English
新闻公告
More
化学进展 2019, Vol. 31 Issue (10): 1440-1458 DOI: 10.7536/PC190324 前一篇   

• •

用于分离油水乳液的先进材料

左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉**()   

  1. 华南理工大学化学与化工学院 广州 510640
  • 收稿日期:2019-03-21 出版日期:2019-10-15 发布日期:2019-08-05
  • 通讯作者: 皮丕辉
  • 基金资助:
    国家自然科学基金项目(21676102); 国家自然科学基金项目(21878110)

Advanced Materials for Separation of Oil/Water Emulsion

Jihao Zuo, Jiahui Chen, Xiufang Wen, Shoupin Xu, Pihui Pi**()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2019-03-21 Online:2019-10-15 Published:2019-08-05
  • Contact: Pihui Pi
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21676102); National Natural Science Foundation of China(21878110)

海洋原油泄漏事故的频发以及工业污水排放量的日益增加,给生态环境和人类健康造成了巨大的威胁,因此,开发应用于油水分离的先进材料是重要的研究任务。相较于不混溶的油水混合物,油水乳液(也称为乳化油水)的分离是一个更加艰巨的挑战。本文以分离油水乳液的材料作为研究体系,首先从本质上分析了油水乳液的形成机理以及分离原理,强调了“尺寸筛分”效应和膜破乳技术的重要性;然后从基材的角度全面介绍并讨论了常用于分离乳化油水的先进材料的最新进展,详细阐述了各种不同改性方法在油水分离领域中的应用。对材料进行改性的出发点是“合适的孔径”以及“特殊润湿性能”,并能满足优异的分离能力、渗透能力、抗污染能力、机械能力和稳定性,而这些性能在实际的分离操作中是非常关键的。环境系统在未来会变得越来越复杂,真实环境下的油水乳液大多含有较多的污染物,而且分离条件大多较苛刻,因此油水分离材料需要不断地改进,以满足这样的条件。我们相信,未来能在苛刻条件下高效分离多种油水乳液和其他杂质的多功能性先进材料会有巨大的应用前景。

Frequent marine oil spills accidents and the increasing discharge of various industrial sewage have caused great threats to the ecological environment and human health. Therefore, it’s a vitally important task for scientists all over the world to develop advanced materials for separating oil/water emulsions. The separation of oil/water emulsion(also known as emulsified oil/water) is more arduous than that of the immiscible oil/water mixture. This review focuses on the materials of oil/water emulsion separation. Firstly, the formation mechanism and the separation principle of oil/water emulsion are analyzed in essence, and we emphasize the importance of "size sieving" effect and membrane demulsification technology. Then, the latest developments of advanced materials which are commonly applied to the separation of oil/water emulsion are comprehensively introduced and discussed from the perspective of substrate, and the application of various modification methods of substrates in oil/water separation are elaborated. The emphases of material modification are "appropriate pore size" and "special wettability", which can meet excellent separation efficiency, permeability, antifouling ability, mechanical ability and durability requirements. These properties are critical for actual oil/water separation operations. Importantly, the environmental system will be getting more complicated in the future. Besides, most of the oil/water emulsions contain a variety of pollutants in the real environment, and most of them are operated in a harsh environment. Therefore, oil/water separation materials need to be constantly improved to meet these conditions. We believe that in the future, an advanced multifunctional material, which can be used for efficient separation of various oil/water emulsions and other impurities under harsh conditions, will possess great prospects.

()
图1 (a)PAN膜碱诱导相分离的示意图;(b)PAN膜分离五种不同的油包水乳液后滤液中的油含量和分离通量;(c)水包异辛烷乳液在分离前后的对比照片和油滴显微照片[36]
Fig. 1 (a) Schematic illustration of alkaline-induced phase separation process for the fabrication of PAN membrane.(b) Oil content in the filtrate after permeation and water flux for different O/W emulsion permeating through the PAN membrane.(c) Photographs of an isooctane-in-water emulsion before and after filtration[36]. Copyright 2016, Elsevier.
图2 一种可用于油水乳液分离的PVDF静电纺丝膜。(a)采用分步进行静电纺丝制备超疏水/超亲油PVDF膜的过程;(b)超疏水/超亲油PVDF膜表面的电镜图;(c)水滴(染成蓝色)和油滴(染成红色)在PVDF膜上的照片;(d)PVDF膜仅在重力驱动下分离D5包水乳液前、后的油滴显微图[34]
Fig. 2 PVDF electrospinning membrane which can be used for oil/water emulsion separation.(a) Preparation of superhydrophobic/superoleophilic PVDF membrane by two-step electrospinning method.(b) SEM images of superhydrophobic/superoleophilic PVDF membrane.(c) Photograph of the water droplets(dyed blue) and oil droplets(dyed red) on the PVDF membrane.(d) The optical microscopy photographs of water-in-D5 emulsions before and after separation[34]. Copyright 2018, RSC.
