English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 655-665 DOI: 10.7536/PC141231 前一篇   后一篇

• 超分子化学专辑 •

基于柱芳烃的有机功能材料

夏梦婵, 杨英威*   

  1. 吉林大学化学学院 无机合成与制备化学国家重点实验室 纳微构筑化学国际合作联合实验室 长春 130012
  • 收稿日期:2014-12-01 修回日期:2015-01-01 出版日期:2015-06-15 发布日期:2015-03-26
  • 通讯作者: 杨英威 E-mail:ywyang@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51473061,21272093)资助

Organic Functional Materials Based on Pillarenes

Xia Mengchan, Yang Yingwei*   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry(NMAC), Jilin University, Changchun 130012, China
  • Received:2014-12-01 Revised:2015-01-01 Online:2015-06-15 Published:2015-03-26
  • Contact: 10.7536/PC141231 E-mail:ywyang@jlu.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51473061, 21272093).
超分子化学起源于主客体化学,其发展亦很大程度上依赖于主客体化学。而大环受体分子作为主客体化学重要组成部分在有机功能材料的构筑方面已逐渐显示出其无穷的魅力。在过去的几十年里,科研工作者们深入研究了包括冠醚、环糊精、杯芳烃、葫芦脲、柱芳烃在内的多种有机超分子主体化合物。其中,柱芳烃作为一种新型的易官能化的主体分子,由于其独特的刚性柱状结构和优良的物理、化学性质日益受到广泛关注。它为有机功能材料的制备以及超分子化学的发展提供了更多可能。到目前为止,基于柱芳烃的有机功能材料已在分子识别、细菌病毒抑制、农药检测、重金属离子识别、光传感、纳米粒子的稳定、催化、生物传感及药物控释等多个领域得到运用。本文结合这些材料现阶段的研究进展,对其在上述领域的应用进行简单明晰地总结与展望。
Supramolecular chemistry is originated from synthetic organic chemistry and host-guest chemistry and its development greatly relies on the advance of host-guest chemistry. Synthetic macrocyclic compounds as an important part of host-guest chemistry and supramolecular chemistry have been designed and synthesized to further construct organic functional materials. In the past few decades, scientists have investigated a variety of supramolecular host compounds, including crown ethers, cyclodexrins, calixarenes, cucurbiturils, and pillarenes (or pillar [n]arenes, n=5~15). In particular, pillarenes, which can be easily synthesized and functionalized, have gained great attention for their typically rigid pillar-shape architecture and unique physical and chemical properties. Meanwhile, pillarenes have made great additions to the development of organic functional materials and enriched the contents of supramolecular chemistry and nanoscience. To the best of our knowledge, these pillarene-based organic functional materials have been successfully applied to many different scientific fields including molecular recognition and self-assembly, bacteria and virus inhibition, detection of pesticide and heavy metal ions, stabilization of nanoparticles, optical sensing, catalysis, biological sensing, drug delivery and controlled release, and so on. In this review, we mainly focus on summarizing the research progress of pillarene-based organic functional materials and comment on the bright future of their potential applications.

Contents
1 Introduction
2 Organic functional materials based on pillarenes
2.1 Bacteria/Virus inhibition
2.2 Optical functional materials
2.3 Supramolecular polymeric materials
2.4 Drug delivery systems
2.5 Materials for detection of pesticide and heavy metal ions
2.6 Others
3 Conclusion and outlook

中图分类号: 

