English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 191-200 DOI: 10.7536/PC180527 前一篇   后一篇

• 综述 •

金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用

白蕾1,2, 王艳凤1,2, 霍淑慧1,2,**(), 卢小泉1,2,**()   

  1. 1. 西北师范大学化学化工学院 兰州 730070
    2. 甘肃省生物电化学与环境分析重点实验室 兰州 730070
  • 收稿日期:2018-05-21 修回日期:2018-07-01 出版日期:2019-01-15 发布日期:2018-10-20
  • 通讯作者: 霍淑慧, 卢小泉
  • 基金资助:
    国家自然科学基金项目(21305112); 甘肃省自然科学基金项目(No.)(18JR3RA085); 国家自然科学基金项目(No.21305112)、甘肃省自然科学基金项目(No.18JR3RA085)和甘肃省高等学校科研项目资助(2015A-027)

Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials

Lei Bai1,2, Yanfeng Wang1,2, Shuhui Huo1,2,**(), Xiaoquan Lu1,2,**()   

  1. 1. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
    2. Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China;
  • Received:2018-05-21 Revised:2018-07-01 Online:2019-01-15 Published:2018-10-20
  • Contact: Shuhui Huo, Xiaoquan Lu
  • About author:
    ** Corresponding author e-mail: (Shuhui Huo);
    (Xiaoquan Lu)
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21305112); The Natural Science Foundation of Gansu Province(18JR3RA085); The Research Projects of Gansu Universities(2015A-027)

食品安全问题是关系人民生命健康和经济社会和谐发展的重大问题。食品类样品残存的痕量有毒有害物质对人体健康产生潜在危害。因此,需要高效的吸附材料用于食品类样品预处理及检测。金属-有机骨架材料(metal-organic frameworks, MOFs) 是一类新型的多孔功能材料,具有高孔隙度、高比表面积、结构可设计与调控、孔径可调及良好的化学和热稳定性等优点。MOFs的早期研究主要集中在结构及功能化设计方面,近年来MOFs及其功能材料在各领域的潜在应用逐渐成为新的研究热点。MOFs具有高度发达的孔隙结构,易通过功能化改变材料表面性质,不同的金属元素和配体种类,以及配位方式的多样化特性,极大地丰富固相萃取的固定相材料种类。尤其是在复杂基质样品预处理中,MOFs及其功能材料表现出强富集能力、强抗基质干扰能力、优异的选择性以及环境友好等优势。本文综述了近几年MOFs及其功能材料在食品和水样品中有害物质预处理方面的研究进展,并对这类材料应用在食品安全分析方面的发展进行了展望。

Food safety has received great attention due to its close connectivity with people’s health and the harmonious development of national economy and society. Trace amount of toxic and harmful compounds in food and water are potentially harmful to human health. Excellent adsorbent and efficient extraction have received more and more attention in food safety detection. Metal-organic frameworks (MOFs) are an emerging class of porous functional materials with high porosity, large surface area, easy structural design, adjustable pore size, as well as acceptable chemical and thermal stability. In the past, the research on MOFs mainly focused on the structural design. Recently, more and more attention has been focused on applications of MOFs in food safety analysis. Meanwhile, their high porosity, tunable surface functionalities, various metal and ligands, as well as diverse coordination modes make MOFs promising as adsorption material for SPE. The merits of MOFs and their functional materials, in particular, are high enrichment, excellent matrix interference resistance, good selectivity, and environmentally-friendly development. Interesting research of MOFs and their functional materials in the pretreatment of food and water samples are summarized.

