English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2085-2102 DOI: 10.7536/PC200857 前一篇   后一篇

• 综述 •

MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用

刘陈1, 李强翔4, 张迪1, 郦瑜杰3, 刘金权2,*(), 肖锡林2,*()   

  1. 1 南华大学化学化工学院 衡阳 421001
    2 南华大学公共卫生学院 典型环境污染与健康危害湖南省重点实验室 衡阳 421001
    3 南华大学资源环境与安全工程学院 衡阳 421001
    4 宁夏医科大学附属自治区人民医院 银川 750001
  • 收稿日期:2020-08-24 修回日期:2020-10-10 出版日期:2021-11-20 发布日期:2020-12-31
  • 通讯作者: 刘金权, 肖锡林
  • 基金资助:
    国家自然科学基金项目(11475079); 化学生物传感与计量学国家重点实验室(湖南大学)开放课题(2018010)

Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors

Chen Liu1, Qiangxiang Li4, Di Zhang1, Yujie Li3, Jinquan Liu2(), Xilin Xiao2()   

  1. 1 School of Chemistry and Chemical Engineering, University of South China,Hengyang 421001, China
    2 Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China,Hengyang 421001, China
    3 School of Resource & Environment and Safety Engineering, University of South China,Hengyang 421001, China
    4 Ningxia Medical University Affiliated People’s Hospital of Autonomous Region,Yinchuan 750001, China
  • Received:2020-08-24 Revised:2020-10-10 Online:2021-11-20 Published:2020-12-31
  • Contact: Jinquan Liu, Xilin Xiao
  • About author:
    † These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(11475079); Open Project Program of the State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University(2018010)

MCM-41型介孔二氧化硅纳米颗粒具有独特的结构特征和理化性质,能够与DNA、信号探针以及多种活性纳米颗粒结合,在DNA生物传感器中得到了广泛应用。其中,球形和薄膜形的MCM-41型介孔二氧化硅具有高负载量、孔口控释和高比表面积等优点,能有效装载各种信号探针、控制粒子的扩散以及固定大量活性纳米颗粒,可大大提高DNA生物传感器的灵敏度。本文就MCM-41型介孔二氧化硅在合成方式、模板剂去除、表面修饰及应用等三个方面的最新研究作了综述。首先依次介绍了球形和薄膜形MCM-41型介孔二氧化硅的常用合成方法和模板剂去除方法,并简要描述了各方法的优缺点。其次,大致介绍了其表面性质和功能化修饰的研究现状。再次介绍了现阶段将MCM-41型介孔二氧化硅作为信号探针的传递系统、分子筛和活性纳米材料的载体来提高检测灵敏度的DNA生物传感器。最后总结了目前研究中的不足之处并展望了其未来的进展方向。

MCM-41 mesoporous silica nanoparticles(MSNs) have drawn a great deal of attention in biosensors, because of their specific structures and unique physical chemistry properties. Combined with various functional materials or molecules, such as DNA,signal probes and various active nanoparticles, MCM-41 MSNs can be developed into the multifunctional nanomaterials in the application of DNA biosensors. In particular, the spherical and porous film of MCM-41 MSNs have the advantages of high loading capacity, controlled release of pores and high specific surface area, which can effectively load various signal probes, control the spread of particles and fix numerous active nanomaterials. As a result, it will greatly improve the sensitivity of DNA biosensors. This review is intended to focus on the recent progress in synthetic methods, template removal, surface modification and application of MCM-41 MSNs. Firstly, the common methods synthesis and template removal of the spherical and porous film of MCM-41 MSNs are summarized along with a brief introduction on their merits and drawbacks. Secondly, surface modification methods are described, including surface stabilization and surface functionalization. Thirdly, the application of the spherical and porous film of MCM-41 MSNs based on the signal probe delivery system, molecular sieve and active nanomaterials’ carrier to improve sensitivity in DNA biosensors are concluded. The final part outlines the challenges and perspectives.

Content

1 Introduction

2 Syntheses of MCM-41 MSNs

2.1 Spherical MCM-41 MSNs

2.2 Porous film of MCM-41 MSNs

3 Methods of removing templates

3.1 High-temperature calcination

3.2 Solvent extraction method

3.3 Microwave removal

3.4 Ultrasonic removal

3.5 Oxidation treatment

3.6 Others

4 Surface modification and functionalization

4.1 Surface functional modification

4.2 Surface modification for specific targeting

5 Application of MCM-41 MSNs in DNA biosensors

5.1 Signal probe carrier

5.2 Molecular sieve

5.3 Active nanomaterials carrier

6 Conclusion and outlook

()
图1 球形MCM-41 MSNs装载荧光探针作为荧光信号的传递系统[161]
Fig. 1 The fluorescent signal delivery system of spherical MCM-41 MSNs loaded with fluorescent probes[161]
图2 经MCM-41 MSNs薄膜修饰的ITO电极装载电化学发光探针作为电化学发光信号的传递系统[169]
Fig. 2 The electrochemiluminescence signal delivery system of ITO/MCM-41-MSNs film loaded with electrochemiluminescence probe[169]
图3 球形MCM-41 MSNs固定AuNPs和量子点作为光电化学信号放大的载体[209]
Fig. 3 The carrier for photo-electrochemistry signal amplification based on spherical MCM-41 MSNs fixed with AuNPs and quantum dots[209]
[1]
Tang Q, Yuan Y L, Xiao X L, Guo P, Hu J B, Ma D D, Gao Y Y. Microchimica Acta, 2013, 180(11/12): 1059.

doi: 10.1007/s00604-013-1021-8     URL    
[2]
Ye S J, Li H X, Cao W. Biosens. Bioelectron., 2011, 26(5): 2215.

doi: 10.1016/j.bios.2010.09.037     URL    
[3]
Zhang X R, Zhao Y Q, Zhou H R, Qu B. Biosens. Bioelectron., 2011, 26(5): 2737.

doi: 10.1016/j.bios.2010.09.051     URL    
[4]
Elicia L S,. Wong J,. Justin Gooding. Anal. Chem. 2006, 78: 2138.

pmid: 16579591
[5]
Downs M E A, Kobayashi S, Karube I. Anal. Lett., 1987, 20(12): 1897.

