English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 174-191 DOI: 10.7536/PC140925 前一篇   后一篇

• 综述与评论 •

基于金属-有机骨架前驱体的先进功能材料

张慧1, 周雅静2, 宋肖锴*1   

  1. 1. 江苏理工学院化学与环境工程学院 常州 213001;
    2. 常州出入境检验检疫局 常州 213003
  • 收稿日期:2014-09-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 宋肖锴 E-mail:xksong@jsut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21401083)资助

Advanced Functional Materials Derived from Metal-Organic Frameworks

Zhang Hui1, Zhou Yajing2, Song Xiaokai*1   

  1. 1. School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China;
    2. Changzhou Entry-Exit Inspection and Quarantine Bureau, Changzhou 213003, China
  • Received:2014-09-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21401083).

由于金属-有机骨架(metal-organic frameworks, MOFs)结构中含有碳源(有机配体)和金属源(金属或金属簇)物质,以MOFs为前驱体合成先进功能材料,如纳米多孔碳材料和金属氧化物纳米材料,是目前MOFs化学以及新功能材料研究领域一个新的热点。本文综述了近年来以MOFs为前驱体制备碳材料(纳米多孔碳材料、碳纳米点、碳纳米管等)、金属氧化物纳米材料(单金属氧化物Fe2O3、ZnO、Co3O4、MgO、In2O3等;多金属氧化物纳米复合材料Gd2O3/Eu2O3、Fe2O3@TiO2等)、金属氧化物/碳纳米复合材料(Fe3O4/C、ZnO/C等)等的合成方法,以及这些先进功能材料在超级电容器(supercapacitor)、氧还原反应(ORR)催化剂、氢气吸附、CO2捕获、光催化制氢催化剂等研究领域的应用,并对其今后的发展进行了展望。

Metal-organic frameworks (MOFs) are a class of crystalline coordination-based compounds in which metal ions (or metal clusters) are bridged via multitopic organic ligands to form infinite network structures. The organic ligands and metal clusters in the structures of MOFs could be served as carbon source and metal source, respectively. Fabrication of advanced functional materials from MOF precursors becomes one of the most popular research topics in MOFs chemistry and functional materials field. In this paper, the research progress of advanced functional materials derived from MOFs in recent years is reviewed. Synthesis methods of carbon materials (e.g. nanoporous carbon, carbon nanodots, carbon nanotubes), metal oxide nanomaterials (e.g. monometal oxide: Fe2O3, ZnO, Co3O4, MgO, In2O3, multimetal oxide nanocomposites: Gd2O3/Eu2O3, Fe2O3@TiO2), and metal oxide/carbon nanocomposites (e.g. Fe2O3/C, ZnO/C) derived from MOFs are introduced. The applications of these advanced functional materials in the fields such as supercapacitor, oxygen reduction reaction (ORR) catalyst, hydrogen storage, CO2 capture and photocatalyst of photocatalytic hydrogen production are presented. Besides, an outlook for future development of advanced functional materials derived from MOFs is given.

Contents
2 Synthesis methods and applications of advanced functional materials derived from MOFs
2.1 Carbon materials derived from MOFs
2.2 Metal oxide nanomaterials derived from MOFs
2.3 Metal oxide/carbon nanocomposites derived from MOFs
3 Conclusion

中图分类号: 

()