()
表1 固相萃取在食品痕量重金属检测中的应用[40,41,42,43,44,45,46,47,48,49,50,51]
Table 1 SPE for the detection of trace heavy metal in food samples[40,41,42,43,44,45,46,47,48,49,50,51]
图1 (a)双硫腙功能化的Fe3O4合成示意图;(b)磁性MOF-DHz纳米复合材料的合成示意图[40]
Fig.1 (a) A schematic diagram of dithizone functionalized Fe3O4synthesis. (b) The schematic illustration of synthesis of magnetic MOF-DHz nanocomposite[40]
图2 PCN-222/MOF-545的结构[50]
Fig.2 Molecular representations of PCN-222/MOF-545[50]
表2 固相萃取在食物样品抗生素和激素检测中的应用[52,53,54,55]
Table 2 SPE for the detection of antibiotics and hormones in food samples[52,53,54,55]
表3 固相萃取在食物样品农药检测中的应用[58,59,60,61]
Table 3 SPE for the detection of pesticides in food samples[58,59,60,61]
图3 制备MOF-C过程(A)及固相萃取甲酰脲类杀虫剂(B)[59]
Fig.3 Procedures of the preparation of MOF-C (A) and dispersive solid-phase extraction for benzoylurea insecticides (B)[59]
表4 固相萃取在食品和水持久性有机污染物检测中的应用[63,64,65,66,67,68,69]
Table 4 SPE for the detection of persistent organic pollutants in food and water samples[63,64,65,66,67,68,69]
图4 锈钢纤维丝水热法原位制备SPME双配体MOF bio-MOF-1 涂层[65]
Fig.4 锈钢纤维丝水热法原位制备SPME双配体MOF bio-MOF-1 涂层[65]
图5 扫描电镜图:不锈钢丝纤维(A); bio-MOF-1 涂层SPME纤维(B、C);bio-MOF-1纤维成分分析(D-G)的[65]
Fig.5 SEM images of (A) stainless steel wire; (B) and (C) bio-MOF-1 SPME fiber. EDS elemental mapping images for bio-MOF-1 SPME fiber (DG)[65]
图6 Fe3O4@SiO2-MIL-101 MNPs作为MSPE吸附剂的示意图[66]
Fig.6 Schematic diagram for the application of Fe3O4@SiO2-MIL-101 MNPs as sorbent for MSPE[66]
图7 (A) MIL-100的热解原位磁化的示意图; (B) MSPE的分析过程图[67]
Fig.7 Schematic diagram of pyrolytic in situ magnetization of MIL-100 (A) and analytical procedures for MSPE. (B)[67]
图8 MOF@MON的合成和固相微萃取纤维的制备[69]
Fig.8 Synthesis of MOF@MON and fabrication of solid-phase microextraction fibers[69]
图9 MIL-101(a)和MIL-101@DMIP(b)的扫描电子显微图[72]
Fig.9 Scanning electron micrographs of MIL-101(a) and MIL-101@DMIP(b)[72]
[1]
Maya F, Cabello C P, Frizzarin R M, Estela J M, Palomino G T, Cerdà V . TrAC-Trend. Anal. Chem., 2017,90:142.
[2]
Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V . TrAC-Trend. Anal. Chem., 2016,80:641.
[3]
Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V . TrAC-Trend. Anal. Chem., 2016,80:655.
[4]
Zhu Q L, Xu Q . Chem. Soc. Rev., 2014,43:5468.
[5]
Kitagawa S, Kitaura R, Noro S I . Angew. Chem. Int. Ed., 2004,43:2334.
[6]
Long J R, Yaghi O M . Chem. Soc. Rev., 2009,38:1213.
[7]
Spokoyny A M, Kim D, Sumrein A, Mirkin C A . Chem. Soc. Rev., 2009,38:1218.
[8]
Meek S T, Greathouse J A, Allendorf M D . Adv. Mater., 2011,23:249.
[9]
Li J R, Sculley J, Zhou H C . Chem. Rev., 2011,112:869.
[10]
Jiang H L, Xu Q . Chem.Commun, 2011,47:3351.
[11]
Sakata Y, Furukawa S, Kondo M, Hirai K, Horike N, Takashima Y, Uehara H, Louvain N, Meilikhov M, Tsuruoka T, Isoda S, Kosaka W, Sakata O, Kitagawa S . Science, 2013,339:193.
[12]
付艳艳 (Fu Y Y), 严秀平 (Yan X Ps) . 化学进展( Progress in Chemistry), 2013,25(2/3):221.
[13]
Yaghi O M, Li G, Li H . Nature, 1995,378:703.
[14]
Yaghi O M, Li H . J. Am. Chem. Soc., 1995,117:10401.
[15]
Furukawa H, Cordova K E, ÓKeeffe M, Yaghi O M . Science, 2013,80:341.
[16]
Ma S, Zhou H C . Chem. Commun., 2010,46:44.
[17]