doi: 10.1080/00032718708078036     URL    
[6]
Lin X H, Wu P, Chen W, Zhang Y F, Xia X H. Talanta, 2007, 72(2): 468.

doi: 10.1016/j.talanta.2006.11.015     URL    
[7]
Dzudzevic Cancar H, Soylemez S, Akpinar Y, Kesik M, Göker S, Gunbas G, Volkan M, Toppare L. ACS Appl. Mater. Interfaces, 2016, 8(12): 8058.

doi: 10.1021/acsami.5b12383     URL    
[8]
Wang Z M, Zhang D, Xiao X L, Su C L, Li Z Y, Xue J H, Hu N, Peng P C, Liao L F, Wang H Q. Microchem. J., 2020, 155: 104767.
[9]
Xiao X L, Zhu G Z, Liao L F, Liu B, Yuan Y L, Wang Y S, He J, He B, Wu Y M. Electrochimica Acta, 2012, 74: 105.

doi: 10.1016/j.electacta.2012.04.006     URL    
[10]
Su C L, Li Z Y, Zhang D, Wang Z M, Zhou X, Liao L F, Xiao X L. Biosens. Bioelectron., 2020, 148: 111819.
[11]
Ting B P, Zhang J, Gao Z Q, Ying J Y. Biosens. Bioelectron., 2009, 25(2): 282.

doi: 10.1016/j.bios.2009.07.005     URL    
[12]
Wan Y, Wang P J, Su Y, Wang L H, Pan D, Aldalbahi A, Yang S L, Zuo X L. ACS Appl. Mater. Interfaces, 2015, 7(46): 25618.

doi: 10.1021/acsami.5b08817     URL    
[13]
Wang M Q, Du X Y, Liu L Y, Sun Q, Jiang X C. Chin. J. Anal. Chem., 2008, 36(7): 890.

doi: 10.1016/S1872-2040(08)60048-1     URL    
[14]
Ali A, Ansari A A, Kaushik A, Solanki P R, Barik A, Pandey M K, Malhotra B D. Mater. Lett., 2009, 63(28): 2473.

doi: 10.1016/j.matlet.2009.08.038     URL    
[15]
Cheng G F, Huang C H, Zhao J, Tan X L, He P G, Fang Y Z. Chin. J. Anal. Chem., 2009, 37(2): 169.

doi: 10.1016/S1872-2040(08)60083-3     URL    
[16]
Zhang W, Yang T, Zhuang X M, Guo Z Y, Jiao K. Biosens. Bioelectron., 2009, 24(8): 2417.

doi: 10.1016/j.bios.2008.12.024     pmid: 19167208
[17]
García-Mendiola T, Bravo I, LÓpez-Moreno J M, Pariente F, Wannemacher R, Weber K, Popp J, Lorenzo E. Sens. Actuat. B: Chem., 2018, 256: 226.

doi: 10.1016/j.snb.2017.10.105     URL    
[18]
Xiang Q, Huang J Y, Huang H Y, Mao W W, Ye Z Z. RSC Adv., 2018, 8(4): 1820.

doi: 10.1039/C7RA11945C     URL    
[19]
Zhang C, Lou J, Tu W W, Bao J C, Dai Z H. Anal., 2015, 140(2): 506.

doi: 10.1039/C4AN01284D     URL    
[20]
Sengiz C, Congur G, Eksin E, Erdem A. Electroanalysis, 2015, 27(8): 1855.

doi: 10.1002/elan.v27.8     URL    
[21]
Wang H J, Qian D, Xiao X L, Gao S Q, Cheng J L, He B, Liao L F, Deng J. Biosens. Bioelectron., 2017, 94: 663.

doi: 10.1016/j.bios.2017.03.055     URL    
[22]
Peng P C, Liao L F, Yu Z H, Jiang M, Deng J, Xiao X L. Int. J. Environ. Anal. Chem., 2019, 99(15): 1495.

doi: 10.1080/03067319.2019.1622697     URL    
[23]
Shao K, Wang B R, Nie A, Ye S Y, Ma J, Li Z H, Lv Z, Han H Y. Biosens. Bioelectron., 2018, 118: 160.

doi: 10.1016/j.bios.2018.07.029     URL    
[24]
Wu S, Li C, Shi H, Huang Y, Li G X. Anal. Chem., 2018, 90(16): 9929.

doi: 10.1021/acs.analchem.8b02127     URL    
[25]
Yan T T, Zhu L Y, Ju H X, Lei J P. Anal. Chem., 2018, 90(24): 14493.

doi: 10.1021/acs.analchem.8b04338     URL    
[26]
Dong S B, Zhao R T, Zhu J G, Lu X, Li Y, Qiu S F, Jia L L, Jiao X, Song S P, Fan C H, Hao R Z, Song H B. ACS Appl. Mater. Interfaces, 2015, 7(16): 8834.

doi: 10.1021/acsami.5b01438     URL    
[27]
Giovanni M, Setyawati M I, Tay C Y, Qian H, Kuan W S, Leong D T. Adv. Funct. Mater., 2015, 25(25): 3840.

doi: 10.1002/adfm.v25.25     URL    
[28]
Zhang L B, Guo S J, Zhu J B, Zhou Z X, Li T, Li J, Dong S J, Wang E K. Anal. Chem., 2015, 87(22): 11295.

doi: 10.1021/acs.analchem.5b02468     URL    
[29]
Amini B, Kamali M, Salouti M, Yaghmaei P. Biosens. Bioelectron., 2017, 92: 679.

doi: 10.1016/j.bios.2016.10.030     URL    
[30]
Li M H, Wang Y S, Cao J X, Chen S H, Tang X, Wang X F, Zhu Y F, Huang Y Q. Biosens. Bioelectron., 2015, 72: 29.
[31]
Tang Q, Yuan Y L, Xiao X L, Guo P, Hu J B, Ma D D, Gao Y Y. Microchimica Acta, 2013, 180(11/12): 1059.

doi: 10.1007/s00604-013-1021-8     URL    
[32]
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. J. Am. Chem. Soc., 1992, 114(27): 10834.

doi: 10.1021/ja00053a020     URL    
[33]
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359(6397): 710.