图3 (a)传统Tris缓冲溶剂中PDA网络状结构的形成过程;(b)THF-Tris缓冲溶剂中PDA纳米球的形成过程;(c)PTFE膜在分离三种不同表面活性剂稳定的水包油乳液(汽油、柴油、大豆油)时的通量和油截留率[38]
Fig. 3 (a) Formation process of PDA network structure in traditional Tris buffer mixture.(b) Formation process of PDA nano-microspheres in THF-Tris buffer mixture.(c) Water flux and oil rejection of different surfactant-stabilized oil in water emulsions treated by PTFE membrane[38]. Copyright 2018, Elsevier.
图4 ZNG-g-PVDF膜的润湿性能(初始水接触角和水下油接触角)相对于(a)pH值和(b)NaCl浓度的变化;ZNG-g-PVDF膜的黏附力相对于(c)pH值和(d)NaCl浓度的变化;(e)纯水包油乳液,(f)加入了BSA的水包油乳液,(g)加入了腐殖酸的水包油乳液在分离前后的对比图[32]
Fig. 4 Characterization of wettability stability of ZNG-g-PVDF membrane under different pH and different salt concentration. Variation of wettability stability(initiated water CA and underwater oil CA) of ZNG-g-PVDF membrane with respect to(a) pH and(b) NaCl concentration. Adhesion force of ZNG-g-PVDF membrane with respect to(c) pH and(d) NaCl concentration. The photographs of feed solution and filtrates with (e) pure oil-in-water emulsion,(f) oil-in-water emulsion with BSA added, and(g) oil-in-water emulsion with humic acid added[32]. Copyright 2018, Wiley.
图5 (a)通过LbL制备可用于分离原油包水乳液的Cu2+ /藻酸盐多层改性PAA-g-PVDF膜的示意图;(b)LbL改性的PAA-g-PVDF显示出在空气中超亲水、在水下超疏油的润湿性能;(c)表面活性剂稳定的原油包水乳液在分离前后的油滴显微照片[33]
Fig. 5 (a) A schematic showing the fabrication process of the Cu2+/alginate multilayer modified PAA-g-PVDF membrane via LbL self-assembly for separation of crude oil-in-water emulsion. (b)Optical images showing the dynamic wetting behaviors of Cu2+/alginate multilayer modifed PAA-g-PVDF membrane via LbL self-assembly.(c)Digital and microscopic photographs of surfactant-stabilized crude oil-in-water emulsion before(feed) and after(filtrate) separation[33]. Copyright 2018, Wiley.
图6 (a)超亲水/水下超疏油玻璃纤维膜的制备过程及油水分离示意图;(b)以甲苯为油相,分别以水、不同浓度的H2SO4和饱和NaCl溶液为水相所制备的几种水包油乳液,(c)以10 M H2SO4为水相,分别以甲苯、正己烷、正辛烷、异辛烷和正庚烷为水相所制备的几种水包油乳液在分离后所得滤液中的油浓度和分离效率[81]
Fig. 6 (a) Schematic illustration of superhydrophilic/underwater superoleophobic glass fiber membrane fabrication and emulsion separation. Residual oil content in filtrate and separation efficiency for (b) various O/W emulsions(toluene was selected as the oil phase, deionized water, H2SO4 aqueous solution in gradient concentration, and saturated NaCl solution were chosen as water phases separately); (c) various O/W emulsions(10 M H2SO4 aqueous solution is chosen as water phases, toluene, n-hexane, n-octane, isooctane, and n-heptane are selected as the oil phase, separately) [81]. Copyright 2016, Springer Nature.
图7 (a)由钢箍悬挂的SWCNT薄膜;(b)多孔网络结构的SWCNT薄膜的TEM图像(厚度大约为70 nm);(c)SWCNT薄膜分离油包水乳液的照片;(d)SWCNT薄膜对于六种乳液的分离效率[93]
Fig. 7 (a) SWCNT film suspended by a steel hoop.(b)TEM image of SWCNT film showing a porous network structure(~70 nm thick).(c) A photograph of separating a creamy white water-in-oil emulsion through the SWCNT film.(d) Separation efficiency of SWCNT film for six various emulsions [93]. Copyright 2013, Wiley.
图8 (a)具备超亲水凸块的超疏水/超亲油滤网膜(SBS-SSM)的SEM图;(b)普通超疏水/超亲油滤网膜(S-SSM)(Ⅰ网)和SBS-SSM(Ⅱ网)在分离甲苯包水乳液后的对比照片;S-SSM和SBS-SSM分离(c)五种不同的不含表面活性剂的油包水乳液;(d)五种不同的表面活性剂稳定的油包水乳液的分离效率[112]
Fig. 8 (a) SEM images of a superhydrophilic bumps-superhydrophobic/superoleophilic stainless steel mesh(SBS-SSM).(b) Digital images of superhydrophobic/superoleophilic stainless steel mesh(S-SSM)(filtrate Ⅰ) and SBS-SSM(filtrate Ⅱ) after separating water-in-toluene emulsion. Separation efficiency for(c) various surfactant-free water-in-oil emulsions and(d) various surfactant-stabilized water-in-oil emulsions of S-SSM and SBS-SSM[112]. Copyright 2016, ACS.
