English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 51-57 DOI: 10.7536/PC150620 前一篇   后一篇

• 综述与评论 •

主链或侧链含二茂铁的聚合物的合成和应用

金亨到, 王立*, 俞豪杰, 童荣柏, 周卫东*   

  1. 浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
  • 收稿日期:2015-06-01 修回日期:2015-09-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 王立, 周卫东 E-mail:opl_wl@dial.zju.edu.cn;wdzhou1229@163.com

Synthesis and Application of Main-or Side-Chain Ferrocene-Based Polymers

Kim Hyongdo, Wang Li*, Yu Haojie, Tong Rongbai, Zhou Weidong*   

  1. College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2015-06-01 Revised:2015-09-01 Online:2016-01-15 Published:2015-12-21
由于二茂铁基聚合物独特的结构和性能,其在电化学、生物医学及光学等领域具有广阔应用前景。开发新型二茂铁基聚合物并探索其应用已经成为科研工作者的研究热点。本文主要综述主链或侧链含二茂铁的聚合物的合成及应用。其中合成主链含二茂铁的聚合物的方法主要有缩聚法和开环聚合法等。合成侧链含二茂铁的聚合物的方法主要有自由基聚合法、原子转移自由基聚合法和可逆加成断裂链转移聚合法等。最后,对二茂铁基聚合物的应用前景进行了展望。
Ferrocene-based polymers have wide application prospect in various fields such as electrochemistry, biomedicine, optics and so on, because of their unique structures and properties. The synthesis and exploration of the application of the ferrocene-based polymers have become a hot topic. In this review, we mainly focus on the synthesis and applications of the main-chain ferrocene-based polymers or side-chain ferrocene-based polymers. For synthesis of main-chain ferrocene-based polymers, polycondensation reaction, ring-opening polymerization and other synthetic methods have been summarized. For synthesis of side-chain ferrocene-based polymers, free radical polymerization, atom transfer radical polymerization (ATRP) method, reversible addition-fragmentation chain transfer (RAFT) polymerization have been applied. Finally, the future applications of ferrocene-based materials are prospected.

Contents
1 Introduction
2 Synthesis of main-chain ferrocene-based polymers
2.1 Polycondensation reaction
2.2 Ring-opening polymerization
3 Synthesis of side-chain ferrocene-based polymers
3.1 Free-radical polymerization
3.2 RAFT polymerization 3.3 ATRP method
3.4 Other synthetic method
4 Application of ferrocene-based polymers
4.1 Application in electrochemistry
4.2 Application in biology and medicine
4.3 Application in liquid crystal
4.4 Other applications
5 Conclusion

中图分类号: 

