English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 232-243 DOI: 10.7536/PC150804 前一篇   后一篇

• 综述与评论 •

金属-有机骨架材料在催化氧化反应中的应用

郭瑞梅, 白金泉*, 张恒, 谢亚勃, 李建荣*   

  1. 北京工业大学化学化工系 北京 100124
  • 收稿日期:2015-08-01 修回日期:2015-09-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 白金泉, 李建荣 E-mail:baijq@bjut.edu.cn;jrli@bjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21271015,21322601,U1407119)资助

Metal-Organic Frameworks for Catalytic Oxidation

Guo Ruimei, Bai Jinquan*, Zhang Heng, Xie Yabo, Li Jianrong*   

  1. Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2015-08-01 Revised:2015-09-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21271015, 21322601, U1407119).
本文综述了近几年金属-有机骨架(metal-organic frameworks, MOFs)材料在催化氧化反应中的研究进展。由于MOFs材料在结构上常具有特殊活性位点、孔隙率高、比表面积大且孔尺寸与性质可调等特点,在催化上有极大的应用潜力。本文主要介绍了MOFs材料自身作为催化剂和其作为载体负载具有催化活性组分的催化氧化反应。其中,着重介绍了具有配位不饱和金属位点的MOFs和MOFs做为载体负载金属纳米颗粒、多金属氧酸盐和金属卟啉用于催化的氧化反应,包括一些有机分子如烷烃、苄基化合物、烯烃、醇、酚、硫化物和无机小分子CO、水的催化氧化,也介绍了相关仿生催化和有机染料的催化氧化。MOFs和MOFs载体的催化性能主要从稳定性、非均相性、尺寸选择性及活性位的析出四个方面进行了评价。同时,对MOFs材料在催化应用中的发展趋势作了展望。
The use of metal-organic frameworks (MOFs) as heterogeneous catalyst for oxidation reactions developed in recent years is reviewed. Because of their unique structural features and outstanding physical/chemical properties, including metal or organic active sites in pore surface, high porosity, large surface areas, and tailorable pore properties, MOFs are promising and favorable for application in various catalytic reactions. In this review, the applications of MOFs in catalytic oxidation as catalysts or as supports of catalytic active species are discussed. Catalytic MOFs with coordinatively unsaturated metal active sites and MOFs supported metal nanoparticles (MNPs), polyoxometalates (POMs), and metalloporphyrins are emphasized. Catalytic oxidization of varieties of organic molecules, including alkanes, benzylic hydrocarbons, olefins, alcohols, phenols, and sulfur compounds, as well as small inorganic molecules, including CO and water in MOFs and/or MOFs supported catalysts are summarized. In addition, the application of MOFs in the oxidation of organic dyes and biomimetic catalysis is also discussed. Catalytic performances of these MOFs and MOFs supported catalysts are evaluated from the stability, heterogeneity, and shape/size selectivity, as well as precipitation of the active species aspects. Finally, the development trend of MOFs in the catalytic applications is prospected.

Contents
1 Introduction
2 Catalytic oxidation by MOFs
2.1 Oxidation of alkanes
2.2 Oxidation of benzylic hydrocarbons
2.3 Oxidation of olefins
2.4 Oxidation of alcohols
2.5 Oxidation of phenols
2.6 Oxidation of sulfur compounds
2.7 Photocatalytic oxidative degradation of organic dyes
2.8 Other oxidation reactions
3 Catalytic oxidation by MOFs supported catalysts
3.1 Oxidation of CO
3.2 Oxidation of H2O
3.3 Oxidation of olefins
3.4 Oxidation of alcohols
3.5 Oxidation of sulfur compounds
3.6 Other oxidation reactions
4 Conclusion and outlook

中图分类号: 