图9 (a)水凝胶涂覆滤纸的制备过程示意图;(b)水凝胶涂覆滤纸的SEM图;(c)水包正己烷乳液分离前后的油滴显微对比图 [121]
Fig. 9 (a) Schematic of the fabrication process of hydrogel-coated filter paper.(b) SEM images of hydrogel-coated filter paper.(c) Photographs of hexane-in-water before and after filtration[121]. Copyright 2015, Wiley.
图10 经过ODA疏水改性后的纤维棉。(a)水珠置于空气下的改性疏水棉上;(b)水珠置于油下的改性疏水棉上;(c)空气中疏水棉的水接触角;(d)油下疏水棉的水接触角;(e)改性棉在重力驱动下分离二氯甲烷包水乳液(油染成红色)的过程;(f)二氯甲烷包水乳液中的油相很容易在疏水棉中渗透;(g)二氯甲烷包水乳液在分离前;(h)分离后的油滴显微图像对比 [126]
Fig. 10 Cotton after hydrophobic modification by ODA.(a) Beaded water droplets in air on SHC.(b) Beaded water droplets under oil on SHC.(c) Water contact angle in air images of SHC.(d) Water contact angle under oil images of SHC.(e) Process for separating water-in-dichloromethane emulsion(oil dyed red) through gravity-driven filtration using SHC.(f) The oil phase in the water-in-dichloromethane emulsion penetrates into SHC easily. Photographs of water-in-dichloromethane emulsion (g)before and (h)after filtration [126]. Copyright 2017, RSC.
图11 (a)PMF改性海绵的制备过程及其膜孔的SEM图;(b)PMF海绵的水接触角和水下油接触角随着不同SiO2纳米纤维浓度的变化;(c)油水分离过程以及分离水包正己烷乳液前后的油滴显微图像对比[132]
Fig. 11 (a) Schematic illustration of preparation process of modified PMF sponges and SEM images of corresponding pore.(b) Variation of the water contact angle and the underwater oil contact angle of the PMF sponges with different SiO2 nanofiber concentrations.(c) Oil/water separation process and the microscopy images of hexane-in-water emulsion before and after separation[132]. Copyright 2017, Wiley.
图12 (a)制备超疏水性3D多孔笼状结构的泡沫铜的过程示意图;(b)超疏水泡沫铜分离甲苯包水乳液的过程;(c)甲苯包水乳液分离前的图片;(d)甲苯包水乳液分离后的图片;(e)甲苯包水乳液分离前的油滴显微图片;(f)甲苯包水乳液分离后的油滴显微图片[138]
Fig. 12 (a) Schematic illustration of the process of fabricating 3D porous cage-like structure copper foam.(b) Process for separating toluene-in-water emulsion through superhydrophobic copper foam. Emulsion appearance images of toluene-in-water emulsion (c)before and (d)after separation. Microscopy images of toluene-in-water emulsion (e)before and (f)after separation[138]. Copyright 2017, RSC.
图13 (a)装有沙层的油水分离装置示意图;(b)通过沙层分离油包水乳液的过程;(c)表面活性剂稳定的柴油包水乳液在分离前后的油滴显微图片[142]
Fig. 13 (a) Schematic of oil/water separation setup with sand layer.(b) Process of sand layer for the separation of water-in-oil emulsions.(c) Microscope images of the surfactant-stabilized water-in-diesel emulsion before and after separation [142]. Copyright 2018, RSC.
图14 (a)通过OVA和TA将四种不同疏水基材转化为超亲水/水下超疏油膜的示意图;(b)水滴在四种不同经OVA、TA改性后的基材表面,会迅速渗入进表面 [145]
Fig. 14 (a) Schematic of the transformation of hydrophobic substrates into superhydrophilic/underwater superoleophobic membranes via OVA and TA.(b)Water droplets penetrate into the surface of the four different membranes quickly via OVA and TA[145]. Copyright 2018, RSC.