doi: 10.1038/359710a0     URL    
[34]
Liu S Q, Lebedev O I, Mertens M, Meynen V, Cool P, Tendeloo G V, Vansant E F. Microporous Mesoporous Mater., 2008, 116(1/3): 141.

doi: 10.1016/j.micromeso.2008.03.034     URL    
[35]
Zukal A, Thommes M, Čejka J. Microporous Mesoporous Mater., 2007, 104(1/3): 52.

doi: 10.1016/j.micromeso.2007.01.004     URL    
[36]
Yang J, Frost R L, Tao H, Wen M H. Chin. J. Pro. Eng., 2006, 6(2): 268.
[37]
Díaz de Greñu B, de los Reyes R, Costero A M, AmorÓs P, Ros-Lis J V. Nanomaterials, 2020, 10(6): 1092.

doi: 10.3390/nano10061092     URL    
[38]
Roth W J, Kresge C T, Vartuli J C, Leonowicz M E, Fung A S, McCullen S B. Studies in Surface Science and Catalysis.Amsterdam: Elsevier, 1995. 301.
[39]
Vartuli J C, Schmitt K D, Kresge C T, Roth W J, Leonowicz M E, McCullen S B, Hellring S D, Beck J S, Schlenker J L, Olson D H, Sheppard E W. Studies in Surface Science and Catalysis.Amsterdam: Elsevier, 1994. 53.
[40]
Sheng X Y, Gao J R, Han L, Jia Y X, Sheng W J. Microporous Mesoporous Mater., 2011, 143(1): 73.

doi: 10.1016/j.micromeso.2011.02.008     URL    
[41]
Jaroniec M, Kruk M, Sayari A. Studies in Surface Science and Catalysis.Amsterdam: Elsevier, 1998. 325.
[42]
Cakiryilmaz N, Arbag H, Oktar N, Dogu G, Dogu T. Catal. Today, 2019, 323: 191.

doi: 10.1016/j.cattod.2018.06.004    
[43]
Borawake D D, Gupta A, Thorat S S. J. Biol. Chem. Chron, 2018, 4(3): 24.
[44]
Farjadian F, Ahmadpour P, Samani S M, Hosseini M. Microporous Mesoporous Mater., 2015, 213: 30.

doi: 10.1016/j.micromeso.2015.04.002     URL    
[45]
Pizzoccaro-Zilamy M A, Huiskes C, Keim E G, Sluijter S N, van Veen H, Nijmeijer A, Winnubst L, Luiten-Olieman M W J. ACS Appl. Mater. Interfaces, 2019, 11(20): 18528.

doi: 10.1021/acsami.9b03526     URL    
[46]
Yang X, He D G, Cao J, He X X, Wang K M, Zou Z. RSC Adv., 2015, 5(103): 84553.

doi: 10.1039/C5RA15016G     URL    
[47]
Castillo R R, Lozano D, González B, Manzano M, Izquierdo-Barba I, Vallet-Regí M. Expert. Opin. Drug Deliv., 2019, 16(4): 415.

doi: 10.1080/17425247.2019.1598375     pmid: 30897978
[48]
Kumar P, Tambe P, Paknikar K M, Gajbhiye V. J. Control. Release, 2018, 287: 35.

doi: 10.1016/j.jconrel.2018.08.024     URL    
[49]
He D G, He X X, Wang K M, Chen M, Cao J, Zhao Y X. J. Mater. Chem., 2012, 22(29): 14715.

doi: 10.1039/c2jm32185h     URL    
[50]
Özalp V C, Çam D, Hernandez F J, Hernandez L I, Schäfer T, Öktem H A. Anal., 2016, 141(8): 2595.

doi: 10.1039/C6AN00273K     URL    
[51]
Xiong Y, Deng C H, Zhang X M, Yang P Y. ACS Appl. Mater. Interfaces, 2015, 7(16): 8451.

doi: 10.1021/acsami.5b00515     URL    
[52]
Du Y, Guo S J, Qin H X, Dong S J, Wang E K. Chem. Commun., 2012, 48(6): 799.

doi: 10.1039/C1CC15303J     URL    
[53]
Anandan S, Okazaki M. Microporous Mesoporous Mater., 2005, 87(2): 77.

doi: 10.1016/j.micromeso.2005.07.036     URL    
[54]
Selvam P, Bhatia S K, Sonwane C G. Ind. Eng. Chem. Res., 2001, 40(15): 3237.

doi: 10.1021/ie0010666     URL    
[55]
Bayramoglu G, Ozalp V C, Dincbal U, Arica M Y. ACS Biomater. Sci. Eng., 2018, 4(4): 1437.

doi: 10.1021/acsbiomaterials.8b00018     URL    
[56]
Tasbasi B B, Guner B C, Sudagidan M, Ucak S, Kavruk M, Ozalp V C. Anal. Biochem., 2019, 587: 113449.
[57]
Saadaoui M, Fernández I, Sánchez A, Díez P, Campuzano S, Raouafi N, PingarrÓn J M, Villalonga R. Electrochem. Commun., 2015, 58: 57.

doi: 10.1016/j.elecom.2015.06.006     URL    
[58]
Stöber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26(1): 62.

doi: 10.1016/0021-9797(68)90272-5     URL    
[59]
Mathew A, Parambadath S, Park S S, Ha C S. Microporous Mesoporous Mater., 2014, 200: 124.

doi: 10.1016/j.micromeso.2014.08.033     URL    
[60]
Mody H M, Kannan S, Bajaj H C, Manu V, Jasra R V. J. Porous Mater., 2008, 15(5): 571.

doi: 10.1007/s10934-007-9135-1     URL    
[61]
Xu J Q, Chu W, Luo S Z. J. Mol. Catal. A: Chem., 2006, 256(1/2): 48.

doi: 10.1016/j.molcata.2006.03.078     URL    
[62]
Zhu Y F, Shi J L, Chen H R, Shen W H, Dong X P. Microporous Mesoporous Mater., 2005, 84(1/3): 218.

doi: 10.1016/j.micromeso.2005.05.001     URL    
[63]
Sun Z H, Wang L F, Liu P P, Sun B, Jiang D Z, Xiao F S. Chin. J. Chem., 2006, 24(11): 1653.

doi: 10.1002/(ISSN)1614-7065     URL    
[64]
Xu Y Q, Cao Y, Xia Z N. J. Central South Univ., 2012, 19(8): 2130.

