English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 422-432 DOI: 10.7536/PC180726 前一篇   后一篇

• •

碳基材料修饰零价铁去除污染物的效能与机理

王舒畅1,2, 宋亚丹1,2, 孙远奎1,2,**()   

  1. 1. 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
    2. 上海污染控制与生态安全研究院 上海 200092
  • 收稿日期:2018-07-21 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 孙远奎
  • 基金资助:
    国家自然科学基金项目(21876129); 国家自然科学基金项目(51608431)

Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron

Shuchang Wang1,2, Yadan Son1,2, Yuankui Sun1,2,**()   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
  • Received:2018-07-21 Online:2019-02-15 Published:2018-12-20
  • Contact: Yuankui Sun
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21876129); National Natural Science Foundation of China(51608431)

纳米零价铁(nZVI)因具有良好的还原活性及吸附性能,在土壤和地下水修复中具有广阔的应用前景。然而由于高表面能及固有磁力等因素的影响,nZVI易团聚而导致迁移性、反应活性降低,制约了其推广应用。研究表明利用表面活性剂、高分子聚合物对nZVI进行表面修饰或将nZVI负载于多孔碳材料上均可提高nZVI的分散性和稳定性。鉴于此,本文系统总结比较了不同碳材料修饰nZVI的方法,分析了不同修饰方法对nZVI迁移性、反应活性及选择性(即电子效率)的影响规律与机制。迁移性及选择性是制约nZVI实际应用的瓶颈因素,羧甲基纤维素、淀粉等高分子聚合物及活性炭等多孔材料均能在一定程度上提高nZVI的迁移性及选择性,然而提升程度及相关机理仍有待明确,是今后的研究热点方向。

Nanoscale zero-valent iron(nZVI) is always considered to be a promising technology for water and soil remediation, due to its high reactivity and good adsorption ability. However, given the high surface energy and intrinsic magnetic interactions, unstabilized nZVI tends to aggregate and thus causes poor mobility and lower reactivity, which limits its further development and application. To address these issues, prior and ongoing research efforts have provided several promising strategies that can potentially improve the performance of nZVI. Among of them, carbon based materials such as surfactants, polymers and porous carbon materials are commonly used to modify the surface properties of nZVI, considering carbon based materials always have superior adsorption ability, stability, electron conductivity, etc. Accordingly, this review comprehensively summarizes the modification methods with different carbon materials. Moreover, the influence of surface modification on the mobility, reactivity and especially the selectivity(electron efficiency) of nZVI is discussed in detail. It can be concluded that, for the successful application of nZVI, the mobility and selectivity of nZVI are still the bottleneck factors, although they can be enhanced by the modification with carboxymethyl cellulose, starch, activated carbon and also other carbon based materials. Therefore, future research may attempt to explore some more effective modification methods, such as with the combination of different carbon materials, to improve the mobility and selectivity of nZVI.