()
[1] Hoskins B F, Robson R. J. Am. Chem. Soc., 1989, 111:5962.
[2] Yaghi O M, Li G, Li H. Nature, 1995, 378:703.
[3] Morris R E, Wheatley P S. Angew. Chem. Int. Ed., 2008, 47:4966.
[4] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112:869.
[5] Zhao M, Ou S, Wu C D. Acc. Chem. Res., 2014, 47:1199.
[6] Dhakshinamoorthy A, Asiri A M, Garcia H. Chem. Soc. Rev., 2015, 44:1922.
[7] Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C Y. Chem. Soc. Rev., 2014, 43:6011.
[8] Zhang T, Lin W. Chem. Soc. Rev., 2014, 43:5982.
[9] Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev., 2014, 43:5750.
[10] Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev., 2012, 41:5262.
[11] Keskin S, Kizilel S. Ind. Eng. Chem. Res., 2011, 50:1799.
[12] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112:1196.
[13] Llabrés i Xamena F X, Abad A, Corma A, Garcia H. J. Catal., 2007, 250:294.
[14] Tonigold M, Lu Y, Bredenkötter B, Rieger B, Bahnmiiller S, Hitzbleck J, Langstein G, Volkmer D. Angew. Chem. Int. Ed., 2009, 48:7546.
[15] Maksimchuk N V, Kovalenko K A, Fedin V P, Kholdeeva O A. Chem. Commun., 2012, 48:6812.
[16] Farha O K, Shultz A M, Sarjeant A A, Nguyen S T, Hupp J T. J. Am. Chem. Soc., 2011, 133:5652.
[17] Meng L, Cheng Q, Kim C, Gao W Y, Wojtas L, Chen Y S, Zaworotko M J, Zhang X P, Ma S. Angew. Chem. Int. Ed., 2012, 51:10082.
[18] Wang X S, Chrzanowski M, Wojtas L, Chen Y S, Ma S. Chem. Eur. J., 2013, 19:3297.
[19] Feng D, Jiang H L, Chen Y P, Gu Z Y, Wei Z, Zhou H C. Inorg. Chem., 2013, 52:12661.
[20] Santiago Portillo A, Navalón S, Cirujano F G, Xamena F X L, Alvaro M, Garcia H. ACS Catal., 2015, 5:3216.
[21] Ramos-Fernandez E V, Garcia-Domingos M, Juan-Alcañiz J, Gascon J, Kapteijn F. Appl. Catal. A, 2011, 391:261.
[22] Kim J, Bhattacharjee S, Jeong K E, Jeong S Y, Ahn W S. Chem. Commun., 2009, 3904.
[23] Dhakshinamoorthy A, Alvaro M, Garcia H. J. Catal., 2009, 267:1.
[24] Wang S, Li L, Zhang J, Yuan X, Su C Y. J. Mater. Chem., 2011, 21:7098.
[25] Song G Q, Lu Y X, Zhang Q, Wang F, Ma X K, Huang X F, Zhang Z H. RSC Adv., 2014, 4:30221.
[26] Llabrés i Xamena F X, Casanova O, Tailleur R G, Garcia H, Corma A. J. Catal., 2008, 255:220.
[27] Luz I, León A, Boronat M, Llabrés i Xamena F X, Corma A. Catal. Sci. Technol., 2013, 3:371.
[28] Shi D, Ren Y, Jiang H, Lu J, Cheng X. Dalton Trans., 2013, 42:484.
[29] Biswas S, Maes M, Dhakshinamoorthy A, Feyand M, Vos D E D, Garcia H, Stock N. J. Mater. Chem., 2012, 22:10200.
[30] Hamidipour L, Farzaneh F. React. Kinet. Mech. Catal., 2013, 109:67.
[31] Yang X L, Xie M H, Zou C, He Y, Chen B, O'Keeffe M, Wu C D. J. Am. Chem. Soc., 2012, 134:10638.
[32] Zou C, Zhang Z, Xu X, Gong Q, Li J, Wu C D. J. Am. Chem. Soc., 2012, 134:87.
[33] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309:2040.
[34] Tonigold M, Lu Y, Mavrandonakis A, Puls A, Staudt R, Möllmer J, Sauer J, Volkmer D. Chem. Eur. J., 2011, 17:8671.
[35] Leus K, Vandichel M, Liu Y Y, Muylaert I, Musschoot J, Pyl S, Vrielinck H, Callens F, Marin G B, Detavernier C, Wiper P V, Khimyak Y Z, Waroquier M, Speybroeck V V, Voort P V D. J. Catal., 2012, 285:196.
[36] Cancino P, Paredes-García V, Aguirre P, Spodine E. Catal. Sci. Technol., 2014, 4:2599.
[37] Tuci G, Giambastiani G, Kwon S, Stair P C, Snurr R Q, Rossin A. ACS Catal., 2014, 4:1032.
[38] Leus K, Muylaert I, Vandichel M, Marin G B, Waroquier M, Speybroeck V V, Voort P V D. Chem. Commun., 2010, 46:5085.