[1] Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1213.
[2] Suh M P, Park H J, Prasad T K, Lim D W. Chem. Rev., 2012, 112: 782.
[3] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009, 38: 1294.
[4] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Chem. Rev., 2012, 112: 724.
[5] Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P L, de Weireld G, Vimont A, Daturi M, Chang J S. Chem. Soc. Rev., 2011, 40: 550.
[6] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869.
[7] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477.
[8] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196.
[9] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[10] Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C. Chem. Rev., 2012, 112: 1232.
[11] Della Rocca J, Liu D, Lin W. Acc. Chem. Res., 2011, 44: 957.
[12] DeKrafft K E, Xie Z, Cao G, Tran S, Ma L, Zhou O Z, Lin W. Angew. Chem. Int. Ed., 2009, 48: 9901.
[13] Liu D, Huxford R C, Lin W. Angew. Chem. Int. Ed., 2011, 50: 3696.
[14] Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112: 1105.
[15] Lu Z Z, Zhang R, Li Y Z, Guo Z J, Zheng H G. J. Am. Chem. Soc., 2011, 133: 4172.
[16] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353.
[17] Shen L, Yang S W, Xiang S, Liu T, Zhao B, Ng M F, Göettlicher J, Yi J, Li S, Wang L, Ding J, Chen B, Wei S H, Feng Y P. J. Am. Chem. Soc., 2012, 134: 17286.
[18] Chaikittisilp W, Ariga K, Yamauchi Y. J. Mater. Chem. A, 2013, 1: 14.
[19] Masoomi M Y, Morsali A. Coord. Chem. Rev., 2012, 256: 2921.
[20] Lee J, Kim J, Hyeon T. Adv. Mater., 2006, 18: 2073.
[21] Liang C, Li Z, Dai S. Angew. Chem. Int. Ed., 2008, 47: 3696.
[22] Davis M E. Nature, 2002, 417: 813.
[23] Grosso D, Boissière C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C. Nat. Mater., 2004, 3: 787.
[24] Ren Y, Ma Z, Bruce P G. Chem. Soc. Rev., 2012, 41: 4909.
[25] Buonsanti R, Pick T E, Krins N, Richardson T J, Helms B A, Milliron D J. Nano Lett., 2012, 12: 3872.
[26] Buser H J, Schwarzenbach D, Petter W, Ludi A. Inorg. Chem., 1977, 16(11): 2704.
[27] 宋肖锴(Song X K), 周雅静(Zhou Y J), 李亮(Li L). 化学进展(Progress in Chemistry), 2014, 26(2/3): 424.
[28] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402: 276.
[29] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Nat. Acad. Sci.U.S.A., 2006, 103: 10186.
[30] Comotti A, Bracco S, Sozzani P, Horike S, Matsuda R, Chen J, Takata M, Kubota Y, Kitagawa S. J. Am. Chem. Soc., 2008, 130: 13664.
[31] Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130: 5390.
[32] Liu B, Shioyama H, Jiang H, Zhang X, Xu Q. Carbon, 2010, 48: 456.
[33] Jiang H L, Liu B, Lan Y Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q. J. Am. Chem. Soc., 2011, 133: 11854.
[34] Almasoudi A, Mokaya R. J. Mater. Chem., 2012, 22: 146.
[35] Almasoudi A, Mokaya R. J. Mater. Chem. A, 2014, 2: 10960.
[36] Pachfule P, Biswal B P, Banerjee R. Chem. Eur. J., 2012,18: 11399.
[37] Radhakrishnan L, Reboul J, Furukawa S, Srinivasu P, Kitagawa S, Yamauchi Y. Chem. Mater., 2011, 23: 1225.
[38] Yuan D, Chen J, Tan S, Xia N, Liu Y. Electrochem. Commun., 2009, 11: 1191.
[39] Hu J, Wang H, Gao Q, Guo H. Carbon, 2010, 48: 3599.
[40] Zhang P, Sun F, Shen Z, Cao D. J. Mater. Chem. A, 2014, 2: 12873.
[41] Wu Z, Webley P A, Zhao D. J. Mater. Chem., 2012, 22: 11379.