()
图1 零价铁体系去除污染物的主要机理示意图[14]
Fig. 1 Illustration of the major mechanisms of contaminants removal by zero-valent iron[14]
图2 包覆型纳米零价铁的制备及稳定机理示意图(a)改变表面电荷以引起颗粒互斥,(b)构建网格结构以提供空间位阻[30]
Fig. 2 Schematic representation of(a) surface modification stabilization(where surface coating facilitates particle repulsion), and(b) network stabilization(where a medium network is formed due to hydrogen bonding and polymer entanglements)[30]
图3 活性炭负载纳米铁钯双金属的合成示意图[37]
Fig. 3 Schematic illustration for the fabrication of GAC/ZVI/Pd[37]
图4 聚苯乙烯负载纳米零价铁的合成示意图[41]
Fig. 4 Schematic illustration for the fabrication of polystyrene resin-supported nZVI[41]
图5 有序介孔碳负载纳米零价铁的合成示意图[10]
Fig. 5 Schematic illustration for the fabrication of ordered mesoporous carbon-supported nZVI[10]
图6 石墨烯负载纳米零价铁的合成示意图[46]
Fig. 6 Schematic illustration for the fabrication of polystyrene resin-supported nZVI[46]
图7 CMC/nZVI在不同距离监测井处随时间的迁移分布情况[50]。黄色、黑色分别代表被氧化后的CMC/nZVIox及未反应的CMC/nZVI,颜色的深浅示意浓度的高低
Fig. 7 Composite photograph of water samples taken from the first three sample wells over the time period of the injection test. Rectangular markers highlight the location of the two color transitions that indicate breakthrough of CMC/nZVIox(yellow) and CMC/nZVI(black)[50]
图8 Carbo-Iron?的结构示意及其在地下水中的迁移情况[39]
Fig. 8 Sketch of the Fe-AC composite material Carbo-Iron and its transport in groundwater[39]
图9 活性炭在nZVI去除TCE中的吸附与电子传递作用[67]
Fig. 9 Schematic illustration of the role of AC on TCE reduction by nZVI[67]
表1 碳材料修饰对nZVI去除不同污染物速率常数的影响
Table 1 Summary of data on the removal rate of various contaminants by bare nZVI and carbon-modified nZVI
nZVI type Cont. Reaction conditons kobs+C(h-1) kobs-C(h-1) ref
Coated nZVI CMC TCE TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, CMC90 K 0.381 0.022 54
TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, CMC250 K 0.557 0.022
TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, CMC700 K 0.497 0.022
PVP TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, PVP360 K 0.219 0.022
GG TCE=50 mg/L, Fe0=0.1 g/L,0.1%Pd, GG 0.05% 0.051 0.022
CMC TCE TCE=50 mg/L, Fe0=0.1 g/L 7.4 0.44 27
Starch TCE TCE=25 mg/L, Fe0=0.1 g/L 0.11 0.034 55
TCE=25 mg/L, Fe0=0.1 g/L, 0.1%Pd 3.7 0.9
PCB PCB=2.5 mg/L, Fe0=0.1 g/L, 0.1%Pd 0.029 0.017
CMC Pb(Ⅱ) Pb(Ⅱ)=200 mg/L, Fe0=0.75 g/L, pH=5.0 1.12 0.204 56
Starch Pb(Ⅱ)=200 mg/L, Fe0=0.75 g/L, pH=5.0 1.46 0.204
Agar Pb(Ⅱ)=200 mg/L, Fe0=0.75 g/L, pH=5.0 5.60 0.204
CMC NO3- NO3-=200 mg/L, Fe0=0.7 g/L, pH=~7.0 7.8 1.5 57
CMC ClO4- ClO4-=10 mg/L, Fe0=1.8 g/L, pH=~7.0, 110 ℃ 0.33 0.18 58
Starch ClO4-=10 mg/L, Fe0=1.8 g/L, pH=~7.0, 110 ℃ 0.984 0.1
Supported nZVI Graphene oxide CT CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=10 ℃ 1.308 0.834 46
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=20 ℃ 2.166 1.404
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=30 ℃ 2.844 2.292
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=35 ℃ 3.618 2.862
CT=3 mg/L, Fe0=0.5 g/L, pH=5.5, T=40 ℃ 4.776 3.342
GAC TCE TCE=80 mg/L, Fe0=0.15 g/L, GAC-105 ℃ 339.6 9 36
