X, Gao C Y, Wang W, Dai L R, He Q. Angew. Chem. Int. Ed., 2018, 57(38): 12463.

doi: 10.1002/anie.201806759     URL    
[76]
Zheng S H, Wang Y, Pan S H, Ma E H, Jin S, Jiao M, Wang W J, Li J J, Xu K, Wang H. Adv. Funct. Mater., 2021, 31(24): 2100936.

doi: 10.1002/adfm.202100936     URL    
[77]
Cao S P, Shao J X, Wu H L, Song S D, de Martino M T, Pijpers I A B, Friedrich H, Abdelmohsen L K E A, Williams D S, van Hest J C M. Nat. Commun., 2021, 12: 2077.

doi: 10.1038/s41467-021-22279-w     URL    
[78]
Zuo X Y, Zhang M, Wu Q H, Li Y Y, Zhang G L, Liang F X, Yang Z Z. Chem. Commun., 2021, 57(47): 5834.

doi: 10.1039/D1CC01172C     URL    
[79]
Zhang Q L, Dong R F, Wu Y F, Gao W, He Z H, Ren B Y. ACS Appl. Mater. Interfaces, 2017, 9(5): 4674.

doi: 10.1021/acsami.6b12081     URL    
[80]
Dong R F, Zhang Q L, Gao W, Pei A, Ren B Y. ACS Nano, 2016, 10(1): 839.

doi: 10.1021/acsnano.5b05940     URL    
[81]
Bailey M R, Grillo F, Spencer N D, Isa L. Adv. Funct. Mater., 2022, 32(7): 2109175.

doi: 10.1002/adfm.202109175     URL    
[82]
Dexter D L. J. Chem. Phys., 1953, 21(5): 836.

doi: 10.1063/1.1699044     URL    
[83]
Du Y P, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q B. J. Am. Chem. Soc., 2010, 132(5): 1470.

doi: 10.1021/ja909490r     URL    
[84]
Zhang Y J, Xu H R, Wang Q B. Chem. Commun., 2010, 46(47): 8941.

doi: 10.1039/c0cc02549f     URL    
[85]
Shen S L, Zhang Y J, Peng L, Du Y P, Wang Q B. Angew. Chem. Int. Ed., 2011, 50(31): 7115.

doi: 10.1002/anie.201101084     URL    
[86]
Zhang H B, Huang C, Li N S, Wei J. J. Colloid Interface Sci., 2021, 592: 249.

doi: 10.1016/j.jcis.2021.02.068     URL    
[87]
Hu H C, Wu L Z, Tan Y S, Zhong Q X, Chen M, Qiu Y H, Yang D, Sun B Q, Zhang Q, Yin Y D. J. Am. Chem. Soc., 2018, 140(1): 406.

doi: 10.1021/jacs.7b11003     URL    
[88]
Li M, Zhang X, Yang P. Nanoscale, 2021, 13(6): 3860.

doi: 10.1039/D0NR08325A     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[3] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[4] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[5] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[8] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[9] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[10] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[11] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[12] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[13] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[14] 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262.
[15] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.