()
[1] Ogoshi T, Yamagishia T. Chem. Commun., 2014, 50: 4776.
[2] Hu X Y, Xiao T, Lin C, Huang F, Wang L. Acc. Chem. Res., 2014, 47: 2041.
[3] Strutt N L, Zhang H, Schneebeli S T, Stoddart J F. Acc. Chem. Res., 2014, 47: 2631.
[4] Yang Y W, Sun Y L, Song N. Acc. Chem. Res., 2014, 47: 1950.
[5] Song N, Yang Y W. Science China Chemistry, 2014, 57: 1185.
[6] Ma X, Tian H. Chem. Soc. Rev., 2010, 39, 70.
[7] Ma X, Tian H. Acc. Chem. Res., 2014, 47, 1971.
[8] Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F. J. Am. Chem. Soc., 2013, 135: 10310.
[9] Nierengarten I, Buffet K, Holler M, Vincent S P, Nierengarten J F. Tetrahedron Lett., 2013, 54: 2398.
[10] Zheng D D, Fu D Y, Wu Y, Sun Y L, Tan L L, Zhou T, Ma S Q, Zha X, Yang Y W. Chem. Commun., 2014, 50: 3201.
[11] Zhang H, Strutt N L, Stoll R S, Li H, Zhua Z, Stoddart J F. Chem. Commun., 2011, 47: 11420.
[12] Ogoshi T, Yamafuji D, Kotera D, Aoki T, Fujinami S, Yamagishi T. J. Org. Chem., 2012, 77: 11146.
[13] Ogoshi T, Yoshikoshi K, Aoki T, Yamagishi T. Chem. Commun., 2013, 49: 8785.
[14] Ogoshi T, Kida K, Yamagishi T. J. Am. Chem. Soc., 2012, 134: 20146.
[15] Sun S, Hu X Y, Chen D, Shi J, Dong Y, Lin C, Pan Y, Wang L. Polym. Chem., 2013, 4: 2224.
[16] Sun S, Shi J B, Dong Y P, Lin C, Hu X Y, Wang L Y. Chin. Chem. Lett., 2013, 24: 987.
[17] Xu J F, Chen Y Z, Wu L Z, Tung, C H, Yang Q Z. Org. Lett., 2013, 15: 6148.
[18] Zhang H, Ma X, Guo J, Nguyen K T, Zhang Q, Wang X J, Yan H, Zhua L, Zhao Y. RSC Adv., 2013, 3: 368.
[19] Yu G, Han C, Zhang Z, Chen J, Yan X, Zheng B, Liu S, Huang F. J. Am. Chem. Soc., 2012, 134: 8711.
[20] Xia D, Yu G, Li J, Huang F. Chem. Commun., 2014, 50: 3606.
[21] Yang J, Yu G, Xia D, Huang F. Chem. Commun., 2014, 50: 3993.
[22] Yao Y, Chi X, Zhou Y, Huang F. Chem. Sci., 2014, 5: 2778.
[23] Wang Y, Xu J F, Chen Y Z, Niu L Y, Wu L Z, Tung C H, Yang Q Z. Chem. Commun., 2014, 50: 7001.
[24] Wang K, Wang C Y, Zhang Y, Zhang X A, Yang B, Yang Y W. Chem. Commun., 2014, 50: 94581.
[25] Song N, Chen D X, Qiu Y C, Yang X Y, Xu B, Tian W, Yang Y W. Chem. Commun., 2014, 50: 8231.
[26] Song N, Chen D X, Xia M C, Qiu X L, Ma K, Xu B, Tian W, Yang Y W. Chem. Commun., 2015, 51: 5526.
[27] Yu G, Tang G, Huang F. J. Mater. Chem. C, 2014, 2: 6609.
[28] Wu J, Sun S, Feng X, Shi J, Hu X Y, Wang L. Chem. Commun., 2014, 50: 9122.
[29] Yu G, Yan X, Han C, Huang F. Chem. Soc. Rev., 2013, 42: 6697.
[30] Liu Y, Wang Z, Zhang X. Chem. Soc. Rev., 2012, 41: 5922.
[31] Wang K, Wang C Y, Wang Y, Li H, Bao C Y, Liu J Y, Zhang X A, Yang Y W. Chem. Commun., 2013, 49: 10528.
[32] Dong S, Zheng B, Wang F, Huang F. Acc. Chem. Res., 2014, 47: 1982.
[33] Xia B, Zheng B, Han C, Dong S, Zhang M, Hu B, Yu Y, Huang F. Polym. Chem., 2013, 4: 2019.
[34] Dong S, Yuan J, Huang F. Chem. Sci., 2014, 5: 247.
[35] Gao L, Zhang Z, Zheng B, Huang F. Polym. Chem., 2014, 5: 5734.
[36] Ogoshi T, Kayama H, Yamafuji D, Aoki T, Yamagishi T. Chem. Sci., 2012, 3: 3221.
[37] Hu X Y, Zhang P, Wu X, Xia W, Xiao T, Jiang J, Lin C, Wang L. Polym. Chem., 2012, 3: 3060.
[38] Guan Y, Ni M, Hu X, Xiao T, Xiong S, Lin C, Wang L. Chem. Commun., 2012, 48: 8529.
[39] Wang X, Han K., Li J, Jia X, Li C. Polym. Chem., 2013, 4: 3998.
[40] Han C, Xia B, Chen J, Yu G, Zhang Z, Dong S, Hu B, Yu Y, Xue M. RSC Adv., 2013, 3: 16089.
[41] Li Z Y, Y Zhang Y, Zhang C W, Chen L J, Wang C, Tan H, Yu Y, Li X, Yang H B. J. Am. Chem. Soc., 2014, 136: 8577.