TCE=80 mg/L, Fe0=0.15 g/L, GAC-700 ℃ 374.4 9
AC BrO3- BrO3-=0.2 mg/L, Fe0=5 g/L, pH=~7.0 13.62 8.84 59
BrO3-=0.2 mg/L, Fe0=5 g/L, pH=~7.0 29.4 8.84
BrO3-=0.2 mg/L, Fe0=5 g/L, pH=~7.0 36.7 8.84
Graphene oxide Cr(Ⅵ) Cr(Ⅵ)=25 mg/L, Fe0=1.0 mg/L 4.38 1.56 60
图10 碳材料修饰对nZVI去除不同污染物反应速率的影响
Fig. 10 Summary of the ratio of kinetic constants with and without carbon-modification for currently available data on contaminants removal by nZVI
图11 活性炭在nZVI去除TCE中的吸附与电子传递作用[70]
Fig. 11 Schematic diagram of the electron-transfer processes in the reaction of Ox with ZVI/Fe(Ⅱ) open to the air[70]
图12 核壳结构nZVI@C@PANI去除Cr(Ⅵ)过程中的电子传递机制[66]
Fig. 12 Proposed electron-transfer processes in Cr(Ⅵ) removal using the core-shell nZVI@C@PANI[66]
表2 典型碳材料修饰nZVI效果的比较
Table 2 Summary of the effects of typical carbon materials on modifying nZVI
Carbon-based materials Key properties Remarks ref
Surfactants SDBS Anionic surfactants electrostatic repulsion Relative weak stabilization effect; limited transportability in real soil; the introduced surfactants in the subsurface may solubilize/mobilize non-targeted contaminants 33
Tween 20 Nonionic surfactant Network stabilization 34
Synthetic polymers CMC Food grade polysaccharide. Nontoxic and biodegradable. Weak anionic functional groups(pKa=4.3). MW=90 or 700 kDa. CMC binds with nZVI through bidentate bridging. Very effective stabilization effect; better transportability than surfactant-coated nZVI; no enhancing effect on nZVI selectivity 23, 35, 40, 49, 50
PVP Neutral polyelectrolyte. MW=40 or 360 kDa. Less effective than CMC; may enhance transportability of nZVI; no enhancing effect on nZVI selectivity 54
Natural biopolymers Starch Neutral polysaccharide. nZVI-starch interactions and formation of intrastarch Fe clusters play a fundamental role in stabilizing nZVI. Effective stabilization effect; may enhance transportability of nZVI; no enhancing effect on nZVI selectivity 55, 58
Guar gum Neutral polysaccharide. It binds with nZVI via the hydroxyl groups. More effective stabilization effect than starch; may enhance transportability of nZVI; no enhancing effect on nZVI selectivity 54, 56
Solid supports AC Highly porous internal structure; ideal adsorption property. Ideal supports or vehicles for stabilizing and delivering nZVI into porous media; Carbo-Iron? could highly enhance ZVI selectivity; inexpensive 25, 39
Mesoporous carbon Ordered mesoporous carbon, high surface area, good electroconductivity. Good supports for stabilizing and delivering nZVI into porous media; may enhance ZVI selectivity; expensive 10, 43
Graphene oxide Consisting of a single layer of carbon atoms arranged in a hexagonal lattice. Good supports for stabilizing and delivering nZVI into porous media; could enhance ZVI reactivity and selectivity; expensive 45, 46
[1]
Wang C B, Zhang W X . Environ. Sci. Technol., 1997,31:2154.
[2]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K . Environ. Sci. Technol., 2016,50:7290. https://www.ncbi.nlm.nih.gov/pubmed/27331413