[42] Hu M, Reboul J, Furukawa S, Radhakrishnan L, Zhang Y, Srinivasu P, Iwai H, Wang H, Nemoto Y, Suzuki N, Kitagawa S, Yamauchi Y. Chem. Commun., 2011, 47: 8124.
[43] Aijaz A, Fujiwara N, Xu Q. J. Am. Chem. Soc., 2014, 136: 6790.
[44] Pandiaraj S, Aiyappa H B, Banerjee R, Kurungot S. Chem. Commun., 2014, 50: 3363.
[45] Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet J P. Nat. Commun., 2011, 2: 416.
[46] Palaniselvam T, Biswal B P, Banerjee R, Kurungot S. Chem. Eur. J., 2013, 19: 9335.
[47] Zhao D, Shui J L, Chen C, Chen X, Reprogle B M, Wang D, Liu D J. Chem. Sci., 2012, 3: 3200.
[48] Rettig S J, Storr A, Summers D A, Thompson R C, Trotter J. J. Am. Chem. Soc., 1997, 119: 8675.
[49] Zhao D, Shui J L, Grabstanowicz L R, Chen C, Commet S M, Xu T, Lu J, Liu D J. Adv. Mater., 2014, 26: 1093.
[50] Afsahi F, Kaliaguine S. J. Mater. Chem. A, 2014, 2: 12270.
[51] Xu G, Ding B, Shen L, Nie P, Han J, Zhang X. J. Mater. Chem. A, 2013, 1: 4490.
[52] Wu H B, Wei S, Zhang L, Xu R, Hng H H, Lou X W. Chem. Eur. J., 2013, 19: 10804.
[53] Li J, Chen Y, Tang Y, Li S, Dong H, Li K, Han M, Lan Y Q, Bao J, Dai Z. J. Mater. Chem. A, 2014, 2: 6316.
[54] Li J S, Li S L, Tang Y J, Li K, Zhou L, Kong N, Lan Y Q, Bao J C, Dai Z H. Sci. Rep., 2014, 4: 5130.
[55] Aijaz A, Akita T, Yang H, Xu Q. Chem. Commun., 2014, 50: 6498.
[56] Ma S, Goenaga G A, Call A V, Liu D J. Chem. Eur. J., 2011, 17: 2063.
[57] Su P, Jiang L, Zhao J, Yan J, Li C, Yang Q. Chem. Commun., 2012, 48: 8769.
[58] Yang S J, Kim T, Im J H, Kim Y S, Lee K, Jung H, Park C R. Chem. Mater., 2012, 24: 464.
[59] Feldblyum J I, Liu M, Gidley D W, Matzger A J. J. Am. Chem. Soc., 2011, 133: 18257.
[60] Song X, Zou Y, Liu X, Oh M, Lah M S. New J. Chem., 2010, 34: 2396.
[61] Lim S, Suh K, Kim Y, Yoon M, Park H, Dybtsev D N, Kim K. Chem. Commun., 2012, 48: 7447.
[62] Aiyappa H B, Pachfule P, Banerjee R, Kurungot S. Cryst. Growth Des., 2013, 13: 4195.
[63] Wang W, Yuan D. Sci. Rep., 2014, 4: 5711.
[64] Hu M, Reboul J, Furukawa S, Torad N L, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y. J. Am. Chem. Soc., 2012, 134: 2864.
[65] Chaikittisilp W, Hu M, Wang H, Huang H S, Fujita T, Wu K C W, Chen L C, Yamauchi Y, Ariga K. Chem. Commun., 2012, 48: 7259.
[66] Torad N L, Hu M, Kamachi Y, Takai K, Imura M, Naitoa M, Yamauchi Y. Chem. Commun., 2013, 49: 2521.
[67] Torad N L, Salunkhe R R, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C C, Yamauchi Y. Chem. Eur. J., 2014, 20: 7895.
[68] Wang X, Zhou J, Fu H, Li W, Fan X, Xin G, Zheng J, Li X. J. Mater. Chem. A, 2014, 2: 14064.
[69] Li R, Ren X, Feng X, Li X, Hu C, Wang B. Chem. Commun., 2014, 50: 6894.
[70] Wang Q, Xia W, Guo W, An L, Xia D, Zou R. Chem. Asian J., 2013, 8: 1879.
[71] Amali A J, Sun J K, Xu Q. Chem. Commun., 2014, 50: 1519.
[72] Yu G, Zou X, Wang A, Sun J, Zhu G. J. Mater. Chem. A, 2014, 2: 15420.
[73] Zhao X, Zhao H, Zhang T, Yan X, Yuan Y, Zhang H, Zhao H, Zhang D, Zhu G, Yao X. J. Mater. Chem. A, 2014, 2: 11666.
[74] Amali A J, Hoshino H, Wu C, Ando M, Xu Q. Chem. Eur. J., 2014, 20: 8279.
[75] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105.
[76] Chen L Y, Bai J, Wang C Z, Pan Y, Scheer M, You X Z. Chem. Commun., 2008, 1581.
[77] Shen Y, Bai J. Chem. Commun., 2010, 46: 1308.