图15 (a)SSM / SWCNT-cDNA膜的制备过程以及利用纳米孔尺寸筛分效应和水下超疏油润湿性能来分离含多组分污染物的油水乳液;(b)SSM / SWCNT-cDNA膜分离三种不同的油水乳液(分别含BSA、亚甲基蓝和金纳米粒子)的油截留率;(c)三种不同的油水乳液(分别含BSA、亚甲基蓝和金纳米粒子)在分离前后的乳液粒径对比[154]
Fig. 15 (a) Schematic illustration of preparation process of SSM/SWCNT-cDNA membrane and separation of multicomponent pollutant-oil-water emulsion by nanopore size sieving effect and wetting property of underwater superoleophobic.(b) Oil rejection of SSM / SWCNT-cDNA membrane for various oil/water emulsions(containing BSA, methylene blue and Au nanoparticles, respectively).(c) Size distribution of various oil/water emulsions(containing BSA, methylene blue and Au nanoparticles, respectively) before and after separation [154]. Copyright 2018, Elsevier.
[1]
Wolfaardt A C, Underhill L G, Altwegg R, Visagie J, Williams A J . Afr. J. Mar. Sci., 2008,30:405.
[2]
Worton D R, Zhang H F, Isaacman-VanWertz G, Chan A W H, Wilson K R, Goldstein A H . Environ. Sci. Technol., 2015,49:13130.
[3]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M . Nature, 2008,452:301.
[4]
Wang S T, Liu K S, Yao X, Jiang L . Chem. Rev., 2015,115:8230.
[5]
Gao S J, Sun J C, Liu P P, Zhang F, Zhang W B, Yuan S L, Li J Y, Jin J . Adv. Mater., 2016,28:5307.
[6]
Rosso F, Sona G . Adv. Math. Sci. Appl., 2001,11:127.
[7]
Selyanina S B, Makarevich N A, Tel’Tevskaya S E, Afanas’Eva N I, Selivanova N V . Russ. J. Appl. Chem., 2002,75:1873.
[8]
O’Brien K J, Prendergast G J J . US 5514266 A, 1996.
[9]
Al-Shamrani A A, James A, Xiao H . Water Res., 2002,36:1503.
[10]
Hosny A Y . Sep. Technol., 1996,6:9.
[11]
Palmer L L, Beyer A H, Stock J . J. Petrol. Technol., 1981,33:1136.
[12]
Ren B P, Kang Y . Sep. Purif. Technol., 2019,211:958.
[13]
Xu D D, Zheng X T, Xiao R . RSC Adv., 2017,7:7108.
[14]
曾新娟(Zeng X J), 王丽(Wang L), 皮丕辉(Pi P H), 程江(Cheng J), 文秀芳(Wen X F), 钱宇(Qian Y) . 化学进展 (Progress in Chemistry), 2018,30(1):73.
[15]
Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L, Zhu D B . Angew. Chem., 2004,43:2012.
[16]
Tao M M, Xue L X, Liu F, Jiang L . Adv. Mater., 2014,26:2943.
[17]
Wang Z J, Wang Y, Liu G J . Angew. Chem. Int. Ed., 2016,55:1291.
[18]
Jiang Y S, Hou J W, Xu J, Shan B T . Carbon, 2017,115:477.
[19]
Yang X B, Wang Z X, Shao L . J. Membrane Sci., 2018,549:67.
[20]
Kota A K, Kwon G, Choi W, Mabry J M, Tuteja A . Nat. Commun., 2012,3:1025.
[21]
Cai Y H, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci., 2018,555:69.
[22]
Zhou X, He C B . J. Mater. Chem. A, 2018,6:607.
[23]
Zhang W F, Liu N, Zhang Q D, Qu R X, Liu Y N, Li X Y, Wei Y, Feng L, Jiang L . Angew. Chem. Int. Ed., 2018,57:5740.
[24]
Wang Y F, Lai C L, Wang X W, Liu Y, Hu H W, Guo Y J, Ma K K, Fei B, Xin J H . ACS Appl. Mater. Inter., 2016,8:25612.
[25]
Abraham S, Kumaran S K, Montemagno C D . RSC Adv., 2017,7:39465.
[26]
Zuo J H, Li Z K, Wei C, Yan X, Chen Y, Lang W Z . J. Membrane Sci., 2019,577:79.
[27]
Wang G W, Peng L S, Yu B, Chen S G, Ge Z C, Uyama H . J. Ind. Eng. Chem., 2018,62:192.
[28]
Wang J T, Wang H F . Surf. Coat. Tech., 2018,350:234.
[29]
李辈辈(Li B B) . 上海大学博士论文( Doctoral Dissertation of Shanghai University), 2016.
[30]
Lipp P, Lee C H, Fane A G, Fell C J D . J. Membrane Sci., 1988,36:161.
[31]
Zhang W B, Zhu Y Z, Liu X, Wang D, Li J Y, Jiang L, Jin J . Angew. Chem. Int. Ed., 2014,53:856.
[32]
Zhu Y Z, Wang J L, Zhang F, Gao S J, Wang A Q, Fang W G, Jin J . Adv. Funct. Mater., 2018,28:1804121.
[33]
Gao S J, Zhu Y Z, Wang J L, Zhang F, Li J Y, Jin J . Adv. Funct. Mater., 2018,28:1801944.