doi: 10.1021/acs.est.6b01897     URL     pmid: 27331413
[3]
Li L Y, Hu J W, Shi X D, Fan M Y, Luo J, Wei X H . Environ. Sci. Pollu. Res., 2016,23:17880. https://www.ncbi.nlm.nih.gov/pubmed/27094266

doi: 10.1007/s11356-016-6626-0     URL     pmid: 27094266
[4]
Stefaniuk M, Oleszczuk P, Ok Y S . Chem. Eng. J., 2016,287:618.
[5]
Matheson L J, Tratnyek P G . Abstracts of Papers of the American Chemical Society, 1994,207:135.
[6]
Su C M, Puls R W . Environ. Sci. Technol., 2001,35:1487. https://www.ncbi.nlm.nih.gov/pubmed/11348091

doi: 10.1021/es001607i     URL     pmid: 11348091
[7]
Wang W, Hua Y L, Li S L, Yan W L, Zhang W X . Chem. Eng. J., 2016,304:79.
[8]
Nam S, Tratnyek P G . Water Res., 2000,34:1837.
[9]
Agrawal A, Tratnyek P G . Environ. Sci. Technol., 1996,30:153. https://www.ncbi.nlm.nih.gov/pubmed/21648602

doi: 10.1021/es962168j     URL     pmid: 21648602
[10]
Teng W, Bai N, Liu Y, Liu Y P, Fan J W, Zhang W X . Environ. Sci. Technol., 2018,52:230. https://www.ncbi.nlm.nih.gov/pubmed/29215872

doi: 10.1021/acs.est.7b04775     URL     pmid: 29215872
[11]
Xiang W, Zhang B, Zhou T, Wu X, Mao J . Sci. Rep., 2016,6:24094. https://www.ncbi.nlm.nih.gov/pubmed/27053228

doi: 10.1038/srep24094     URL     pmid: 27053228
[12]
Xiong X, Sun B, Zhang J, Gao N, Shen J, Li J, Guan X . Water Res., 2014,62:53. https://www.ncbi.nlm.nih.gov/pubmed/24934323

doi: 10.1016/j.watres.2014.05.042     URL     pmid: 24934323
[13]
Xiong X, Sun Y, Sun B, Song W, Sun J, Gao N, Qiao J, Guan X . RSC Adv., 2015,5:13357.
[14]
Guan X H, Y Sun K, Qin H J, Li J X, I M Lo, He D, Dong H R . Water Res., 2015,75:224. https://www.ncbi.nlm.nih.gov/pubmed/25770444

doi: 10.1016/j.watres.2015.02.034     URL     pmid: 25770444
[15]
Li X Q, Elliott D W, Zhang W X . Crit. Rev. Solid State Mater. Sci., 2006,31:111.
[16]
Liu Y Q, Lowry G V . Environ. Sci. Technol., 2006,40:6085. https://www.ncbi.nlm.nih.gov/pubmed/17051804

doi: 10.1021/es060685o     URL     pmid: 17051804
[17]
Gu Y W, B B Wang, F He, M J Bradley, P G Tratnyek . Environ. Sci. Technol., 2017,51:12653. https://www.ncbi.nlm.nih.gov/pubmed/28984446

doi: 10.1021/acs.est.7b03604     URL     pmid: 28984446
[18]
Fan D M, Johnson G O, Tratnyek P G, Johnson R L . Environ. Sci. Technol., 2016,50:9558. https://www.ncbi.nlm.nih.gov/pubmed/27454131

doi: 10.1021/acs.est.6b02170     URL     pmid: 27454131
[19]
Li J, Zhang X, Liu M, Pan B, Zhang W, Shi Z, Guan X . Environ. Sci. Technol., 2018,52:2988. https://www.ncbi.nlm.nih.gov/pubmed/29446929

doi: 10.1021/acs.est.7b06502     URL     pmid: 29446929
[20]
Lim T T, Zhu B W . Chemosphere, 2008,73:1471. https://www.ncbi.nlm.nih.gov/pubmed/18760820

doi: 10.1016/j.chemosphere.2008.07.050     URL     pmid: 18760820
[21]
Muller K A, Esfahani S G, Chapra S C, Ramsburg C A . Environ. Sci. Technol., 2018,52:4256. https://www.ncbi.nlm.nih.gov/pubmed/29522321

doi: 10.1021/acs.est.7b06012     URL     pmid: 29522321
[22]
Berge N D, Ramsburg C A . Environ. Sci. Technol., 2009,43:5060. https://www.ncbi.nlm.nih.gov/pubmed/19673307

doi: 10.1021/es900358p     URL     pmid: 19673307
[23]
He F, Zhao D Y . Environ. Sci. Technol., 2007,41:6216. https://www.ncbi.nlm.nih.gov/pubmed/17937305