()
[1] Turrin C O, Chiffre J, De Montauzon D, Daran J C, Caminade A M, Manoury E, Balavoine G, Majoral J P. Macromolecules, 2000, 33(20): 7328.
[2] Calleja G, Carre F, Cerveau G, Labbe P, Coche-Guerente L. Organometallics, 2001, 20(20): 4211.
[3] Sengupta S, Sadhukhan S K. Organometallics, 2001, 20(9): 1889.
[4] Manners I. J. Polym. Sci. Part A: Polym. Chem., 2002, 40(2): 179.
[5] Lammertink R G H, Hempenius M A, Manners I, Vancso G J. Macromolecules, 1998, 31(3): 795.
[6] Valerio C, Alonso E, Ruiz J, Blais J C, Astruc D. Angew. Chem. Int. Ed., 1999, 38(12): 1747.
[7] Wang L, Ye C Y, Zhang P Y, Pan J, Feng L X, Wang S F, Peng T Z. J. Appl. Polym. Sci., 2001, 82: 3258.
[8] Wang L, Ye C Y, Zhang P Y, Pan J, Feng L X, Wang S F, Peng T Z. Eur. Polym. J., 2002, 38: 531.
[9] Hmyene M, Yasser A, Escorne M, Percheronguegan A, Garnier F. Adv. Mater., 1994, 6: 564.
[10] MacLachlan M J, Lough A J, Geiger W E, Manners I. Organometallics, 1998, 17(9): 1873.
[11] Power-Billard K N, Manners I. Macromolecules, 2000, 33: 26.
[12] Jäkle F, Wang Z, Manners I. Macromol. Rapid Commun., 2000, 21: 1291.
[13] Macleod P J, Veregin R P N, Honeyman C H. US 6037091, 2000.
[14] Sun Q H, Lam J W Y, Xu K T. Chem. Mater., 2000, 12(9): 2617.
[15] Sun Q H, Xu K T, Lam J W Y. Macromolecules, 2003, 36(7): 2309.
[16] Yu H, Wang L, Huo J, Li C, Tan Q. Des. Monomers Polym.,2009, 12(4): 305.
[17] Akhter Z, Khan M, Bashir M. J. Inorg. Organomet. Polym.,2004, 14(4): 253.
[18] Akhter Z, Bashir M A, Khan M S. Appl. Organomet. Chem., 2005, 19(7): 848.
[19] Cazacu M, Munteanu G, Racles C, Vlad A, Marcu M. J. Organomet. Chem., 2006, 69(17): 3700.
[20] Wael A A, Wang L, Yu H J, Abid M A, Wang Y. J. Inorg. Organomet. Polym., 2012, 22: 1229.
[21] Wael A A, Wang L, Abid M A, Yu H J, Li C, Ma L. Des. Monomers Polym., 2013, 16(2): 160.
[22] Wael A A, Yu H J, Wang L, Sergey V, Tong R B. J. Inorg. Organomet. Polym., 2013, 23: 1431.
[23] Mehdipour-Ataei S, Babanzadeh S. React. Funct. Polym., 2007, 67(10): 883.
[24] Mehdipour-Ataei S, Babanzadeh S. Appl. Organomet. Chem., 2007, 21(5): 360.
[25] Mehdipour-Ataei S, Tadjarodi A, Babanzadeh S. Eur. Polym. J., 2007, 43(2): 498.
[26] Zhang G, Zhao T P, Wang Y L, Liu S L, Long S R, Yang J. J. Macromol. Sci. Part A: Pure Appl. Chem., 2010, 47(3): 291.
[27] Kishore K, Kannan P, lyanar K. J. Polym. Sci. Part A: Polym. Chem., 1991, 29(7): 1039.
[28] Abd-Alla M M, El-Zohry M F, Aly K I, Abd-EI-Wahab M M M. J. Appl. Polym. Sci., 1993, 47(2): 323.
[29] Kannan P, Umadevi S, Krishnasamy V, Swaminathan CS. Iran J. Polym. Sci. Technol., 1994, 3(1): 13.
[30] Carraher C E, Morie K. J. Inorg. Organomet. Polym. Mater., 2007, 17(1): 127.
[31] He W, Deng F, Jiang Y Y, Wu D, Fan H L, Jian X G. Chin. Chem. Lett., 2010, 21(6): 748.
[32] Yamamoto T, Morikita T, Maruyama T, Kubota K, Katada M. Macromolecules, 1997, 30(18): 5390.
[33] Yamaguchi I, Ishii H, Sakano T, Osakada K, Yamamoto T. Appl. Organomet. Chem., 2001, 15(3): 197.
[34] Neuse E W, Quo E. J. Polym. Sci. Part A: Polym. Chem., 1965, 3(4): 1499.