doi: 10.1007/s11771-012-1255-3     URL    
[65]
Na Rungsi A, Luengnaruemitchai A, Wongkasemjit S, Chollacoop N, Chen S Y, Yoshimura Y. Appl. Catal. A: Gen., 2018, 563: 80.

doi: 10.1016/j.apcata.2018.06.028     URL    
[66]
Yoon S S, Son W J, Biswas K, Ahn W S. Bull. Korean Chem. Soc. 2008, 29(3): 609.

doi: 10.5012/bkcs.2008.29.3.609     URL    
[67]
Fowler C E, Khushalani D, Mann S. Chem. Commun., 2001(19): 2028.
[68]
MelÉndez-Ortiz H I, García-Cerda L A, Olivares-Maldonado Y, Castruita G, Mercado-Silva J A, Perera-Mercado Y A. Ceram. Int., 2012, 38(8): 6353.

doi: 10.1016/j.ceramint.2012.05.007     URL    
[69]
Xie W L, Zang X Z. Food Chem., 2016, 194: 1283.

doi: 10.1016/j.foodchem.2015.09.009     URL    
[70]
Ma C Z, Han L, Jiang Z, Huang Z H, Feng J, Yao Y, Che S N. Chem. Mater., 2011, 23(16): 3583.

doi: 10.1021/cm201356n     URL    
[71]
Teng Z G, Zheng G F, Dou Y Q, Li W, Mou C Y, Zhang X H, Asiri A M, Zhao D Y. Angew. Chem. Int. Ed., 2012, 51(9): 2173.

doi: 10.1002/anie.201108748     URL    
[72]
Kao K C, Lin C H, Chen T Y, Liu Y H, Mou C Y. J. Am. Chem. Soc., 2015, 137(11): 3779.

doi: 10.1021/jacs.5b01180     URL    
[73]
Walcarius A, Sibottier E, Etienne M, Ghanbaja J. Nat. Mater., 2007, 6(8): 602.

pmid: 17589513
[74]
Robertson C, Lodge A W, Basa P, Carravetta M, Hector A L, Kashtiban R J, Sloan J, Smith D C, Spencer J, Walcarius A. RSC Adv., 2016, 6(114): 113432.
[75]
Vilà N, AndrÉ E, Ciganda R, Ruiz J, Astruc D, Walcarius A. Chem. Mater., 2016, 28(8): 2511.

doi: 10.1021/acs.chemmater.6b00716     URL    
[76]
Zhou P, Yao L N, Su B. ACS Appl. Mater. Interfaces, 2020, 12(3): 4143.

doi: 10.1021/acsami.9b20165     URL    
[77]
Saadaoui M, Fernández I, Luna G M, Díez P, Campuzano S, Raouafi N, Sánchez A, PingarrÓn J M, Villalonga R. Anal. Bioanal. Chem., 2016, 408(26): 7321.

doi: 10.1007/s00216-016-9608-7     pmid: 27236313
[78]
Vilà N, Walcarius A. Electrochimica Acta, 2015, 179: 304.

doi: 10.1016/j.electacta.2015.02.169     URL    
[79]
He Y Y, Ding L H, Su B. Sci. China Chem., 2015, 58(10): 1593.

doi: 10.1007/s11426-015-5365-2     URL    
[80]
Yan F, Zheng W J, Yao L N, Su B. Chem. Commun., 2015, 51(100): 17736.

doi: 10.1039/C5CC08425C     URL    
[81]
Cai Q, Lin W Y, Xiao F S, Pang W Q, Chen X H, Zou B S. Microporous Mesoporous Mater., 1999, 32(1/2): 1.

doi: 10.1016/S1387-1811(99)00082-7     URL    
[82]
Porta F, Lamers G E M, Morrhayim J, Chatzopoulou A, Schaaf M den Dulk H, Backendorf C, Zink J I, Kros A. Adv. Healthc. Mater., 2013, 2(2): 281.

doi: 10.1002/adhm.v2.2     URL    
[83]
Tian B Z, Liu X Y, Yu C Z, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Chem. Commun., 2002, (11): 1186.
[84]
Jabariyan S, Zanjanchi M A. Ultrason. Sonochemistry, 2012, 19(5): 1087.

doi: 10.1016/j.ultsonch.2012.01.012     URL    
[85]
Christopher A A, Davis M E. Chem. Mater., 2006, 18: 5634.

doi: 10.1021/cm061722d     URL    
[86]
Schmidt R, Stöcker M, Hansen E, Akporiaye D, Ellestad O H. Microporous Mater., 1995, 3(4/5): 443.

doi: 10.1016/0927-6513(94)00055-Z     URL    
[87]
AlOthman Z A, Apblett A W. Appl. Surf. Sci., 2010, 256(11): 3573.

doi: 10.1016/j.apsusc.2009.12.157     URL    
[88]
Barczak M. New J. Chem., 2018, 42(6): 4182.

doi: 10.1039/C7NJ04642A     URL    
[89]
Mirzajani R, Pourreza N, Zayadi A, Malakooti R, Mahmoodi H. Desalination Water Treat., 2016, 57(13): 5903.

doi: 10.1080/19443994.2015.1005690     URL    
[90]
Lin H P, Mou C Y, Liu S B, Tang C Y, Lin C Y. Microporous Mesoporous Mater., 2001, 44/45: 129.

doi: 10.1016/S1387-1811(01)00176-7     URL    
[91]
He J, Yang X B, Evans D G, Duan X. Mater. Chem. Phys., 2003, 77(1): 270.

doi: 10.1016/S0254-0584(01)00557-0     URL    
[92]
Du P D, Khieu D Q, Hoa T T. J. Sci., 2011, 69, 6.
[93]
Liu J Q, Cheng H, He D G, He X X, Wang K M, Liu Q Q, Zhao S Q, Yang X D. Anal. Chem., 2017, 89(17): 9062.

doi: 10.1021/acs.analchem.7b01739     URL    
[94]
Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E. ACS Nano, 2009, 3(10): 3273.

doi: 10.1021/nn900918w     URL    
[95]
Kawi S. Chem. Commun., 1998, (13): 1407.
[96]
Huang Z, Huang L, Shen S C, Poh C C, Hidajat K, Kawi S, Ng S C. Microporous Mesoporous Mater., 2005, 80(1/3): 157.