[39] Lu Y, Tonigold M, Bredenkötter B, Volkmer D, Hitzbleck J, Langstein G. Z. Anorg. Allg. Chem., 2008, 634:2411.
[40] Jiang D, Mallat T, Meier D M, Urakawa A, Baiker A. J. Catal., 2010, 270:26.
[41] Xie M H, Yang X L, Wu C D. Chem. Commun., 2011, 47:5521.
[42] Xie M H, Yang X L, He Y, Zhang J, Chen B, Wu C D. Chem. Eur. J., 2013, 19:14316.
[43] Zou C, Zhang T, Xie M H, Yan L, Kong G Q, Yang X L, Ma A, Wu C D. Inorg. Chem., 2013, 52:3620.
[44] Cho S H, Ma B, Nguyen S T, Hupp J T, Albrecht-Schmitt T E. Chem. Commun., 2006, 2563.
[45] Shultz A M, Farha O K, Adhikari D, Sarjeant A A, Hupp J T, Nguyen S T. Inorg. Chem., 2011, 50:3174.
[46] Song F, Wang C, Falkowski J M, Ma L, Lin W. J. Am. Chem. Soc., 2010, 132:15390.
[47] Song F, Wang C, Lin W. Chem. Commun., 2011, 47:8256.
[48] Huang Y, Liu T, Lin J, Lü J, Lin Z, Cao R. Inorg. Chem., 2011, 50:2191.
[49] Shi D, Ren Y, Jiang H, Cai B, Lu J. Inorg. Chem., 2012, 51:6498.
[50] Kholdeeva O A, Skobelev I Y, Ivanchikova I D, Kovalenko K A, Fedin V P, Sorokin A B. Catal. Today, 2014, 238:54.
[51] Saedi Z, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I. Catal. Commun., 2012, 17:18.
[52] Qi Y, Luan Y, Yu J, Peng X, Wang G. Chem. Eur. J., 2015, 21:1589.
[53] Sun J, Yu G, Huo Q, Kan Q, Guan J. RSC Adv., 2014, 4:38048.
[54] Navarro J A R, Barea E, Salas J M, Masciocchi N, Galli S, Sironi A, Ania C O, Parra J B. Inorg. Chem., 2006, 45:2397.
[55] Xie M H, Yang X L, Wu C D. Chem. Eur. J., 2011, 17:11424.
[56] Llabrés i Xamena F X, Corma A, Garcia H. J. Phys. Chem. C, 2007, 111:80.
[57] Xie M H, Yang X L, Zou C, Wu C D. Inorg. Chem., 2011, 50:5318.
[58] Feng D, Gu Z Y, Li J R, Jiang H L, Wei Z, Zhou H C. Angew. Chem. Int. Ed., 2012, 51:10307.
[59] Chen Y, Hoang T, Ma S. Inorg. Chem., 2012, 51:12600.
[60] Wang K, Feng D, Liu T F, Su J, Yuan S, Chen Y P, Bosch M, Zou X, Zhou H C. J. Am. Chem. Soc., 2014, 136:13983.
[61] Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Commun., 2010, 46:6476.
[62] Johnson J A, Zhang X, Reeson T C, Chen Y S, Zhang J. J. Am. Chem. Soc., 2014, 136:15881.
[63] Dybtsev D N, Nuzhdin A L, Chun H, Bryliakov K P, Talsi E P, Fedin V P, Kim K. Angew. Chem. Int. Ed., 2006, 45:916.
[64] Hwang Y K, Hong D Y, Chang J S, Seo H, Yoon M, Kim J, Jhung S H, Serre C, Férey G. Appl. Catal., 2009, 358:249.
[65] Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 190:945.
[66] Laurier K G M, Vermoortele F, Ameloot R, Vos D E D, Hofkens J, Roeffaers M B J. J. Am. Chem. Soc., 2013, 135:14488.
[67] Wen L, Zhao J, Lv K, Wu Y, Deng K, Leng X, Li D. Cryst. Growth Des., 2012, 12:1603.
[68] Gao J, Miao J, Li P Z, Teng W Y, Yang L, Zhao Y, Liu B, Zhang Q. Chem. Commun., 2014, 50:3786.
[69] Bala S, Bhattacharya S, Goswami A, Adhikary A, Konar S, Mondal R. Cryst. Growth Des., 2014, 14:6391.
[70] Phan N T S, Nguyen T T, Vu P H L. ChemCatChem, 2013, 5:3068.
[71] Phan N T S, Vu P H L, Nguyen T T. J. Catal., 2013, 306:38.
[72] Luz I, Corma A, Llabrés i Xamena F X. Catal. Sci. Technol., 2014, 4:1829.
[73] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proceedings of the National Academy of Science U.S.A., 2006, 103:10186.
[74] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131:11302.
[75] Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134:13926.
[76] El-Shall M S, Abdelsayed V, Khder A E R S, Hassan H M A, El-Kaderi H M, Reich T E. J. Mater. Chem., 2009, 19:7625.
[77] Wang W, Li Y, Zhang R, He D, Liu H, Liao S. Catal. Commun., 2011, 12:875.