doi: 10.1021/es0705543     URL     pmid: 17937305
[24]
Xin J, Zheng X L, Han J, Shao H B, Kolditz O . Chem. Eng. J., 2015,271:164.
[25]
Bleyl S, Kopinke F D, Mackenzie K . Chem. Eng. J., 2012,191:588.
[26]
Zhang Y, Li Y M, Li J F, Hu L J, Zheng X M . Chem. Eng. J., 2011,171:526.
[27]
Sheng G D, Shao X Y, Li Y M, Li J F, Dong H P, Cheng W, Gao X, Huang Y Y . J. Phys. Chem. A, 2014,118:2952. https://www.ncbi.nlm.nih.gov/pubmed/24730556

doi: 10.1021/jp412404w     URL     pmid: 24730556
[28]
Tang J, Tang L, Feng H P, Dong H R, Zhang Y, Liu S S, Zeng G M . Acta Chim. Sinica, 2017,75:575.
[29]
Li J X, Zhang X Y, Sun Y K, Liang L P, Pan B C, Zhang W M, Guan X H . Environ. Sci. Technol., 2017,51:13533. https://www.ncbi.nlm.nih.gov/pubmed/29135239

doi: 10.1021/acs.est.7b02695     URL     pmid: 29135239
[30]
Zhao X, Liu W, Cai Z Q, Han B, Qian T W, Zhao D Y . Water Res., 2016,100:245. https://www.ncbi.nlm.nih.gov/pubmed/27206054

doi: 10.1016/j.watres.2016.05.019     URL     pmid: 27206054
[31]
He F, Zhao D Y . Applied Catalysis B-Environmental, 2008,84:533.
[32]
Phenrat T, Liu Y Q, Tilton R D, Lowry G V . Environ. Sci. Technol., 2009,43:1507. https://www.ncbi.nlm.nih.gov/pubmed/19350927

doi: 10.1021/es802187d     URL     pmid: 19350927
[33]
Saleh N, Sirk K, Liu Y Q, Phenrat T, Dufour B, Matyjaszewski K, Tilton R D, Lowry G V . Environ. Eng. Sci., 2007,24:45.
[34]
Kanel S R, Nepal D, Manning B, Choi H . J. Nanopart. Res., 2007,9:725.
[35]
He F, Zhao D Y, Liu J C, Roberts C B . Industrial & Engineering Chemistry Research, 2007,46:29.
[36]
Tseng H H, Su J G, Liang C J . J. Hazard. Mater., 2011,192:500. https://www.ncbi.nlm.nih.gov/pubmed/21676545

doi: 10.1016/j.jhazmat.2011.05.047     URL     pmid: 21676545
[37]
Choi H, Al-Abed S R, Agarwal S, Dionysiou D D . Chem. Mater., 2008,20:3649.
[38]
Hoch L B, Mack E J, Hydutsky B W, Hershman J M, Skluzacek I M, Mallouk T E . Environ. Sci. Technol., 2008,42:2600. https://www.ncbi.nlm.nih.gov/pubmed/18505003

doi: 10.1021/es702589u     URL     pmid: 18505003
[39]
Mackenzie K, Bleyl S, Kopinke F D, Doose H, Bruns J . Sci. Total Environ., 2016,563:641. https://www.ncbi.nlm.nih.gov/pubmed/26299641

doi: 10.1016/j.scitotenv.2015.07.107     URL     pmid: 26299641
[40]
He F, Zhao D Y, Paul C . Water Res., 2010,44:2360. https://www.ncbi.nlm.nih.gov/pubmed/20106501

doi: 10.1016/j.watres.2009.12.041     URL     pmid: 20106501
[41]
Jiang Z M, Lv L, Zhang W M, Du Q O, Pan B C, Yang L, Zhang Q X . Water Res., 2011,45:2191. https://www.ncbi.nlm.nih.gov/pubmed/21316071

doi: 10.1016/j.watres.2011.01.005     URL     pmid: 21316071
[42]
Du Q, Zhang S J, Pan B C, Lv L, Zhang W M, Zhang Q X . Water Res., 2013,47:6064. https://www.ncbi.nlm.nih.gov/pubmed/23969401