doi: 10.1016/j.micromeso.2004.12.016     URL    
[97]
Meretei E, Halász J, MÉhn D, KÓnya Z, Korányi T I, Nagy J B, Kiricsi I. J. Mol. Struct., 2003, 651/653: 323.

doi: 10.1016/S0022-2860(03)00108-X     URL    
[98]
Kecht J, Bein T. Microporous Mesoporous Mater., 2008, 116(1/3): 123.

doi: 10.1016/j.micromeso.2008.03.027     URL    
[99]
Keene M T J, Denoyel R, Llewellyn P L. Chem. Commun., 1998,(20): 2203.
[100]
Büchel G, Denoyel R, Llewellyn P L, Rouquerol J. J. Mater. Chem., 2001, 11(2): 589.
[101]
Lang N, Tuel A. Chem. Mater., 2004, 16(10): 1961.

doi: 10.1021/cm030633n     URL    
[102]
Meng H, Xue M, Xia T, Ji Z X, Tarn D Y, Zink J I, Nel A E. ACS Nano, 2011, 5(5): 4131.

doi: 10.1021/nn200809t     URL    
[103]
Zhang Y X, Hou Z Y, Ge Y K, Deng K R, Liu B, Li X J, Li Q S, Cheng Z Y, Ma P G, Li C X, Lin J. ACS Appl. Mater. Interfaces, 2015, 7(37): 20696.

doi: 10.1021/acsami.5b05522     URL    
[104]
Ariapad A, Zanjanchi M A, Arvand M. Desalination, 2012, 284: 142.

doi: 10.1016/j.desal.2011.08.048     URL    
[105]
Goworek J, Kierys A, Kusak R. Microporous Mesoporous Mater., 2007, 98(1/3): 242.

doi: 10.1016/j.micromeso.2006.09.011     URL    
[106]
Costa J A S, de Jesus R A, Santos D O, Mano J F, Romão L P C, Paranhos C M. Microporous Mesoporous Mater., 2020, 291: 109698.
[107]
Hikosaka R, Nagata F, Tomita M, Kato K. Colloids Surf. B: Biointerfaces, 2016, 140: 262.

doi: 10.1016/j.colsurfb.2015.12.054     URL    
[108]
Otalvaro J O, Avena M, Brigante M. J. Environ. Chem. Eng., 2019, 7(5): 103325.
[109]
Yokoi T, Kubota Y, Tatsumi T. Appl. Catal. A: Gen., 2012, 421/422: 14.

doi: 10.1016/j.apcata.2012.02.004     URL    
[110]
Vilà N, Allain C, Audebert P, Walcarius A. Electrochem. Commun., 2015, 59: 9.

doi: 10.1016/j.elecom.2015.06.012     URL    
[111]
Vilà N, Ghanbaja J, Walcarius A. Adv. Mater. Interfaces, 2016, 3(2): 201670010.
[112]
Ma X H, Zhao Y B, Xiao G F, Wu Z S. Acta Phys. Chim. Sin., 2008, 24(3): 492.

doi: 10.3866/PKU.WHXB20080325     URL    
[113]
Xie M, Shi H, Li Z, Shen H J, Ma K, Li B, Shen S, Jin Y. Colloids Surf. B: Biointerfaces, 2013, 110: 138.

doi: 10.1016/j.colsurfb.2013.04.009     URL    
[114]
Tian X N, Jiang Z Q, Jiang Y Y, Xu W T, Li C X, Luo L J, Jiang Z J. RSC Adv., 2016, 6(103): 101526.
[115]
Garcia F A C, Braga V S, Silva J C M, Dias J A, Dias S C L, Davo J L B. Catal. Lett., 2007, 119(1/2): 101.

doi: 10.1007/s10562-007-9204-8     URL    
[116]
Gleizes A N, Fernandes A, Dexpert-Ghys J. J. Alloys Compd., 2004, 374(1/2): 303.

doi: 10.1016/j.jallcom.2003.11.128     URL    
[117]
On D T, Desplantier-Giscard D, Danumah C, Kaliaguine S. Appl. Catal. A: Gen., 2001, 222(1/2): 299.

doi: 10.1016/S0926-860X(01)00842-0     URL    
[118]
Arean C O, Vesga M J, Parra J B, Delgado M R. Ceram. Int., 2013, 39(7): 7407.

doi: 10.1016/j.ceramint.2013.02.084     URL    
[119]
Talavera-Pech W A, Ávila-Ortega A, Pacheco-Catalán D, Quintana-Owen P, BarrÓn-Zambrano J A. Silicon, 2019, 11(3): 1547.

doi: 10.1007/s12633-018-9975-0    
[120]
Khorshidi A, Shariati S. RSC Adv., 2014, 4(78): 41469.

doi: 10.1039/C4RA05550K     URL    
[121]
Sahoo B, Devi K S P, Sahu S K, Nayak S, Maiti T K, Dhara D, Pramanik P. Biomater. Sci., 2013, 1(6): 647.

doi: 10.1039/c3bm00007a     URL    
[122]
Burkett S L, Sims S D, Mann S. Chem. Commun., 1996(11): 1367.
[123]
Vunain E, Opembe N N, Jalama K, Mishra A K, Meijboom R. J. Therm. Anal. Calorim., 2014, 115(2): 1487.

doi: 10.1007/s10973-013-3350-6     URL    
[124]
Saadatjoo N, Golshekan M, Shariati S, Kefayati H, Azizi P. J. Mol. Catal. A: Chem., 2013, 377: 173.

doi: 10.1016/j.molcata.2013.05.007     URL    
[125]
Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2003, 125(15): 4451.

doi: 10.1021/ja028650l     URL    
[126]
Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. J. Am. Chem. Soc., 2009, 131(10): 3462.

doi: 10.1021/ja900025f     pmid: 19275256
[127]
Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2010, 132(2): 552.

doi: 10.1021/ja905793q     URL    
[128]
Kim J, Jo C, Lim W G, Jung S, Lee Y M, Lim J, Lee H, Lee J, Kim W J. Adv. Mater., 2018, 30(29): 1707557.
[129]
Climent E, MondragÓn L, Martínez-Máñez R, SancenÓn F, Marcos M D, Murguía J R, AmorÓs P, Rurack K, PÉrez-Payá E. Angew. Chem., 2013, 125(34): 9106.