[78] Ramos-Fernandez E V, Pieters C, van der Linden B, Juan-Alcañiz J, Serra-Crespo P, Verhoeven M W G M, Niemantsverdriet H, Gascon J, Kapteijn F. J. Catal., 2012, 289:42.
[79] Fateeva A, Chater P A, Ireland C P, Tahir A A, Khimyak Y Z, Wiper P V, Darwent J R, Rosseinsky M J. Angew. Chem. Int. Ed., 2012, 51:7440.
[80] Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. J. Am. Chem. Soc., 2015, 137:118.
[81] Wang C, Xie Z, deKrafft K E, Lin W. J. Am. Chem. Soc., 2011, 133:13445.
[82] Wang C, Wang J L, Lin W. J. Am. Chem. Soc., 2012, 134:19895.
[83] Nepal B, Das S. Angew. Chem. Int. Ed., 2013, 52:7224.
[84] Ingleson M J, Barrio J P, Guilbaud J B, Khimyak Y Z, Rosseinsky M J. Chem. Commun., 2008, 2680.
[85] Bhattacharjee S, Yang D A, Ahn W S. Chem. Commun., 2011, 47:3637.
[86] Tang J, Dong W, Wang G, Yao Y, Cai L, Liu Y, Zhao X, Xu J, Tan L. RSC Adv., 2014, 4:42977.
[87] Leus K, Liu Y Y, Meledina M, Turner S, Tendeloo G V, Voort P V D. J. Catal., 2014, 316:201.
[88] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J. Catal., 2008, 257:315.
[89] Zhang Z, Zhang L, Wojtas L, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134:928.
[90] Zhang Z, Zhang L, Wojtas L, Nugent P, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134:924.
[91] Ishida T, Nagaoka M, Akita T, Haruta M. Chem. Eur. J., 2008, 14:8456.
[92] Esken D, Turner S, Lebedev O I, Tendeloo G V, Fischer R A. Chem. Mater., 2010, 22:6393.
[93] Liu H, Liu Y, Li Y, Tang Z, Jiang H. J. Phys. Chem. C, 2010, 114:13362.
[94] Müller M, Turner S, Lebedev O I, Wang Y, van Tendeloo G, Fischer R A. Eur. J. Inorg. Chem., 2011, 1876.
[95] Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J. Chem. Eur. J., 2008, 14:8204.
[96] Zhou Y X, Chen Y Z, Cao L, Lu J, Jiang H L. Chem. Commun., 2015, 51:8292.
[97] Song J, Luo Z, Britt D K, Furukawa H, Yaghi O M, Hardcastle K I, Hill C L. J. Am. Chem. Soc., 2011, 133:16839.
[98] Nguyen H G T, Weston M H, Farha O K, Hupp J T, Nguyen S T. CrystEngComm, 2012, 14:4115.
[99] Alkordi M H, Liu Y, Larsen R W, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2008, 130:12639.
[100] Kockrick E, Lescoue T, Kudrik E V, Sorokin A B, Farrusseng D. Chem. Commun., 2011, 47:1562.
[101] Zalomaeva O V, Kovalenko K A, Chesalov Y A, Mel'gunov M S, Zaikovskii V I, Kaichev V V, Sorokin A B, Kholdeeva O A, Fedin V P. Dalton Trans., 2011, 40:1441.
[102] Larsen R W, Wojtas L, Perman J, Musselman R L, Zaworotko M J, Vetromile C M. J. Am. Chem. Soc., 2011, 133:10356.
[1] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[2] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[3] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[4] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[5] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[6] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[7] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[8] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[9] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[10] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[11] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[12] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.
[13] 庄长福, 刘建路, 戴文, 吴中平, 王瑛, 高爽*. 卟啉金属有机骨架材料的合成及其在催化反应[J]. 化学进展, 2014, 26(0203): 277-292.
[14] 宋肖锴, 周雅静, 李亮. 核壳结构金属-有机骨架的研究[J]. 化学进展, 2014, 26(0203): 424-435.
[15] 谢生明, 袁黎明. 金属-有机骨架材料用于色谱固定相[J]. 化学进展, 2013, 25(10): 1763-1770.
阅读次数
全文


摘要