[34]
Wu J D, Ding Y J, Wang J Q, Li T T, Lin H B, Wang J P, Liu F . J. Mater. Chem. A, 2018,6:7014.
[35]
Ma W J, Zhao J T, Oderinde O, Han J Q, Liu Z C, Gao B H, Xiong R H, Zhang Q L, Jiang S H, Huang C B . J. Colloid Interf. Sci., 2018,532:12.
[36]
Zhang F, Gao S J, Zhu Y Z, Jin J . J. Membrane Sci., 2016,513:67.
[37]
Raza A, Ding B, Zainab G, El-Newehy M, Al-Deyab S S, Yu J Y . J. Mater. Chem. A, 2014,2:10137.
[38]
Li X P, Shan H T, Cao M, Li B A . J. Membrane Sci., 2018,555:237.
[39]
Pan J, Xiao C F, Huang Q L, Liu H L, Zhang T . J. Membrane Sci., 2017,524:623.
[40]
Zuo J H, Cheng P, Chen X F, Yan X, Guo Y J, Lang W Z . Sep. Purif. Technol., 2018,192:348.
[41]
Li M F, Li Y Q, Chang K Q, Cheng P, Liu K, Liu Q Z, Wang Y D, Lu Z T, Wang D . Compos. Commun., 2018,7:69.
[42]
Tan L L, Han N, Qian Y Q, Zhang H R, Gao H K, Zhang L F, Zhang X X . J. Membrane Sci., 2018,564:712.
[43]
Yang Y, Raza A, Banat F, Wang K . J. Water Process Eng., 2018,25:113.
[44]
赵晓勇(Zhao X Y), 曾一鸣(Zeng Y M), 施艳荞(Shi Y Q), 陈观文(Chen G W) . 功能高分子学报 (Journal of Functional Polymers), 2002,15(4):487.
[45]
Arumugham T, Kaleekkal N J, Rana D, Doraiswamy M . J. Appl. Polym. Sci., 2015,1:133.
[46]
Zhang W B, Shi Z, Zhang F, Liu X, Jin J, Jiang L . Adv. Mater., 2013,25:2071.
[47]
Lee M W, An S, Latthe S S, Lee C, Hong S, Yoon S S . ACS Appl. Mater. Inter., 2013,5:10597.
[48]
Ge J L, Zhang J C, Wang F, Li Z L, Yu J Y, Ding B . J. Mater. Chem. A, 2017,5:497.
[49]
Baker B M, Gee A O, Metter R B, Nathan A S, Marklein R A, Burdick J A, Mauck R L . Biomaterials, 2008,29:2348.
[50]
Kang H S, Cho H, Panatdasirisuk W, Yang S . J. Mater. Chem. A, 2017,5:18762.
[51]
Lee H S, Dellatore S M, Miller W M, Messersmith P B . Science, 2007,318:426.
[52]
Liu M Y, Zeng G J, Wang K, Wang Q, Tao L, Zhang X Y, Wei Y . Nanoscale, 2016,8:16819.
[53]
Wang J, Hou L A, Yan K K, Zhang L, Jimmy Y Q M . J. Membrane Sci., 2018,547:156.
[54]
Xiang Y H, Liu F, Xue L X . J. Membrane Sci., 2015,476:321.
[55]
Yang X, He Y, Zeng G Y, Chen X, Shi H, Qing D Y, Li F, Chen Q . Chem. Eng. J., 2017,321:245.
[56]
Yang H C, Pi J K, Liao K J, Huang H, Wu Q Y, Huang X J, Xu Z K . ACS Appl. Mater. Inter., 2014,6:12566.
[57]
Bernstein R, Singer C E, Singh S P, Mao C, Arnusch C J . J. Membrane Sci., 2018,548:73.
[58]
Chen W J, Su Y L, Zheng L L, Wang L J, Jiang Z Y . J. Membrane Sci., 2009,337:98.
[59]
Zhang M G, Nguyen Q T, Ping Z H . J. Membrane Sci., 2009,327:78.
[60]
Lv R H, Yin M, Zheng W Z, Na B, Wang B, Liu H S . J. Appl. Polym. Sci., 2017,25:134.
[61]
Xiong Z, Lin H B, Liu F, Xiao P, Wu Z Y, Li T T, Li D H . Sci. Rep., 2017,7:14099.
[62]
Shi Z, Zhang W B, Zhang F, Liu X, Wang D, Jin J, Jiang L . Adv. Mater., 2013,25:2422.
[63]
Tan B Y L, Juay J, Liu Z Y, Sun D . Chem. - Asian J., 2016,11:561.
[64]
Wang K, Yiming W, Saththasivam J, Liu Z Y . Nanoscale, 2017,9:9018.
[65]
Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L . Adv. Mater., 2011,23:4270.