doi: 10.1002/ange.201302954     URL    
[130]
Cao C, Liu J Q, Tang S Y, Dai Z R, Xiao F B, Rang W Q, Liu L, Chen T, Yuan Y L, Li L. Microchimica Acta, 2020, 187(5): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[131]
Wang Z F, Yang X, Feng J, Tang Y J, Jiang Y Y, He N Y. Anal., 2014, 139(23): 6088.

doi: 10.1039/C4AN01539H     URL    
[132]
Hou L, Zhu C L, Wu X P, Chen G N, Tang D P. Chem. Commun., 2014, 50(12): 1441.

doi: 10.1039/C3CC48453J     URL    
[133]
Pascual L, Baroja I, Aznar E, SancenÓn F, Marcos M D, Murguía J R, AmorÓs P, Rurack K, Martínez-Máñez R. Chem. Commun., 2015, 51(8): 1414.

doi: 10.1039/C4CC08306G     URL    
[134]
Roushani M, Ghanbari K. Microchimica Acta, 2019, 186(2): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[135]
Azadbakht A, Roushani M, Abbasi A R, Derikvand Z. Anal. Biochem., 2016, 512: 58.

doi: S0003-2697(16)30234-2     pmid: 27515992
[136]
Shi X M, Fan G C, Shen Q M, Zhu J J. ACS Appl. Mater. Interfaces, 2016, 8(51): 35091.

doi: 10.1021/acsami.6b14466     URL    
[137]
Tan H X, Guo T, Zhou H Y, Dai H J, Yu Y, Zhu H K, Wang H X, Fu Y, Zhang Y H, Ma L. Anal. Bioanal. Chem., 2020, 412(23): 5627.

doi: 10.1007/s00216-020-02778-3     URL    
[138]
Li Z, Zhang Y T, Feng N P. Expert. Opin. Drug Deliv., 2019, 16(3): 219.

doi: 10.1080/17425247.2019.1575806     URL    
[139]
Zhu C L, Lu C H, Song X Y, Yang H H, Wang X R. J. Am. Chem. Soc., 2011, 133(5): 1278.

doi: 10.1021/ja110094g     URL    
[140]
Zhang Z X, Wang F A, Balogh D, Willner I. J. Mater. Chem. B, 2014, 2(28): 4449.

doi: 10.1039/C4TB00558A     URL    
[141]
Climent E, MondragÓn L, Martínez-Máñez R, SancenÓn F, Marcos M D, Murguía J R, AmorÓs P, Rurack K, PÉrez-Payá E. Angew. Chem. Int. Ed., 2013, 52(34): 8938.

doi: 10.1002/anie.201302954     URL    
[142]
Jimenez-Falcao S, Parra-Nieto J, PÉrez-Cuadrado H, Martínez-Máñez R, Martínez-Ruiz P, Villalonga R. Electrochem. Commun., 2019, 108: 106556.
[143]
Ribes À, Aznar E, Bernardos A, Marcos M D, AmorÓs P, Martínez-Máñez R, SancenÓn F. Chem. Eur. J., 2017, 23(36): 8581.

doi: 10.1002/chem.v23.36     URL    
[144]
Sun Y L, Zhu X D, Liu H, Dai Y X, Han R, Gao D D, Luo C N, Wang X Y, Wei Q. ACS Appl. Mater. Interfaces, 2020, 12(5): 5569.

doi: 10.1021/acsami.9b20255     URL    
[145]
Yang X Y, Wang A G, Liu J L. Talanta, 2013, 114: 5.

doi: 10.1016/j.talanta.2013.03.077     URL    
[146]
Zhou Q, Lin Y X, Lu M H, Tang D P. J. Mater. Chem. B, 2017, 5(48): 9600.

doi: 10.1039/C7TB02354E     URL    
[147]
Faria H A M, Zucolotto V. Biosens. Bioelectron., 2019, 131: 149.

doi: 10.1016/j.bios.2019.02.018     URL    
[148]
Jarczewska M, ZiÓłkowski R, GÓrski Ł, Malinowska E. Bioelectrochemistry, 2014, 96: 1.

doi: 10.1016/j.bioelechem.2013.11.003     pmid: 24334186
[149]
Zhang Z X, Wang F A, Sohn Y S, Nechushtai R, Willner I. Adv. Funct. Mater., 2014, 24(36): 5662.

doi: 10.1002/adfm.v24.36     URL    
[150]
Muthamizh S, Ribes À, Anusuyajanakiraman M, Narayanan V, Soto J, Martínez-Máñez R, Aznar E. Supramol. Chem., 2017, 29(11): 776.

doi: 10.1080/10610278.2017.1390238     URL    
[151]
Wang Y H, Jiang L, Chu L, Liu W, Wu S, Wu Y H, He X X, Wang K M. Biosens. Bioelectron., 2017, 87: 459.

doi: 10.1016/j.bios.2016.08.102     URL    
[152]
Wen Y, Yuan Y L, Li L, Ma D D, Liao Q, Hou S Y. Microchimica Acta, 2017, 184(10): 3909.

doi: 10.1007/s00604-017-2397-7     URL    
[153]
Cheng H, Liu J Q, Ma W J, Duan S D, Huang J, He X X, Wang K M. Anal. Chem., 2018, 90(21): 12544.

doi: 10.1021/acs.analchem.8b02470     pmid: 30261719
[154]
Zhang H, Zhang H L, Aldalbahi A, Zuo X L, Fan C H, Mi X Q. Biosens. Bioelectron., 2017, 89: 96.

doi: S0956-5663(16)30657-1     pmid: 27459883
[155]
Xu Y, Liu Y H, Wu Y, Xia X H, Liao Y Q, Li Q G. Anal. Chem., 2014, 86(12): 5611.

doi: 10.1021/ac5010458     URL    
[156]
Ercan M, Ozalp V C, Tuna B G. Anal. Biochem., 2017, 537: 78.