Suh M P, Park H J, Prasad T K, Lim D W . Chem. Rev., 2012,112:782.
[18]
Murray L J, Dinca M, Long J R . Chem. Soc. Rev., 2009,38:1294.
[19]
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, ÓKeeffe M, Yaghi O M . Science, 2003,300:1127.
[20]
Zhao X, Xiao B, Fletcher A J, Thomas K M, Bradshaw D, Rosseinsky M J . Science, 2004,306:1012.
[21]
Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R . Chem. Rev., 2011,112:724.
[22]
Yanai N, Kitayama K, Hijikata Y, Sato H, Matsuda R, Kubota Y, Takata M, Mizuno M, Uemura T, Kitagawa S . Nat. Mater, 2011,10:787.
[23]
Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T . Chem. Rev., 2011,112:1105.
[24]
Chen B, Yang Y, Zapata F, Lin G, Qian G, Lobkovsky E B . Adv. Mater., 2007,19:1693.
[25]
Achmann S, Hagen G, Kita J, Malkowsky I, Kiener C, Moos R . Sensors, 2009,9:1574.
[26]
Yoon M, Srirambalaji R, Kim K . Chem. Rev, 2012,112:1196.
[27]
黎林清 (Li L Q), 吕迎 (Lv Y), 李军 (Li J), 董晓丽 (Dong X L), 高爽 (Gao S) . 化学进展( Progress in Chemistry), 2012,24(5):747.
[28]
邱健豪 (Qiu J H), 何明 (He M), 贾明民 (Jia M M), 姚建峰 (Yao J F) . 化学进展( sProgress in Chemistry), 2016,28(7):1016.
[29]
Yamada T, Otsubo K, Makiura R, Kitagawa H . Chem. Soc. Rev., 2013,42:6655.
[30]
Sadakiyo M, Yamada T, Kitagawa H . J. Am. Chem. Soc., 2009,131:9906.
[31]
Taylor J M, Mah R K, Moudrakovski I L, Ratcliffe C I, Vaidhyanathan R, Shimizu G K . J. Am. Chem. Soc., 2010,132:14055.
[32]
SadakiyoM, Okawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H . J. Am. Chem. Soc., 2012,134:5472.
[33]
Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L Shimizu G K H, . Nat. Chem., 2009,1:705.
[34]
Umeyama D, Horike S, Inukai M, Hijikata Y, Kitagawa S . Angew. Chem. Int. Ed., 2011,50:11706.
[35]
Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C . Chem.Rev, 2011,112:1232.
[36]
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P N, Cynober L, Gil S, Férey G, Couvreur P, Gref R . Nat. Mater, 2010,9:172.
[37]
Rocca J D, Liu D, Lin W . Acc. Chem. Res., 2011,44:957.
[38]
Zhou Y Y, Yan X P, Kim K N, Wang S W, Liu M G . J. Chromatogr. A, 2006,1116:172.
[39]
Habi S, Daba H . Pak J. Biol. Sci., 2009,12:1474.
[40]
Taghizadeh M, Asgharinezhad A A, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A . Microchim. Acta, 2013,180:1073.
[41]
Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R, Babazadeh M, Abolhasani J, Hassanpour A . Can. J. Chem., 2015,93:518.
[42]
Hassanpour A, Hosseinzadeh-Khanmiri R, Babazadeh M, Abolhasani J, Ghorbani-Kalhor E. Food Addit . Contam. A, 2015,32:725.
[43]
Ghorbani-Kalhor E . Microchim. Acta, 2016,183:2639.
[44]
Tadjarodi A, Abbaszadeh A . Microchim. Acta, 2016,183:1391.
[45]
Babazadeh M, Hosseinzadeh-Khanmiri R, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A . Rsc Adv, 2015,5:19884.
[46]
Babazadeh M, Khanmiri R H, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A . Bull. Chem. Soc. Jpn, 2015,88:871.
[47]
Safari M, Yamini Y, Masoomi M Y, Morsali A, Mani-Varnosfaderani A . Microchim. Acta, 2017,184:1555.
[48]
Abbaszadeh A, Tadjarodi A . Rsc Adv, 2016,6:113727.
[49]
Wu Y Z, Xu G H, Wei F D, Song Q, Tang T, Wang X, Hu Q . Micropor. Mesopor. Mat., 2016,235:204.
