English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 815-823 DOI: 10.7536/PC210408 前一篇   后一篇

• 综述 •

双光子荧光探针在生物传感中的应用

赵惠1, 胡文博2, 范曲立1,*()   

  1. 1 南京邮电大学 有机电子与信息显示国家重点实验室培育基地 信息材料与纳米技术研究院 南京 210023
    2 西北工业大学 柔性电子研究院 西安 710072
  • 收稿日期:2021-04-08 修回日期:2021-06-08 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 范曲立
  • 基金资助:
    江苏省自然科学基金项目(19KJB140014); 江苏省自然科学基金项目(NY219125); 江苏省自然科学基金项目(NY220024)

Two-Photon Fluorescence Probe in Bio-Sensor

Hui Zhao1, Wenbo Hu2, Quli Fan1()   

  1. 1 State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications,Nanjing 210023, China
    2 Institute of Flexible Electronics, Northwestern Polytechnical University,Xi’an 710072, China
  • Received:2021-04-08 Revised:2021-06-08 Online:2022-04-24 Published:2021-07-29
  • Contact: Quli Fan
  • Supported by:
    Natural Science Foundation of Jiangsu Province of China(19KJB140014); Natural Science Foundation of Jiangsu Province of China(NY219125); Natural Science Foundation of Jiangsu Province of China(NY220024)

荧光探针由于其灵敏度高、选择性好等优势已经成为研究复杂生物系统的有力工具。和单光子荧光探针相比,双光子荧光探针由于其激发光源较大的穿透深度、低的组织自发荧光干扰以及较好的空间选择性在生物传感中发挥着不可替代的重要作用。在本篇综述中,我们从双光子荧光探针的设计原理出发,系统全面地介绍了双光子荧光探针在金属离子、细胞微环境、活性物质(包含活性氧、活性氮、活性硫)、酶和亚细胞器(线粒体、溶酶体)等检测中的应用研究。在此之后,展望了有机双光子荧光探针在开发和应用方面尚待科学界解决的关键机遇和挑战。

Fluorescent probes have become a powerful tool for the study of complex biological systems due to their high sensitivity and selectivity. Compared with single-photon fluorescence probe, two-photon fluorescence probe (TPFP) plays an irreplaceable role in biosensor due to its larger penetration depth, lower interference of tissue autofluorescence and better spatial selectivity. In this review, starting from the design strategies of TPFP, we systematically and comprehensively introduce the application of TPFP in the determination of metal ions, celluar microenvironment, reactive species (including reactive oxygen species ROS, reactive nitrogen RNS, reactive sulfur RSS), enzymes, organelles (mitochondria, lysosomes) and so on. After that, we look forward to the key opportunities and challenges in the development and application of organic TPFP.

Contents

1 Introduction

2 Design principle of two-photon fluorescence probes

3 Bio-application of two-photon fluorescence probes

3.1 Two-photon probes for metal ions

3.2 Two-photon probes for cellular microenvironment

3.3 Two-photon probes for reactive species

3.4 Two-photon probes for enzymes

3.5 Two-photon probes for organelles

4 Conclusion and outlook

()
图1 单光子和双光子激发的能量图
Fig. 1 Energy diagram of one-photon and two-photon excitation
图2 光诱导电子转移(PET)(a)、分子内电荷转移(ICT)(b)和荧光共振能量转移(FRET)过程的能量图[8]
Fig. 2 Energy diagram for photoinduced electron transfer (PET) (a), intramolecular charge transfer (ICT) (b) and Förster resonance energy transfer (FRET) process[8]
图3 通过阻断PET过程,用双光子荧光探针检测酸性条件下的Zn2+[11]
Fig. 3 Detection of Zn2+ under acidic conditions with two-photon fluorescence probe, through the blocking of PET processes[11]
图4 用于脑组织和斑马鱼成像的Zn2+响应双光子荧光探针[19]
Fig. 4 Two-photon responses of the Zn2+ probe for imaging in brain tissue and zebrafish[19]. Copyright 2017, American Chemical Society
图5 双光子荧光探针用于比率检测线粒体pH[23]
Fig. 5 Two-photon fluorescence probe for the ratiometric detection of mitochondrial pH[23]
图6 双光子荧光探针用于监测溶酶体极性变化[25]
Fig. 6 Two-photon fluorescence probe for the detection of lysosomal polarity changes[25]
图7 双光子荧光探针用于检测线粒体黏度[26]
Fig. 7 Two-photon fluorescence probe for the detection of lysosomal polarity[26]
图8 基于硫膦基的双光子荧光探针检测 O 2 · -的传感机理[28]
Fig. 8 Sensing mechanism of phosphinothioate-based two-photon fluorescence probe for the detection of O 2 · -[28]. Copyright 2019, American Chemical Society
图9 用于检测H2O2同时释放CO的双光子荧光探针的释放机制[30]
Fig. 9 Two-photon fluorescence probe for the detection of H2O2 and the proposed CO photo-release mechanism[30]
图10 用于检测HClO的双光子荧光探针的检测机制[31]
Fig. 10 The mechanism of two-photon fluorescence probe for the detection of HClO[31]
图11 用于检测NO的双光子荧光探针的检测机制[35]
Fig. 11 The mechanism of two-photon fluorescence probe for the detection of NO[35]
图12 双响应的双光子荧光探针用于检测H2S和HOCl[37]
Fig. 12 Dual-responsive two-photon fluorescent probe for the determination of H2S and HOCl[37]
图13 用于测定BACE1的双光子比率荧光探针的工作原理[39]
Fig. 13 The working principle of the designed two-photon ratiometric fluorescent probe for the determination of BACEl[39]
图14 用于测定线粒体的双光子荧光探针[44]
Fig. 14 The two-photon fluorescent probe for the determination of mitochondria[44]. Copyright 2017, American Chemical Society
[1]
Kobayashi H, Ogawa M, Alford R, Choyke P L, Urano Y. Chem. Rev., 2010, 110(5): 2620.