doi: 10.1016/j.ab.2017.09.004     URL    
[157]
Huang F C, Guo R Y, Xue L, Cai G Z, Wang S Y, Li Y B, Liao M, Wang M H, Lin J H. Sens. Actuat. B: Chem., 2020, 312: 127958.
[158]
Tan H X, Ma L, Guo T, Zhou H Y, Chen L, Zhang Y H, Dai H J, Yu Y. Anal. Chimica Acta, 2019, 1068: 87.

doi: 10.1016/j.aca.2019.04.014     URL    
[159]
Dehghani S, Danesh N M, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, Abnous K, Taghdisi S M. Anal. Chimica Acta, 2018, 1030: 142.

doi: 10.1016/j.aca.2018.05.003     URL    
[160]
Oroval M, Climent E, Coll C, Eritja R, AviñÓ A, Marcos M D, SancenÓn F, Martínez-Máñez R, AmorÓs P. Chem. Commun., 2013, 49(48): 5480.

doi: 10.1039/c3cc42157k     URL    
[161]
Oroval M, Coll C, Bernardos A, Marcos M D, Martínez-Máñez R, Shchukin D G, SancenÓn F. ACS Appl. Mater. Interfaces, 2017, 9(13): 11332.

doi: 10.1021/acsami.6b15164     URL    
[162]
Li X M, Zhang H C, Tang Y R, Wu P, Xu S X, Zhang X F. ACS Sens., 2017, 2(6): 810.

doi: 10.1021/acssensors.7b00178     URL    
[163]
Liu M, Li B X, Cui X. Biosens. Bioelectron., 2013, 47: 26.

doi: 10.1016/j.bios.2013.02.047     URL    
[164]
Chen Z H, Tan Y, Xu K F, Zhang L, Qiu B, Guo L H, Lin Z Y, Chen G N. Biosens. Bioelectron., 2016, 75: 8.

doi: 10.1016/j.bios.2015.08.006     URL    
[165]
Feng Q M, Guo Y H, Xu J J, Chen H Y. ACS Appl. Mater. Interfaces, 2017, 9(20): 17637.

doi: 10.1021/acsami.7b04553     URL    
[166]
Ma F, Sun B, Qi H L, Zhang H G, Gao Q, Zhang C X. Anal. Chimica Acta, 2011, 683(2): 234.

doi: 10.1016/j.aca.2010.10.030     URL    
[167]
Gu Z F, Fu A C, Ye L, Kuerban K, Wang Y, Cao Z J. ACS Sens., 2019, 4(11): 2922.

doi: 10.1021/acssensors.9b01303     URL    
[168]
Wang J, Li X L, Zhang J D, Hao N, Xu J J, Chen H Y. Chem. Commun., 2015, 51(58): 11673.

doi: 10.1039/C5CC03693C     URL    
[169]
Liu J Q, He D G, Liu Q Q, He X X, Wang K M, Yang X, Shangguan J F, Tang J L, Mao Y F. Anal. Chem., 2016, 88(23): 11707.

doi: 10.1021/acs.analchem.6b03317     URL    
[170]
Saha S, Chan Y T, Soleymani L. ACS Appl. Mater. Interfaces, 2018, 10(37): 31178.

doi: 10.1021/acsami.8b12286     URL    
[171]
Liu X P, Chen J S, Mao C J, Niu H L, Song J M, Jin B K. Biosens. Bioelectron., 2018, 116: 23.

doi: 10.1016/j.bios.2018.05.036     URL    
[172]
Lv S, Zhang K Y, Zeng Y Y, Tang D P. Anal. Chem., 2018, 90(11): 7086.

doi: 10.1021/acs.analchem.8b01825     URL    
[173]
Li C X, Wang H Y, Shen J, Tang B. Anal. Chem., 2015, 87(8): 4283.

doi: 10.1021/ac5047032     URL    
[174]
Wen G M, Dong W X, Liu B, Li Z P, Fan L F. Biosens. Bioelectron., 2018, 117: 91.

doi: 10.1016/j.bios.2018.05.054     URL    
[175]
Zhou Q, Lin Y X, Shu J, Zhang K Y, Yu Z Z, Tang D P. Biosens. Bioelectron., 2017, 98: 15.

doi: 10.1016/j.bios.2017.06.033     URL    
[176]
Li F, Zhang H Q, Wang Z X, Newbigging A M, Reid M S, Li X F, Le X C. Anal. Chem., 2015, 87(1): 274.

doi: 10.1021/ac5037236     URL    
[177]
Xiang Y, Lu Y. Nat. Chem., 2011, 3(9): 697.

doi: 10.1038/nchem.1092     pmid: 21860458
[178]
Zhang Y N, Xue Q W, Liu J F, Wang H S. Biosens. Bioelectron., 2017, 87: 537.

doi: 10.1016/j.bios.2016.08.103     URL    
[179]
Shan Y K, Zhang Y, Kang W J, Wang B, Li J H, Wu X P, Wang S Y, Liu F. Sens. Actuat. B: Chem., 2019, 282: 197.

doi: 10.1016/j.snb.2018.11.062     URL    
[180]
Liang X L, Wang L, Wang D, Zeng L W, Fang Z Y. Chem. Commun., 2016, 52(10): 2192.

doi: 10.1039/C5CC08611F     URL    
[181]
Wang Y W, Kao K C, Wang J K, Mou C Y. J. Phys. Chem. C, 2016, 120(42): 24382.

doi: 10.1021/acs.jpcc.6b08116     URL    
[182]
Huang L L, Yang X J, Qi C, Niu X F, Zhao C L, Zhao X H, Shangguan D H, Yang Y H. Anal. Chimica Acta, 2013, 787: 203.

doi: 10.1016/j.aca.2013.05.024     URL    
[183]
Xiong H T, Zheng X W. Anal., 2014, 139(7): 1732.

doi: 10.1039/C3AN02187D     URL    
[184]
Sun Q Q, Yan F, Su B. Biosens. Bioelectron., 2018, 105: 129.

doi: 10.1016/j.bios.2018.01.026     URL    
[185]
Li L Y, Wang L L, Xu Q, Xu L, Liang W, Li Y, Ding M, Aldalbahi A, Ge Z L, Wang L H, Yan J, Lu N, Li J, Wen Y L, Liu G. ACS Appl. Mater. Interfaces, 2018, 10(8): 6895.