[66]
Yuan T, Meng J Q, Hao T Y, Wang Z H, Zhang Y F . ACS Appl. Mater. Inter., 2015,7:14896.
[67]
Chen P C, Xu Z K . Sci. Rep., 2013,3:2776.
[68]
Iler R K . J. Colloid Interf. Sci., 1966,21:569.
[69]
谢瑜亮(Xie Y L), 王明君(Wang M J), 姚善泾(Yao S J) . 化工学报 (Journal of Chemical Industry and Engineering(China)), 2008,59(11):2910.
[70]
Li J, Zhao Z H, Li D M, Tian H F, Zha F, Feng H, Guo L . Nanoscale, 2017,9:13610.
[71]
Yuliwati E, Ismail A F . Desalination, 2011,273:226.
[72]
Chakrabarty B, Ghoshal A K, Purkait M K . J. Membrane Sci., 2008,325:427.
[73]
Liu Y, Su Y L, Li Y F, Zhao X T, Jiang Z Y . RSC Adv., 2015,5:21349.
[74]
Yang L, Thongsukmak A, Sirkar K K, Gross K B, Mordukhovich G . J. Membrane Sci., 2011,378:138.
[75]
Bader S A, Ong C S . RSC Adv., 2017,7:20981.
[76]
Cui J Y, Zhang X F, Liu H O, Liu S Q, Yeung K L . J. Membrane Sci., 2008,325:420.
[77]
Ding D, Mao H Y, Chen X F, Qiu M H, Fan Y Q . J. Membrane Sci., 2018,565:303.
[78]
Zhou J E, Chang Q B, Wang Y Q, Wang J M, Meng G Y . Sep. Purif. Technol., 2010,75:243.
[79]
聂淼杰(Nie M J), 朱轶铮(Zhu Y Z), 刘森林(Liu S L), 马敬红(Ma J H), 杨曙光(Yang S G), 龚静华(Gong J H) . 东华大学学报(自然科学版) (Journal of Donghua University, Natural Sciences), 2013,39:16.
[80]
Yoshino Y, Suzuki T, Nair B N, Taguchi H, Itoh N . J. Membrane Sci., 2005,267:8.
[81]
Chen Y N, Liu N, Cao Y Z, Lin X, Xu L X, Zhang W F, Wei Y, Feng L . Sci. Rep., 2016,6:32540.
[82]
Liu N, Lin X, Zhang W F, Cao Y Z, Chen Y N, Feng L, Wei Y . Sci. Rep., 2015,5:9688.
[83]
Wang K, Han D S, Yiming W, Ahzi S, Abdel-wahab A, Liu Z Y . Sci. Rep., 2017,7:16081.
[84]
Vandezande P, Gevers L E M, Vankelecom I F . J. Chem. Soc. Rev., 2008,37:365.
[85]
刘壮(Liu Z), 汪伟(Wang W), 巨晓洁(Ju X J), 谢锐(Xie R), 褚良银(Chu L Y) . 化工学报 (Journal of Chemical Industry and Engineering(China)), 2018,69:166.
[86]
Zhang X, Lang W Z, Yan X, Lou Z Y, Chen X F . J. Membrane Sci., 2016,499:179.
[87]
Miao W, Li Z K, Yan X, Guo Y J, Lang W Z . Chem. Eng. J., 2017,317:901.
[88]
Li Z K, Lang W Z, Miao W, Yan X, Guo Y J . J. Membrane Sci., 2016,511:151.
[89]
Saththasivam J, Yiming W, Wang K, Jin J, Liu Z Y . Sci. Rep., 2018,8:7418.
[90]
Huang T F, Zhang L, Chen H L, Gao C J . J. Mater. Chem. A, 2015,3:19517.
[91]
Gu J C, Xiao P, Huang Y J, Zhang J W, Chen T . J. Mater. Chem. A, 2015,3:4124.
[92]
Hu L, Gao S J, Zhu Y Z, Zhang F, Jiang L, Jin J . J. Mater. Chem. A, 2015,3:23477.
[93]
Gao S J, Zhu Y Z, Zhang F, Jin J . J. Mater. Chem. A, 2015,3:2895.
[94]
Gu J C, Xiao P, Zhang L, Lu W, Zhang G G, Huang Y J, Zhang J W, Chen T . RSC Adv., 2016,6:73399.
[95]
Huang Y, Li H, Wang L, Qiao Y L, Tang C B, Jung C I, Yoon Y M, Li S G, Yu M . Adv. Mater. Interfaces, 2015,2:1400433.
[96]
Zhao X T, Su Y L, Liu Y N, Li Y F, Jiang Z Y . ACS Appl. Mater. Inter., 2016,8:8247.
[97]
Hou K, Zeng Y C, Zhou C L, Chen J H, Wen X F, Xu S P, Cheng J, Lin Y G, Pi P H . Appl. Surf. Sci., 2017,416:344.