doi: 10.1016/j.watres.2013.07.020     URL     pmid: 23969401
[43]
Ling X F, Li J S, Zhu W, Zhu Y Y, Sun X Y, Shen J Y, Han W Q, Wang L J . Chemosphere, 2012,87:655. https://www.ncbi.nlm.nih.gov/pubmed/22365414

doi: 10.1016/j.chemosphere.2012.02.002     URL     pmid: 22365414
[44]
梁宇(Liang Y), 顾鹏程(Gu P C), 姚文(Yao W), 于淑君(Yu S J), 王建(Wang J), 王祥科(Wang X K) . 化学进展 (Progress in Chemistry), 2017,29:1062.
[45]
Li J, Chen C L, Zhu K R, Wang X K . Journal of the Taiwan Institute of Chemical Engineers, 2016,59:389.
[46]
Ma Y Y, Lv X F, Yang Q, Wang Y Y, Chen X . Applied Catalysis A-General, 2017,542:252.
[47]
Tufenkji N, Elimelech M . Environ. Sci. Technol., 2004,38:529. https://www.ncbi.nlm.nih.gov/pubmed/14750730

doi: 10.1021/es034049r     URL     pmid: 14750730
[48]
He F, Zhang M, Qian T W, Zhao D Y . J. Colloid Interface Sci., 2009,334:96. https://www.ncbi.nlm.nih.gov/pubmed/19383562

doi: 10.1016/j.jcis.2009.02.058     URL     pmid: 19383562
[49]
Bennett P, He F, Zhao D Y, Aiken B, Feldman L . J. Contam. Hydrol., 2010,116:35. https://www.ncbi.nlm.nih.gov/pubmed/20542350

doi: 10.1016/j.jconhyd.2010.05.006     URL     pmid: 20542350
[50]
Johnson R L, Nurmi J T, Johnson G S O, Fan D M, Johnson R L O, Shi Z Q, Salter-Blanc A J, Tratnyek P G, Lowry G V . Environ. Sci. Technol., 2013,47:1573. https://www.ncbi.nlm.nih.gov/pubmed/23311327

doi: 10.1021/es304564q     URL     pmid: 23311327
[51]
Busch J, Meissner T, Potthoff A, Oswald S E . J. Contam. Hydrol., 2014,164:25. https://www.ncbi.nlm.nih.gov/pubmed/24914524

doi: 10.1016/j.jconhyd.2014.05.006     URL     pmid: 24914524
[52]
Bianco C, Tosco T, Sethi R . J. Contam. Hydrol., 2016,193:10. https://www.ncbi.nlm.nih.gov/pubmed/27607520

doi: 10.1016/j.jconhyd.2016.08.006     URL     pmid: 27607520
[53]
Mackenzie K, Bleyl S, Georgi A, Kopinke F D . Water Res., 2012,46:3817. https://www.ncbi.nlm.nih.gov/pubmed/22591820

doi: 10.1016/j.watres.2012.04.013     URL     pmid: 22591820
[54]
Sakulchaicharoen N, O’Carroll D M, Herrera J E . J. Contam. Hydrol., 2010,118:117. https://www.ncbi.nlm.nih.gov/pubmed/20934234

doi: 10.1016/j.jconhyd.2010.09.004     URL     pmid: 20934234
[55]
He F, Zhao D Y . Environ. Sci. Technol., 2005,39:3314. https://www.ncbi.nlm.nih.gov/pubmed/15926584

doi: 10.1021/es048743y     URL     pmid: 15926584
[56]
Cheng Y, Jiao C, Fan W J . Desalin. Water Treat., 2015,54:502.
[57]
Xiong Z, Zhao D Y, Pan G . J. Nanopart. Res., 2009,11:807.
[58]
Xiong Z, Zhao D Y, Pan G . Water Res., 2007,41:3497. https://www.ncbi.nlm.nih.gov/pubmed/17597179