doi: 10.1021/acsami.7b17327     URL    
[186]
Wu L D, Lu X B, Jin J, Zhang H J, Chen J P. Biosens. Bioelectron., 2011, 26(10): 4040.

doi: 10.1016/j.bios.2011.03.027     URL    
[187]
Xi F N, Xuan L L, Lu L L, Huang J, Yan F, Liu J Y, Dong X P, Chen P. Sens. Actuat. B: Chem., 2019, 288: 133.

doi: 10.1016/j.snb.2019.02.115     URL    
[188]
Argoubi W, Sánchez A, Parrado C, Raouafi N, Villalonga R. Sens. Actuat. B: Chem., 2018, 255: 309.

doi: 10.1016/j.snb.2017.08.045     URL    
[189]
Wang H, Zhang S J, Tian X M, Liu C F, Zhang L, Hu W Y, Shao Y Z, Li L. Environm. Sci. Pollut. R., 2016, 6: 34367.
[190]
Gao Y, Zhong S L, Xu L F, He S H, Dou Y M, Zhao S N, Chen P, Cui X J. Microporous Mesoporous Mater., 2019, 278: 130.

doi: 10.1016/j.micromeso.2018.11.030     URL    
[191]
Qu H N, Yang L R, Yu J M, Dong T T, Rong M, Zhang J F, Xing H F, Wang L, Pan F, Liu H Z. RSC Adv., 2017, 7(57): 35704.

doi: 10.1039/C7RA04444E     URL    
[192]
Ariffin E Y, Lee Y H, Futra D, Tan L L, Karim N H A, Ibrahim N N N, Ahmad A. Anal. Bioanal. Chem., 2018, 410(9): 2363.

doi: 10.1007/s00216-018-0893-1     pmid: 29504083
[193]
Liang L L, Su M, Li L, Lan F F, Yang G X, Ge S G, Yu J H, Song X R. Sens. Actuat. B: Chem., 2016, 229: 347.

doi: 10.1016/j.snb.2016.01.137     URL    
[194]
Shekari Z, Zare H R, Falahati A. J. Electrochem. Soc., 2017, 164(13): B739.

doi: 10.1149/2.1991713jes     URL    
[195]
Sun Y L, Fan J F, Cui L Y, Ke W, Zheng F J, Zhao Y. Microchimica Acta, 2019, 186(3): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[196]
You M, Yang S, Tang W X, Zhang F, He P G. Biosens. Bioelectron., 2018, 112: 72.

doi: 10.1016/j.bios.2018.04.038     URL    
[197]
Shoja Y, Kermanpur A, Karimzadeh F. Biosens. Bioelectron., 2018, 113: 108.

doi: 10.1016/j.bios.2018.04.013     URL    
[198]
Wang L, Chen X H, Wang X L, Han X P, Liu S F, Zhao C Z. Biosens. Bioelectron., 2011, 30(1): 151.

doi: 10.1016/j.bios.2011.09.003     pmid: 21963391
[199]
Du Y, Guo S J, Dong S J, Wang E K. Biomaterials, 2011, 32(33): 8584.

doi: 10.1016/j.biomaterials.2011.07.091     URL    
[200]
Tang J, Tang D P, Niessner R, Knopp D, Chen G N. Analyt. Chim. Acta, 2012, 720: 1.

doi: 10.1016/j.aca.2011.12.070     URL    
[201]
Zhang J, Chai Y Q, Yuan R, Yuan Y L, Bai L J, Xie S B. Anal., 2013, 138(22): 6938.

doi: 10.1039/c3an01587d     URL    
[202]
Guo S J, Du Y, Yang X, Dong S J, Wang E K. Anal. Chem., 2011, 83(20): 8035.

doi: 10.1021/ac2019552     URL    
[203]
Lu S S, Wang S, Zhao J H, Sun J, Yang X R. Anal. Chem., 2017, 89(16): 8429.

doi: 10.1021/acs.analchem.7b01900     URL    
[204]
Qiu Z L, Shu J, He Y, Lin Z Z, Zhang K Y, Lv S, Tang D P. Biosens. Bioelectron., 2017, 87: 18.

doi: 10.1016/j.bios.2016.08.003     URL    
[205]
Loo A H, Sofer Z, Bouša D, Ulbrich P, Bonanni A, Pumera M. ACS Appl. Mater. Interfaces, 2016, 8(3): 1951.

doi: 10.1021/acsami.5b10160     URL    
[206]
Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Anal. Chem., 2001, 73(20): 4988.

pmid: 11681477
[207]
Li J M, Liu F, Shao Q, Min Y Z, Costa M, Yeow E K L, Xing B G. Adv. Health. Mater., 2014, 3(8): 1230.

doi: 10.1002/adhm.v3.8     URL    
[208]
Zhu H Y, Ding S N. Biosens. Bioelectron., 2019, 134: 109.

doi: 10.1016/j.bios.2019.04.005     URL    
[209]
Ge S G, Lan F F, Liang L L, Ren N, Li L, Liu H Y, Yan M, Yu J H. ACS Appl. Mater. Interfaces, 2017, 9(8): 6670.

doi: 10.1021/acsami.6b11966     URL    
[210]
Sun Y L, Lin Y N, Ding C F, Sun W Y, Dai Y X, Zhu X D, Liu H, Luo C N. Sens. Actuat. B: Chem., 2018, 257: 312.

doi: 10.1016/j.snb.2017.10.171     URL    
[211]
Wang W W, Liu S Q, Li C J, Wang Y, Yan C. Talanta, 2018, 182: 306.

doi: 10.1016/j.talanta.2018.01.067     URL    
[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[4] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[5] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[6] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[7] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[8] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[9] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[10] 刘宁, 刘水林, 伍素云, 付琳, 吴智, 李来丙. 金属基介孔固体碱催化剂的制备与应用[J]. 化学进展, 2020, 32(5): 536-547.
[11] 陈天有, 王子豪, 许子政, 徐祖顺, 曹峥. 基于树枝状聚合物的无机纳米颗粒的制备及应用[J]. 化学进展, 2020, 32(2/3): 249-261.
[12] 何天稀, 王文斌, 王九, 陈波水, 梁琼麟. 介孔碳球的制备及作为药物传输系统的应用[J]. 化学进展, 2020, 32(2/3): 309-319.
[13] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[14] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[15] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.