[35] Aly K I, Abdel Monem M I. J. Appl. Polym. Sci., 2005, 98(6): 2394.
[36] Asahara T, Seno M, Mitsuhashi K, Ichikawa Y. Bull. Chem. Soc. Jpn., 1971, 44(1): 207.
[37] Kulbaba K, Manners I. Macromol. Rapid Commun., 2011, 22(10): 711.
[38] Vogel U, Lough A J, Manners I. Angew. Chem. Int. Ed., 2004, 43(25): 3321.
[39] Wang J J, Wang L, Wang X J, Chen T, Yu H J, Wang W. Mater. Lett., 2006, 60(11): 1416.
[40] Yamashita H, Tanaka M, Honda K. J. Am. Chem. Soc., 1995, 117(34): 8873.
[41] Zechel D L, Hultzsch K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K. Organometallics, 1996, 15(8): 1972.
[42] Tang H, Liu Y, Chen X, Qin J, Inokuchi M, Kinoshita M. Macromolecules, 2004, 37(26): 9785.
[43] Zhao D, Ren B, Liu S, Liu X, Tong Z. Chem. Commun., 2006, 7: 779.
[44] Rulkens R, Ni Y, Manners I. J. Am. Chem. Soc., 1994, 116: 12121.
[45] Ni Y, Rulkens R, Manners I. J. Am. Chem. Soc., 1996, 118: 4102.
[46] Temple K, Massey J A, Chen Z, Vaidya N, Berenbaum A, Foster M D. J. Inorg. Organomet. Polym., 1999, 9(4): 189.
[47] Arimoto F S, Haven A C. J. Am. Chem. Soc., 1955, 77: 6295.
[48] Pittman C U, Lai J C, Vanderpool D P, Good M, Prado R. Macromolecules, 1970, 3(6): 746.
[49] Pittman C U, Voges R L, Jones W B. Macromolecules, 1971, 4(3): 298.
[50] 高敬民(Gao J M). 浙江大学博士学位论文(Doctoral Dissertation of Zhejiang University), 2011.
[51] Shi M, Li A L, Liang H, Lu J. Macromolecules, 2007, 40(6): 1891.
[52] Xiao Z P, Cai Z H, Liang H, Lu J. J. Mater. Chem., 2010, 20(38): 8375.
[53] Herfurth C, Voll D, Buller J, Weiss J, Barner-Kowollik C, Laschewsky A. J. Polym. Sci. Part A: Polym. Chem., 2012, 50(1): 108.
[54] Hardy C G, Ren L, Tamboue T C, Tang C. J. Polym. Sci. Part A; Polym. Chem., 2011, 49(6): 1409.
[55] Yu H J, Wang L, Chen T. Eur. Polym. J., 2009, 45: 639.
[56] Xu L Q, Wan D, Gong H F, Neoh K G, Kang E T, Fu G D. Langmuir, 2010, 26(19): 15376.
[57] McAdam C I, Moratti S C, Robinson B H, Simpson J. J. Organomet. Chem., 2008, 693(16): 2715.
[58] Moore J S, Stupp S I. Macromolecules, 1990, 23(1): 65.
[59] Wilbert G, Zentel R. Macromol. Chem. Phys., 1996, 197: 3259.
[60] Wilbert G, Traud S, Zentel R. Macromol. Chem. Phys., 1997, 198: 3769.
[61] Xu J, Tian Y, Peng R, Xian Y, Ran Q, Jin L. Electrochem. Commun., 2009, 11(10): 1972.
[62] Zhang Q, Jiao L, Shan C, Yang G, Xu X, Niu L. Synth. Met., 2009, 159(14): 1422.
[63] Camurlu P, Bicil Z, Gultekin C, Karagoren N. Electrochim. Acta, 2012, 63: 245.
[64] Parab K, Jakle F. Macromolecules, 2009, 42(12): 4002.
[65] Paul S, Chavan N N, Radhakrishnan S. Synth. Met., 2009, 159(5/6): 415.
[66] Ion A, Ion I, Popescu A, Ungureanu M, Moutet J C, Saint-Aman E. Adv. Mater., 1997, 9(9): 711.
[67] Reynes O, Royal G, Chainet E, Moutet J C, Saint-Aman E. Electroanalysis, 2003, 15(l): 65.
[68] Winston G P, Cardoso M J, Williams E J. Epilepsia, 2013, 54(12): 2166.
[69] Edwardsei E I, Epton R, Marr G. J. Organomet. Chem., 1976, 122(3): 649.
[70] Smolander M, Gorton L, Lee H S, Skotheim T, Lan H L. Electroanalysis, 1995, 7(10): 941.