doi: 10.1021/cr900263j     pmid: 20000749
[2]
Ueno T, Nagano T. Nat. Methods, 2011, 8(8): 642.

doi: 10.1038/nmeth.1663     URL    
[3]
Lavis L D, Raines R T. ACS Chem. Biol., 2008, 3(3): 142.

doi: 10.1021/cb700248m     pmid: 18355003
[4]
Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T, Webb W W. PNAS, 2003, 100(12): 7075.

doi: 10.1073/pnas.0832308100     URL    
[5]
He G S, Tan L S, Zheng Q D, Prasad P N. Chem. Rev., 2008, 108(4): 1245.

doi: 10.1021/cr050054x     URL    
[6]
Kim H M, Cho B R. Acc. Chem. Res., 2009, 42(7): 863.

doi: 10.1021/ar800185u     URL    
[7]
Lim C S, Cho B R. BMB Rep., 2013, 46(4): 188.

doi: 10.5483/BMBRep.2013.46.4.045     URL    
[8]
Fu Y H, Finney N S. RSC Adv., 2018, 8(51): 29051.

doi: 10.1039/C8RA02297F     URL    
[9]
Wu L L, Liu J H, Li P, Tang B, James T D. Chem. Soc. Rev., 2021, 50(2): 702.

doi: 10.1039/D0CS00861C     URL    
[10]
Kim H M, Cho B R. Chem. Asian J., 2011, 6(1): 58.

doi: 10.1002/asia.201000542     URL    
[11]
Lee H J, Cho C W, Seo H, Singha S, Jun Y W, Lee K H, Jung Y, Kim K T, Park S, Bae S C, Ahn K H. Chem. Commun., 2016, 52(1): 124.

doi: 10.1039/C5CC06976A     URL    
[12]
Lim C S, Han J H, Kim C W, Kang M Y, Kang D W, Cho B R. Chem. Commun., 2011, 47(25): 7146.

doi: 10.1039/c1cc11568e     URL    
[13]
Kim H, Kim B, Hong J, Park J S, Lee K, Cho B. Angew. Chem. Int. Ed., 2007, 46(39): 7445.

doi: 10.1002/anie.200701720     URL    
[14]
Kim H, Jung C, Kim B, Jung S Y, Hong J, Ko Y G, Lee K, Cho B. Angew. Chem. Int. Ed., 2007, 46(19): 3460.

doi: 10.1002/anie.200700169     URL    
[15]
Kim M, Lim C, Hong J, Han J, Jang H Y, Kim H, Cho B. Angew. Chem. Int. Ed., 2010, 49(2): 364.
[16]
Zhang M, Gao Y H, Li M Y, Yu M X, Li F Y, Li L, Zhu M W, Zhang J P, Yi T, Huang C H. Tetrahedron Lett., 2007, 48(21): 3709.

doi: 10.1016/j.tetlet.2007.03.112     URL    
[17]
Li X, Li Z, Yang Y W. Adv. Mater., 2018, 30: e1800177.
[18]
Lim C S, Kang D W, Tian Y S, Han J H, Hwang H L, Cho B R. Chem. Commun., 2010, 46: 2388.

doi: 10.1039/b922305c     URL    
[19]
Li W Y, Fang B Q, Jin M, Tian Y. Anal. Chem., 2017, 89(4): 2553.

doi: 10.1021/acs.analchem.6b04781     URL    
[20]
Fu Y, Ding C Q, Zhu A W, Deng Z F, Tian Y, Jin M. Anal. Chem., 2013, 85(24): 11936.

doi: 10.1021/ac403527c     URL    
[21]
Pond S J K, Tsutsumi O, Rumi M, Kwon O, Zojer E, BrÉdas J L, Marder S R, Perry J W. J. Am. Chem. Soc., 2004, 126(30): 9291.

doi: 10.1021/ja049013t     URL    
[22]
Zhou L Y, Wang Q Q, Zhang X B, Tan W H. Anal. Chem., 2015, 87(8): 4503.