[78] Su P, Xiao H, Zhao J, Yao Y, Shao Z, Li C, Yang Q. Chem. Sci., 2013, 4: 2941.
[79] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559.
[80] Li Q, Xu P, Gao W, Ma S, Zhang G, Cao R, Cho J, Wang H-L, Wu G. Adv. Mater., 2014, 26: 1378.
[81] Zhang J, Su C Y. Coord. Chem. Rev., 2013, 257: 1373.
[82] Hu Y, Fan Y, Huang Z, Song C, Li G. Chem. Commun., 2010, 46: 3966.
[83] Nune S K, Thallapally P K, McGrail B P. J. Mater. Chem., 2010, 20: 7623.
[84] Xia W, Qiu B, Xia D, Zou R. Sci. Rep., 2013, 3: 1935.
[85] Wang X S, Ma S, Forster P M, Yuan D, Eckert J, López J L, Murphy B J, Parise J B, Zhou H C. Angew. Chem. Int. Ed., 2008, 47: 7263.
[86] Wang L J, Deng H, Furukawa H, Gándara F, Cordova K E, Peri D, Yaghi O M. Inorg. Chem., 2014, 53: 5881.
[87] Parast M S Y, Morsali A. Inorg. Chem. Commun., 2011, 14: 645.
[88] Cho W, Lee Y H, Lee H J, Oh M. Chem. Commun., 2009, 4756.
[89] Cho W, Lee H J, Oh M. J. Am. Chem. Soc., 2008, 130: 16943.
[90] Lee H J, Cho W, Jung S, Oh M. Adv. Mater., 2009, 21: 674.
[91] Zboril R, Machala L, Mashlan M, Sharma V. Cryst. Growth Des., 2004, 4: 1317.
[92] Hu M, Jiang J S, Zeng Y. Chem. Commun., 2010, 46: 1133.
[93] Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y. Chem. Mater., 2012, 24: 2698.
[94] Zhang L, Wu H B, Madhavi S, Hng H H, Lou X W. J. Am. Chem. Soc., 2012, 134: 17388.
[95] Zhang L, Wu H B, Xu R, Lou X W. CrystEngComm, 2013, 15: 9332.
[96] Cho W, Park S, Oh M. Chem. Commun., 2011, 47: 4138.
[97] Xu X, Cao R, Jeong S, Cho J. Nano Lett., 2012, 12: 4988.
[98] Su C Y, Goforth A M, Smith M D, Pellechia P J, zur Loye H C. J. Am. Chem. Soc., 2004, 126: 3576.
[99] Jung S, Cho W, Lee H J, Oh M. Angew. Chem. Int. Ed., 2009, 48: 1459.
[100] Park S, Cho W, Oh M. CrystEngComm, 2010, 12: 1060.
[101] Kundu T, Sahoo S C, Banerjee R. Cryst. Growth Des., 2012, 12: 2572.
[102] Kimitsuka Y, Hosono E, Ueno S, Zhou H, Fujihara S. Inorg. Chem., 2013, 12: 2572.
[103] Li Y, Che Z, Sun X, Dou J, Wei M. Chem. Commun., 2014, 50: 9769.
[104] Chen L, Zhao C, Wei Z, Wang S, Gu Y. Mater. Lett., 2011, 65: 446.
[105] Wu R, Qian X, Yu F, Liu H, Zhou K, Wei J, Huang Y. J. Mater. Chem. A, 2013, 1: 11126.
[106] Nayak S, Malik S, Indris S, Reedijk J, Powell A K. Chem. Eur. J., 2010, 16: 1158.
[107] Peng L, Zhang J, Xue Z, Han B, Li J, Yang G. Chem. Commun., 2013, 49: 11695.
[108] Lee J H, Sa Y J, Kim T K, Moon H R, Joo S H. J. Mater. Chem. A, 2014, 2: 10435.
[109] Liu B, Zhang X, Shioyama H, Mukai T, Sakai T, Xu Q. J. Power Sources, 2010, 195: 857.
[110] Li C, Yin X, Chen L, Li Q, Wang T. Chem. Eur. J., 2010, 16: 5215.
[111] Zhang F, Hao L, Zhang L, Zhang X. Int. J. Electrochem. Sci., 2011, 6: 2943.
[112] Meng F, Fang Z, Li Z, Xu W, Wang M, Liu Y, Zhang J, Wang W, Zhao D, Guo X. J. Mater. Chem. A, 2013, 1: 7235.
[113] Lee K J, Kim T H, Kim T K, Lee J H, Song H K, Moon H R. J. Mater. Chem. A., 2014, 2: 14393.
[114] Shao J, Wan Z, Liu H, Zheng H, Gao T, Shen M, Qu Q, Zheng H. J. Mater. Chem. A, 2014, 2: 12194.
[115] Lü Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Xie Z, Zheng L. ACS Appl. Mater. Interfaces, 2014, 6: 4186.
[116] Jiang Z, Lu W, Li Z, Ho K H, Li X, Jiao X, Chen D. J. Mater. Chem. A., 2014, 2: 8603.
[117] Kim T K, Lee K J, Cheon J Y, Lee J H, Joo S H, Moon H R. J. Am. Chem. Soc., 2013, 135: 8940.