[71] Wu S, Chen Y, Zeng F, Gong S, Tong Z. Macromolecules, 2006, 39(20): 6796.
[72] Abasiyanik M F, Senel M. J. Electroanal. Chem., 2010, 639(1/2): 21.
[73] Zhang L, Sun H, Li D, Song S, Fan C, Wang S. Macromol. Rapid Commun., 2008, 29(17): 1489.
[74] Nanjo M, Cyr P W, Liu K, Sargent E H, Manners I. Adv. Funct. Mater., 2008, 18(3): 470.
[75] 刘玉婷(Liu Y T), 王捷(Wang J), 尹大伟(Yin D W). 精细化工(Fine Chemicals), 2013, 30(1): 69.
[76] 童开发(Tong K F), 刘明国(Liu M G), 田晓兵(Tian X B). 湖北三峡学院学报(Journal of China Three Gorges University), 1997, 19: 72.
[77] Singh P, Rausch M D, Lenz R W. Polym. Bull., 1989, 22(3): 247.
[78] Deschenaux R, Kosztics I, Scholten U, Guiilon D, Ibn-Elhaj M. J. Mater. Chem., 1994, 4(8): 1351.
[79] Wiesemann A, Zentel R, Pakula T. Polymer, 1992, 33(24): 5315.
[80] Ahmed R, Hsiao M S, Matsuura Y, Houbenov N, Paul C F J, Manners I. Soft Matter, 2011, 7(21): 10462.
[81] Sun R L, Wang L, Yu H J, Abdin Z, Chen Y S, Khalid H, Abbasi N, Akram M. J. Inorg. Organomet. Polym., 2014, 24: 1063.
[82] 周 磊(Zhou L), 王 立(Wang L), 俞豪杰(Yu H J), 高敬民(Gao J M), 丁文兵(Ding W B), 高浩其(Gao H Q). 材料科学与工程学报(Journal of Materials Science and Engineering), 2013, 31(3): 323.
[83] Abdin Z, Yu H J, Wang L, Abdin Z, Saleem M, Khalid H, Abbasi N, Akram M. Appl. Organomet. Chem., 2014, 28: 567.
[84] Tong R B, Zhao Y L, Wang L, Yu H J, Ren F J, Saleem M, Wael A A. J. Organomet. Chem., 2014, 755: 16.
[85] Li Q H, Chen X, Yue X. Colloid Surf. A; Physicochem. Eng. Asp., 2012, 409(9): 98.
[86] 王学杰(Wang X J), 王立(Wang L), 王建军(Wang J J). 功能高分子学报(Journal of Functional Polymers), 2002, 3(15): 368.
[87] MacLachlan M J, Lough A J, Geiger W E, Manners I. Organometallics, 1998, 17(9): 1873.
[88] 霍甲(Huo J). 浙江大学博士学位论文(Doctoral Dissertation of Zhejiang University), 2010.
[89] 陈涛(Chen T), 王立(Wang L), 王建军(Wang J J), 江国华(Jiang G H). 化学进展(Progress in Chemistry), 2004, 16(5): 797.
[90] Deng L B, Wang L, Yu H J, Dong X C, Jia H. Des. Monomers Polym., 2007, 10(2): 131.
[91] Whittell G R, Manners I. Adv. Mater., 2007, 19(21): 3439.
[92] Cyr P W, Rider D A, Kulbaba K. Macromolecules, 2004, 37(11): 3959.
[93] Arsenault A C, Miguez H, Kitaev V. Adv. Mater., 2003, 15(6): 503.
[94] MacLeod P J, Veregin R P N, Honeyman C H. US 6037091, 2000.
[95] Neuse E W, Woodhouse J R, Montaudo G, Puglisi C. Appl. Organomet. Chem., 1988, 2(l): 53.
[96] Bian S, He J, Schesing K B, Braunschweig A B. Small, 2012, 8(13): 2000.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[5] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[6] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[9] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[10] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[11] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[12] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[13] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[14] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[15] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.