[98]
Pi P H, Hou K, Zhou C L, Li G D, Wen X F, Xu S P, Cheng J, Wang S F . Appl. Surf. Sci., 2017,396:566.
[99]
Zhou C L, Li Y F, Li H J, Zeng X J, Pi P H, Wen X F, Xu S P, Cheng J . Surf. Coat. Tech., 2017,313:55.
[100]
Zhou C L, Feng J X, Cheng J, Zhang H, Lin J, Zeng X J, Pi P H . Ind. Eng. Chem. Res., 2018,57:1059.
[101]
Li X Y, Hu D, Huang K, Yang C F . J. Mater. Chem. A, 2014,2:11830.
[102]
侯昆(Hou K) . 华南理工大学硕士论文( Master’s Dissertation of South China University of Technology), 2017.
[103]
Song B T, Xu Q . Langmuir, 2016,32:9960.
[104]
Guo W, Zhang Q, Xiao H B, Xu J, Li Q T, Pan X H, Huang Z Y . Appl. Surf. Sci., 2014,314:408.
[105]
Lin X D, Heo J W, Jeong H J, Choi M, Chang M W, Hong J K . J. Mater. Chem. A, 2016,4:17970.
[106]
Wen X F, Ye C, Cai Z Q, Xu S P, Pi P H, Cheng J, Zhang L J, Qian Y . Appl. Surf. Sci., 2015,339:109.
[107]
Wang S T, Song Y L, Jiang L . Nanotechnology, 2007,18:15103.
[108]
Cai Y H, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci., 2017,543:10.
[109]
Lee C H, Johnson N, Drelich J, Yap Y K . Carbon, 2011,49:669.
[110]
Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L . Adv Mater., 2013,25:4192.
[111]
Cao Y Z, Chen Y N, Liu N, Lin X, Feng L, Wei Y . J. Mater. Chem. A, 2014,2:20439.
[112]
Zeng X J, Qian L, Yuan X X, Zhou C L, Li Z W, Cheng J, Xu S P, Wang S F, Pi P H, Wen X F . ACS Nano, 2017,11:760.
[113]
Jiang L, Tang Z, Park-Lee K J, Hess D W, Breedveld V . Sep. Purif. Technol., 2017,184:394.
[114]
Chen Y, Wang N, Guo F Y, Hou L L, Liu J C, Liu J, Xu Y, Zhao Y, Jiang L . J. Mater. Chem. A, 2016,4:12014.
[115]
Cao C Y, Cheng J . Mater. Lett., 2018,217:5.
[116]
Cao Y Z, Liu N, Zhang W F, Feng L, Wei Y . ACS Appl. Mater. Inter., 2016,8:3333.
[117]
Li L X, Li B C, Sun H X, Zhang J P . J. Mater. Chem. A, 2017,5:14858.
[118]
童贤涛(Tong X T), 钟璇(Zhong X), 何小云(He X Y), 李欣达(Li X D), 兰嫒(Lan A), 余木火(Yu M H) . 高分子通报 (Chinese Polymer Bulletin), 2013,10:151.
[119]
Medina-Sandoval C F, Valencia-Dávila J A, Combariza M Y, Blanco-Tirado C . Fuel, 2018,231:297.
[120]
Hong S K, Bae S, Jeon H, Kim M, Cho S J, Lim G . Nanoscale, 2018,10:3037.
[121]
Fan J B, Song Y Y, Wang S T, Meng J X, Yang G, Guo X L, Feng L, Jiang L . Adv. Funct. Mater., 2015,25:5368.
[122]
Ge D T, Yang L L, Wang C B, Lee E, Zhang Y Q, Yang S . Chem. Commun., 2015,51:6149.
[123]
Wang C F, Yang S Y, Kuo S W . Sci. Rep., 2017,7:43053.
[124]
Karimnezhad H, Rajabi L, Salehi E, Derakhshan A A, Azimi S . Appl. Surf. Sci., 2014,293:275.
[125]
Matsubayashi T, Tenjimbayashi M, Komine M, Manabe K, Shiratori S . Ind. Eng. Chem. Res., 2017,56:7080.
[126]
Rather A M, Jana N, Hazarika P, Manna U . J. Mater. Chem. A., 2017,5:23339.
[127]
Cao C Y, Ge M Z, Huang J Y, Li S H, Deng S, Zhang S N, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y K . J. Mater. Chem. A, 2016,4:12179.
[128]
Tran V H T, Lee B K . Sci. Rep., 2017,7:17520.
[129]
Zhang Y Q, Yang X B, Wang Z X, Long J, Shao L . J. Mater. Chem. A, 2017,5:7316.
[130]
Wu Z Z, Li Y Z, Zhang L P, Zhong Y, Xu H, Mao Z P, Wang B J, Sui X F . RSC Adv., 2017,7:20147.