doi: 10.1021/acs.analchem.5b00505     URL    
[23]
Sarkar A R, Heo C H, Xu L, Lee H W, Si H Y, Byun J W, Kim H M. Chem. Sci., 2016, 7(1): 766.

doi: 10.1039/C5SC03708E     URL    
[24]
Park H J, Lim C S, Kim E S, Han J H, Lee T H, Chun H J, Cho B R. Angew. Chem. Int. Ed., 2012, 51(11): 2673.

doi: 10.1002/anie.201109052     URL    
[25]
Yin J L, Peng M, Lin W Y. Chem. Commun., 2019, 55(74): 11063.

doi: 10.1039/C9CC04739E     URL    
[26]
Yin J L, Peng M, Lin W Y. Anal. Chem., 2019, 91(13): 8415.

doi: 10.1021/acs.analchem.9b01293    
[27]
Zhang W, Li P, Yang F, Hu X F, Sun C Z, Zhang W, Chen D Z, Tang B. J. Am. Chem. Soc., 2013, 135(40): 14956.

doi: 10.1021/ja408524j     pmid: 24059644
[28]
Chen L Y, Cho M K, Wu D, Kim H M, Yoon J. Anal. Chem., 2019, 91(22): 14691.

doi: 10.1021/acs.analchem.9b03937     URL    
[29]
Masanta G, Heo C H, Lim C S, Bae S K, Cho B R, Kim H M. Chem. Commun., 2012, 48(29): 3518.

doi: 10.1039/c2cc00034b     URL    
[30]
Li Y, Shu Y Z, Liang M W, Xie X L, Jiao X Y, Wang X, Tang B Z. Angew. Chem. Int. Ed., 2018, 57(38): 12415.

doi: 10.1002/anie.201805806     URL    
[31]
Mao Z Q, Ye M T, Hu W, Ye X X, Wang Y Y, Zhang H J, Li C Y, Liu Z H. Chem. Sci., 2018, 9(28): 6035.

doi: 10.1039/C8SC01697F     URL    
[32]
Yu H B, Xiao Y, Jin L J. J. Am. Chem. Soc., 2012, 134(42): 17486.

doi: 10.1021/ja308967u     URL    
[33]
Zhou L, Xie L J, Liu C H, Xiao Y. Chin. Chem. Lett., 2019, 30(10): 1799.

doi: 10.1016/j.cclet.2019.07.051     URL    
[34]
Seo E W, Han J H, Heo C H, Shin J H, Kim H M, Cho B R. Chem. Eur. J., 2012, 18(39): 12388.

doi: 10.1002/chem.201201197     URL    
[35]
Mao Z Q, Feng W Q, Li Z, Zeng L Y, Lv W, Liu Z H. Chem. Sci., 2016, 7(8): 5230.

doi: 10.1039/C6SC01313A     URL    
[36]
Bae S K, Heo C H, Choi D J, Sen D, Joe E H, Cho B R, Kim H M. J. Am. Chem. Soc., 2013, 135(26): 9915.

doi: 10.1021/ja404004v     URL    
[37]
Jiao X Y, Xiao Y S, Li Y, Liang M W, Xie X L, Wang X, Tang B. Anal. Chem., 2018, 90(12): 7510.

doi: 10.1021/acs.analchem.8b01106     URL    
[38]
Hu M Y, Li L, Wu H, Su Y, Yang P Y, Uttamchandani M, Xu Q H, Yao S Q. J. Am. Chem. Soc., 2011, 133(31): 12009.

doi: 10.1021/ja200808y     URL    
[39]
Ge L H, Liu Z C, Tian Y. Chem. Sci., 2020, 11(8): 2215.

doi: 10.1039/C9SC05256A     URL    
[40]
Li W, Yin S L, Gong X Y, Xu W, Yang R H, Wan Y C, Yuan L, Zhang X B. Chem. Commun., 2020, 56(9): 1349.

doi: 10.1039/C9CC08672B     URL    
[41]
Wang C, Song X B, Xiao Y. ChemBioChem, 2017, 18(17): 1762.

doi: 10.1002/cbic.201700161     URL    
[42]
Wang X H, Nguyen D M, Yanez C O, Rodriguez L, Ahn H Y, Bondar M V, Belfield K D. J. Am. Chem. Soc., 2010, 132(35): 12237.

doi: 10.1021/ja1057423     URL    
[43]
Son J H, Lim C S, Han J H, Danish I A, Kim H M, Cho B R. J. Org. Chem., 2011, 76(19): 8113.

doi: 10.1021/jo201504h     URL    
[44]
Li X S, Jiang M J, Lam J W Y, Tang B Z, Qu J Y. J. Am. Chem. Soc., 2017, 139(47): 17022.

doi: 10.1021/jacs.7b06273     URL    
[45]
Zhang X F, Wang C, Jin L J, Han Z, Xiao Y. ACS Appl. Mater. Interfaces, 2014, 6(15): 12372.

doi: 10.1021/am503849c     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[8] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[9] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[10] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[11] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[12] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[13] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[14] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[15] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.