[118] McDonald T M, Lee W R, Mason J A, Wiers B M, Hong C S, Long J R. J. Am. Chem. Soc., 2012, 134: 7056.
[119] Wang D, Ni W, Pang H, Lu Q, Huang Z, Zhao J. Electrochim. Acta, 2010, 55: 6830.
[120] Wang Z, Li X, Xu H, Yang Y, Cui Y, Pan H, Wang Z, Chen B, Qian G. J. Mater. Chem. A, 2014, 2: 12571.
[121] Park J U, Lee H J, Cho W, Jo C, Oh M. Adv. Mater., 2011, 23: 3161.
[122] Wang M, Wang F, Ma J, Xu J. J. Mater. Chem. A, 2014, 2: 15480.
[123] Maiti S, Pramanik A, Mahanty S. Chem. Commun., 2014, 50: 11717.
[124] Hu M, Yamauchi Y. Chem. Asian. J., 2011, 6: 2282.
[125] Hu M, Belik A A, Sukegawa H, Nemoto Y, Imura M, Yamauchi Y. Chem. Asian. J., 2011, 6: 3195.
[126] Zhao J, Wang F, Su P, Li M, Chen J, Yang Q, Li C. J. Mater. Chem., 2012, 22: 13328.
[127] Zhang Z, Chen Y, He S, Zhang J, Xu X, Yang Y, Nosheen F, Saleem F, He W, Wang X. Angew. Chem. Int. Ed., 2014, 53: 12517.
[128] Lee H J, Park J U, Choi S, Son J, Oh M. Small, 2013, 9: 561.
[129] Zhang L, Wu H B, Lou X W. J. Am. Chem. Soc., 2013, 135: 10664.
[130] Cho W, Lee Y H, Lee H J, Oh M. Adv. Mater., 2011, 23: 1720.
[131] DeKrafft K E, Wang C, Lin W. Adv. Mater., 2012, 24: 2014.
[132] Huang G, Zhang F, Du X, Wang J, Yin D, Wang L. Chem. Eur. J., 2014, 20: 11214.
[133] Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L. J. Mater. Chem. A, 2014, 2: 8048.
[134] Banerjee A, Gokhale R, Bhatnagar S, Jog J, Bhardwaj M, Lefez B, Hannoyer B, Ogale S. J. Mater. Chem., 2012, 22: 19694.
[135] Yang S J, Nam S, Kim T, Im J H, Jung H, Kang J H, Wi S, Park B, Park C R. J. Am. Chem. Soc., 2013, 135: 7394.
[136] Han Y, Qi P, Li S, Feng X, Zhou J, Li H, Su S, Li X, Wang B. Chem. Commun., 2014, 50: 8057.
[137] Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y. Adv. Mater., 2014, 26: 6622.
[138] Liu L, Guo H, Liu J, Qian F, Zhang C, Li T, Chen W, Yang X, Guo Y. Chem. Commun., 2014, 50: 9485.
[139] Wang Z, Li X, Yang Y, Cui Y, Pan H, Wang Z, Chen B, Qian G. J. Mater. Chem. A, 2014, 2: 7912.
[140] Chaikittisilp W, Torad N L, Li C, Imura M, Suzuki N, Ishihara S, Ariga K, Yamauchi Y. Chem. Eur. J., 2014, 20: 4217.
[141] Zhang G, Li C, Liu J, Zhou L, Liu R, Han X, Huang H, Hu H, Liu Y, Kang Z. J. Mater. Chem. A, 2014, 2: 8184.
[142] Kumar R, Jayaramulu K, Maji T K, Rao C N R. Chem. Commun., 2013, 49: 4947.
[143] Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H. Angew. Chem. Int. Ed., 2014, 53: 1404.
[144] Kim J, Neumann G T, McNamara N D, Hicks J C. J. Mater. Chem. A, 2014, 2: 14014.
[145] Kim J, McNamara N D, Her T H, Hicks J C. ACS Appl. Mater. Interfaces, 2013, 5: 11479.
[146] Hou Y, Huang T, Wen Z, Mao S, Cui S, Chen J. Adv. Energy Mater., doi: 10.1002/aenm.201400337
[147] Das R, Pachfule P, Banerjee R, Poddar P. Nanoscale, 2012, 4: 591.
[148] Chen L, Shen Y, Bai J, Wang C. J. Solid State Chem., 2009, 182: 2298.
[149] Afsahi F, Vinh-Thang H, Mikhailenko S, Kaliaguine S. J. Power Sources, 2013, 239: 415.
[150] Bloch E D, Britt D, Lee C, Doonan C J, Uribe-Romo F J, Furukawa H, Long J R, Yaghi O M. J. Am. Chem. Soc., 2010, 132: 14382.

[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[12] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[13] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[14] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[15] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.