[131]
Li J, Xu C C, Zhang Y, Wang R F, Zha F, She H D . J. Mater. Chem. A, 2016,4:15546.
[132]
Lv W Y, Mei Q Q, Xiao J L, Du M, Zheng Q . Adv. Funct. Mater., 2017,27:1704293.
[133]
Chen J J, Zhang Y X, Chen C, Xu M Y, Wang G, Zeng Z X, Wang L P, Xue Q J . Macromol. Mater. Eng., 2017,302:1700086.
[134]
Wang G, He Y, Wang H, Zhang L, Yu Q Y, Peng S S, Wu X D, Ren T H, Zeng Z X, Xue Q J . Green Chem., 2015,17:3093.
[135]
Yun J J, Khan F A, Baik S . ACS Appl. Mater. Inter., 2017,9:16694.
[136]
章雯(Zhang W), 张爽(Zhang S), 张友法(Zhang Y F), 余新泉(Yu X Q) . 东南大学学报(自然科学版) (Journal of Southeast University, Natural Sciences), 2015,45:69.
[137]
Luo Z Y, Lyu S S, Wang Y Q, Mo D C . Ind. Eng. Chem. Res., 2017,56:699.
[138]
Wang Z D, Xiao C M, Wu Z J, Wang Y T, Du Y, Kong W, Pan D H, Guan G Q, Hao X G . J. Mater. Chem. A, 2017,5:5895.
[139]
Cao C Y, Cheng J . Chem. Eng. J., 2018,347:585.
[140]
Jiang G M, Li J X, Nie Y L, Zhang S, Dong F, Guan B H, Lv X S . Environ. Sci. Technol., 2016,50:7650.
[141]
Li Y, Zhang Z Z, Ge B, Men X H, Xue Q J . Sep. Purif. Technol., 2017,176:1.
[142]
Li J, Xu C C, Guo C Q, Tian H F, Zha F, Guo L . J. Mater. Chem. A, 2018,6:223.
[143]
Han X Y, Hu J Y, Chen K, Wang P, Zhang G, Gu J J, Ding C, Zheng X S, Cao F F . Chem. Eng. J., 2018,352:530.
[144]
Feng J G, Sun M, Ye Y M . J. Mater. Chem. A, 2017,5:14990.
[145]
Wang Z X, Ji S Q, Zhang J, Liu Q X, He F, Peng S Q, Li Y X . J. Mater. Chem. A, 2018,6:13959.
[146]
Tie L, Li J, Liu M M, Guo Z G, Liang Y M, Liu W M . J. Mater. Chem. A, 2018,6:11682.
[147]
Guo G L, Liu L B, Zhang Q, Pan C G, Zou Q Q . New J. Chem., 2018,42:3819.
[148]
Zhang L, Gu J C, Song L P, Chen L, Huang Y J, Zhang J W, Chen T . J. Mater. Chem. A, 2016,4:10810.
[149]
Zhang Q D, Cao Y Z, Liu N, Zhang W F, Chen Y N, Lin X, Tao L, Wei Y, Feng L . Adv. Mater. Interfaces, 2016,3:1600291.
[150]
Zhang L, Zha X H, Zhang G, Gu J C, Zhang W, Huang Y J, Zhang J W, Chen T . J. Mater. Chem. A, 2018,6:10217.
[151]
Xu L X, Liu N, Cao Y Z, Lu F, Chen Y N, Zhang X Y, Feng L, Wei Y . ACS Appl. Mater. Inter., 2014,6:13324.
[152]
Wang J Q, Wu Z Y, Li T T, Ye J R, Shen L Q, She Z, Liu F . Chem. Eng. J., 2018,334:579.
[153]
Chen Q, Yu Z X, Li F, Yang Y, Pan Y, Peng Y X, Yang X, Zeng G Y . J. Chem. Technol. Biotechnol., 2018,93:761.
[154]
Lin X D, Heo J W, Hong J K . Chem. Eng. J., 2018,348:870.
[155]
Wang H X, Xue Y H, Ding J, Feng L F, Wang X G, Lin T . Angew. Chem. Int. Ed., 2011,50:11433.
[1] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[2] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[3] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[4] 张俊, 韩磊, 曾渊, 田亮, 张海军. 选择性油水分离材料[J]. 化学进展, 2019, 31(1): 134-143.
[5] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[6] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[7] 李俊同, 霍延平, 刘梦娟, 曾华强. 可用于溢油处理的相选择性有机胶凝剂[J]. 化学进展, 2017, 29(6): 617-627.
[8] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[9] 朱敦如,齐丽,程慧敏,沈旋,卢伟. Fe(II)自旋交叉分子材料* [J]. 化学进展, 2009, 21(6): 1187-1198.
阅读次数
全文


摘要

用于分离油水乳液的先进材料