[42] Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L. J. Am. Chem. Soc., 2013, 135: 10542.
[43] Cao Y, Hu X Y, Li Y, Zou X, Xiong S, Lin C, Shen Y Z, Wang L. J. Am. Chem. Soc., 2014, 136: 10762.
[44] Zhou J, Chen M, Diao G. ACS Appl. Mater. Interfaces, 2014, 6: 18538.
[45] Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z. Angew. Chem. Int. Ed., 2014, 53: 13126.
[46] Yao Y, Xue M, Chen J, Zhang M, Huang F. J. Am. Chem. Soc., 2012, 134: 15712.
[47] Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. J. Am. Chem. Soc., 2012, 134: 19489.
[48] Li Z, Yang J, Yu G, He J, Ablizb Z, Huang F. Chem. Commun., 2014, 50: 2841.
[49] Chi X, Xue M, Ma Y, Yan X, Huang F. Chem. Commun., 2013, 49: 8175.
[50] Yu G, Zhang Z, He J, Abliz Z, Huang F. Eur. J.Org.Chem., 2012, 30: 5902.
[51] Yu G, Zhang Z, Han C, Xue M, Zhou Q, Huang F. Chem. Commun., 2012, 48: 2958.
[52] Chi X, Xue M, Yao Y, Huang F. Org. Lett., 2013, 15: 4722.
[53] Li Z, Yang J, Yu G, He J, Abliz Z, Huang F. Org. Lett., 2014, 16: 2066.
[54] Li C, Xu Q, Li J, Yao F, Jia X. Org. Biomol. Chem., 2010, 8: 1568.
[55] Wu L, Fang Y, Jia Y, Yang Y, Liao J, Liu N, Yang X, Feng W, Ming J, Yuan L. Dalton Trans., 2014, 43: 3835.
[56] Fang Y, Wu L, Liao J, Chen L, Yang Y, Liu N, He L, Zou S, Feng W, Yuan L. RSC Adv., 2013, 3: 12376.
[57] Jia Y, Fang Y, Li Y, He L, Fan W, Feng W, Yang Y, Liao J, Liu N, Yuan L. Talanta, 2014, 125: 322.
[58] Smolko V A, Shurpik D N, Shamagsumova R V, Porfireva A V, Evtugyn V G, Yakimova L S, Stoikov I I, Evtugyn G A. Electrochimica Acta, 2014, 147: 726.
[59] Zhou S Y, Song, Liu S X, Chen D X, Jia Q, Yang Y W. Microchim. Acta, 2014, 181: 1551.
[60] Liu D, Song N, Cheng Y C, Chen D X, Jia Q, Yang Y W. RSC Adv., 2014, 4: 49153.
[61] Si W, Hu X B, Liu X H, Fan R, Chen Z, Weng L, Hou J L. Tetrahedron Lett., 2011, 52: 2484.
[62] Hu X B, Chen Z, Tang G, Hou J L, Li Z T. J. Am. Chem. Soc., 2012, 134: 8384.
[63] Chen L, Si W, Zhang L, Tang G, Li Z T, Hou J L. J. Am. Chem. Soc., 2013, 135: 2152.
[64] Si W, Li Z T, Hou J L. Angew. Chem. Int. Ed., 2014, 53: 4578.
[65] Yu G, Xue M, Zhang Z, Li J, Han C, Huang F. J. Am. Chem. Soc., 2012, 134: 13248.
[66] Li C, Ma J, Zhao L, Zhang Y, Yu Y, Shu X, Lia J, Jia X. Chem. Commun., 2013, 49: 1924.
[67] Adiri T, Marciano D, Cohen Y. Chem. Commun., 2013, 49: 7082.
[68] Zhou J, Chen M, Diao G. Chem. Commun., 2014, 50: 11954.
[69] Zhang H, Ma X, Nguyen K T, Zhao Y. ACS Nano, 2013, 7: 7853.
[1] 薛敏, 范芳芳, 杨勇, 陈传峰. 柱芳烃机械互锁结构的制备及功能化[J]. 化学进展, 2019, 31(4): 491-504.
[2] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[3] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[4] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[5] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[6] 汪含笑, 韩莹, 陈传峰*. 基于三维不对称主体的客体方向选择性穿线作用及其组装体的构建[J]. 化学进展, 2018, 30(5): 616-627.
[7] 潘梅, 韦张文, 徐耀维, 苏成勇. 配位超分子自组装[J]. 化学进展, 2017, 29(1): 47-74.
[8] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[9] 叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军. 金属配位与主客体识别协同组装构筑机械互锁结构[J]. 化学进展, 2015, 27(6): 763-774.
[10] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[11] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[12] 许良, 李勇军, 李玉良. 基于π体系的超分子功能材料的制备与应用研究[J]. 化学进展, 2014, 26(04): 487-501.
[13] 蒋邦平, 郭东升, 刘育*. 苝酰亚胺和大环化合物的超分子组装[J]. 化学进展, 2013, 25(06): 869-880.
[14] 杨柳, 雷霆, 裴坚*, 刘晨江* . 有机微纳米材料的设计策略、加工及应用[J]. 化学进展, 2012, 24(12): 2299-2311.
[15] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.
阅读次数
全文


摘要