doi: 10.1016/j.watres.2007.05.049     URL     pmid: 17597179
[59]
Wu X Q, Yang Q, Xu D C, Zhong Y, Luo K, Li X M, Chen H B, Zeng G M . Industrial & Engineering Chemistry Research, 2013,52:12574.
[60]
Li X Y, Ai L H, Jiang J . Chem. Eng. J., 2016,288:789.
[61]
Tratnyek P G, Salter-Blanc A J, Nurmi J T, Amonette J E, Liu J, Wang C M, Dohnalkova A, Baer D R . Aquatic Redox Chemistry, 2011,1071:381.
[62]
Fan D M, Gilbert E J, Fox T . J. Environ. Manage., 2017,204:793. https://www.ncbi.nlm.nih.gov/pubmed/28233638

doi: 10.1016/j.jenvman.2017.02.014     URL     pmid: 28233638
[63]
Wu L M, Liao L B, Lv G C, Qin F X, He Y J, Wang X Y . J. Hazard. Mater., 2013,254:277. https://www.ncbi.nlm.nih.gov/pubmed/23632041

doi: 10.1016/j.jhazmat.2013.03.009     URL     pmid: 23632041
[64]
Dou X M, Li R, Zhao B, Liang W Y . J. Hazard. Mater., 2010,182:108. https://www.ncbi.nlm.nih.gov/pubmed/20599323

doi: 10.1016/j.jhazmat.2010.06.004     URL     pmid: 20599323
[65]
王春雷(Wang C L), 马丁(Ma D), 包信和(Bao X H) . 化学进展 (Progress in Chemistry), 2009,21:1705.
[66]
Gong K D, Hu Q, Xiao Y Y, Cheng X, Liu H, Wang N, Qiu B, Guo Z H . Journal of Materials Chemistry A, 2018,6:11119.
[67]
Kopinke F D, Speichert G, Mackenzie K, Hey-Hawkins E . Applied Catalysis B-Environmental, 2016,181:747.
[68]
Liu H, Wang Q, Wang C, Li X Z . Chem. Eng. J., 2013,215:90.
[69]
Schöftner P, Waldner G, Lottermoser W, Stöger-Pollach M, Freitag P, Reichenauer T G . Sci. Total Environ., 2015,535:69. https://www.ncbi.nlm.nih.gov/pubmed/26006053

doi: 10.1016/j.scitotenv.2015.05.033     URL     pmid: 26006053
[70]
Qin H J, Li J X, Yang H Y, Pan B C, Zhang W M, Guan X H . Environ. Sci. Technol., 2017,51:5090. https://www.ncbi.nlm.nih.gov/pubmed/28358503

doi: 10.1021/acs.est.6b04832     URL     pmid: 28358503
[71]
Fan D M, O’Carroll D M, Elliott D W, Xiong Z, Tratnyek P G, Johnson R L, Garcia A N . Remediation-the Journal of Environmental Cleanup Costs Technologies & Techniques, 2016,26:27.
[72]
Fan D M, Lan Y, Tratnyek P G, Johnson R L, Filip J, O’Carroll D M, Garcia A N, Agrawal A . Environ. Sci. Technol., 2017,51:13070. https://www.ncbi.nlm.nih.gov/pubmed/29035566

doi: 10.1021/acs.est.7b04177     URL     pmid: 29035566
[73]
Choi H, Al-Abed S R, Agarwal S . Environ. Sci. Technol., 2009,43:4137. https://www.ncbi.nlm.nih.gov/pubmed/19569342

doi: 10.1021/es803535b     URL     pmid: 19569342
[74]
陈海军(Chen H J), 黄舒怡(Huang S Y), 张志宾(Zhang Z B), 刘云海(Liu Y H), 王祥科(Wang X K) . 化学学报 (Acta Chimica Sinica), 2017,75:560.
[75]
杨姗也(Yang S Y), 王祥学(Wang X X), 陈中山(Chen Z S), 李倩(Li Q), 韦犇犇(Wei B B), 王祥科(Wang X K) . 化学学报 (Progress in Chemistry), 2018,30:225.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[5] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[6] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[7] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[8] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[9] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[10] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[13] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[14] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[15] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.