[50]
Kahkha M R R, Daliran S, Oveisi A R, Kaykhaii M, Sepehri Z . Food Anal. Methods, 2017,10:2175.
[51]
Tokalıoğlu S, Yavuz E, Demir S, Patat S . Food Chem., 2017,237:707.
[52]
Lin C L, Lirio S, Chen Y T, Lin C H, Huang H Y . Chem. Eur. J., 2014,20:3317.
[53]
Lirio S, Liu W L, Lin C L, Lin C H, Huang H Y . J. Chromatogr. A, 2016,1428:236.
[54]
Lan H Z, Pan D D, Sun Y Y, Guo Y X, Wu Z . Anal. Chim. Acta, 2016,937:53.
[55]
Wu M A, Ai Y H, Zeng B Z, Zhao F Q . J. Chromatogr. A, 2016,1427:1.
[56]
Cui X Y, Gu Z Y, Jiang D Q, Li Y, Wang H F, Yan X P . Anal. Chem., 2009,81:9771.
[57]
易军 ( Yi J), 李云春 (Li Y C), 弓振斌 (Gong Z B) . 化学进展( Progress in Chemistry), 2002,14(6):415.
[58]
Li N, Wang Z B, Zhang L Y, Nian L, Lei L, Yang X, Zhang H Q, Yu A M . Talanta, 2014,128:345.
[59]
Liu X L, Wang C, Wang Z C, Wu Q H, Wang Z . Microchim. Acta, 2015,182:1903.
[60]
Cai Q Q, Zhang L J, Zhao P, Lun X W, Li W, Guo Y, Hou X H . Microchem. J., 2017,130:263.
[61]
Xia L A, Liu L J, Xu X L, Zhu F F, Wang X L, Zhang K Y, Yang X C, You J M . New J. Chem., 2017,41:2241.
[62]
Kumar P, Paul A K, Deep A . Micropor. Mesopor. Mat., 2014,195:60.
[63]
Lin S C, Gan N, Qiao L, Zhang J B, Cao Y T, Chen Y J . Talanta, 2015,144:1139.
[64]
Lin S C, Gan N, Zhang J B, Qiao L, Chen Y J, Cao Y T . Talanta, 2016,149:266.
[65]
Huo S H, Yu J, Fu Y Y, Zhou P X . Rsc Adv., 2016,6:14042.
[66]
Huo S H, Yan X P . Analyst, 2012,137:3445.
[67]
Huo S H, An H Y, Yu J, Mao X F, Zhang Z, Bai L, Huang Y F, Zhou P X . J. Chromatogr. A, 2017,1517:18.
[68]
Rocío-Bautista P, Pino V, Ayala J H, Pasán J, Ruiz-Pérez C, Afonso A M . J. Chromatogr. A, 2016,1436:42.
[69]
Jia Y Q, Su H, Wang Z H, Elaine Wong Y L, Chen X F, Wang M L, Dominic Chan T W . Anal. Chem., 2016,88:9364.
[70]
Yang C X, Yan X P . Chinese J. Anal. Chem., 2013,41:1297.
[71]
王瑞莹 (Wang R Y), 张超艳 (Zhang C Y), 王淑萍 (Wang S P), 周友亚 (Zhou Y Y) . 化学进展( Progress in Chemistry), 2015,27(7):945.
[72]
Liu H L, Mu L, Chen X M, Wang J, Wang S, Sun B G . J. Agric. Food Chem., 2017,65:986.
[73]
Liu X L, Wang C, Wu Q H, Wang Z . J. Sep. Sci., 2015,38:3928.
[74]
Chang N, Gu Z Y, Yan XP . J. Am. Chem. Soc., 2010,132:13645.
[75]
Wang Z, Yang J, Li Y S, Zhuang Q X, Gu J L . Chem. Eur. J., 2017,23:15415.
[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[3] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[4] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[5] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[6] 卢芸, 李景鹏, 张燕, 仲国瑞, 刘波, 王慧庆. 木基炭微纳功能骨架[J]. 化学进展, 2020, 32(7): 906-916.
[7] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[8] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[9] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[10] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[11] 郭瑞梅, 白金泉, 张恒, 谢亚勃, 李建荣. 金属-有机骨架材料在催化氧化反应中的应用[J]. 化学进展, 2016, 28(2/3): 232-243.
[12] 金亨到, 王立, 俞豪杰, 童荣柏, 周卫东. 主链或侧链含二茂铁的聚合物的合成和应用[J]. 化学进展, 2016, 28(1): 51-57.
[13] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[14] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[15] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.