English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 753-764 DOI: 10.7536/PC171012 前一篇   后一篇

• 综述 •

共价有机框架材料的发展与应用:气体存储、催化与化学传感

王婷1, 薛瑞1, 魏玉丽1,2, 王明玥1, 郭昊1, 杨武1*   

  1. 1. 西北师范大学化学化工学院 甘肃省生物电化学与环境分析重点实验室 教育部生态环境相关高分子材料重点实验室 兰州 730070;
    2. 兰州城市学院化学化工学院 兰州 730070
  • 收稿日期:2017-10-12 修回日期:2017-11-28 出版日期:2018-06-15 发布日期:2018-03-07
  • 通讯作者: 杨武,e-mail:xbsfda123@126.com E-mail:xbsfda123@126.com
  • 基金资助:
    国家自然科学基金(No.21665024)项目资助

Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing

Ting Wang1, Rui Xue1, Yuli Wei1,2, Mingyue Wang1, Hao Guo1, Wu Yang1*   

  1. 1. College of Chemistry and Chemical Engineering, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Lab of Eco-Environment Related Polymer Materials of Ministry of Education, Northwest Normal University, Lanzhou 730070, China;
    2. College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
  • Received:2017-10-12 Revised:2017-11-28 Online:2018-06-15 Published:2018-03-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21665024).
共价有机框架材料(Covalent Organic Frameworks,COFs)是由有机结构单元通过共价键连接的具有周期性结构的多孔化合物。作为一类新型的结晶性有机多孔材料,由于其密度低、比表面积大、孔隙率高、结晶度好、稳定性高及结构单元可设计等特点受到科学界的广泛关注,在气体吸附与分离、光电、催化、药物传递、储能及化学传感与色谱分离等领域表现出良好的应用前景。本文对COFs材料的发展与应用研究进展进行了简要的综述,对COFs应用中尚待解决的问题进行了总结并对未来的发展方向进行了展望。
Covalent organic frameworks (COFs) are porous compounds with periodic topology structures in which the organic building units are linked by covalent bonds. As a new type of crystalline porous organic materials with multiple advantages, such as low density, large surface area, porosity, good crystallinity, high stability, designable structural units and so on, they have won more and more attention of scientists and been widely applied in many fields including gas adsorption and separation, optoelectronic device, catalysis, drug delivery, energy storage, chemical sensing and chromatographic separation. In the present paper, development and application advances of COFs materials are reviewed in outline, the burning issues concerning the applications are summarized and their possible development trends are also prospected.
Contents
1 Development of COFs materials
2 Applications of COFs materials
2.1 Storage and separation of gas
2.2 Catalysis
2.3 Fluorescent sensing
2.4 Other applications
3 Conclusion

中图分类号: 

()
[1] Jiang J X, Yu J H, Corma A. Angew. Chem. Int. Ed., 2010, 49:3120.
[2] Sharma Y, Gode F. J. Chem. Eng. Data, 2010, 55:3991.
[3] Rowsell J L C, Yaghi O M. Micropor. Mesopor. Mater., 2004, 73:3.
[4] Côét A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310:1166.
[5] Xu S Q, Zhan T G, Wen Q, Pang Z F, Zhao X. ACS Macro Lett., 2016, 5:99.
[6] Ma Y X, Li Z J, Wei L, Ding S Y, Zhang Y B, Wang W. J. Am. Chem. Soc., 2017, 139:4995.
[7] Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48:3053.
[8] Hunt J R, Doonan C J, Levangie J D, Côté A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130:11872.
[9] Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133:11478.
[10] Uribe-Romo F J, Hunt J R, Furukawa H, Klock C, O'Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131:4570.
[11] Jackson K T, Reich T E, El-Kaderi H M. Chem. Commun., 2012, 48:8823.
[12] Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47:3450.
[13] Xue R, Guo H, Wang T, Wang X, Ai J B, Yue L G, Wei Y L, Yang W. Mater. Lett., 2017, 209:171
[14] Wu K Y, Guo J, Wang C C. Chem. Mater., 2014, 26:6241.
[15] Liras M, Iglesias M, Sánchez F. Macromolecules, 2016, 49:1666.
[16] Yuan K, Guo-Wang P Y, Hu T, Shi L, Zeng R, Forster M, Pichler T, Chen Y W, Scherf U. Chem. Mater., 2015, 27:7403.
[17] Jin E, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357:673.
[18] Liu X H, Guan C Z, Ding S Y, Wang W, Yan H J, Wang D, Wan L J. J. Am. Chem. Soc., 2013, 135:10470.
[19] Zeng Y F, Zou R Y, Luo Z, Zhang H C, Yao X, Ma X, Zou R Q, Zhao Y L. J. Am. Chem. Soc., 2015, 137:1020.
[20] Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138:4710.
[21] Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42:548.
[22] Daiz U, Corma A. Coord.Chem. Rev., 2016, 311:85.
[23] Mendoza-Cortés J L, Han S S, Furukawa S, Yaghi O M, Goddard W A. J. Phys. Chem. A, 2010, 114:10824.
[24] Pramudya Y, Mendoza-Cortes J L. J. Am. Chem. Soc., 2016, 138:15204.
[25] Choi S, Drese J H, Jones C W. ChemSusChem, 2009, 2:796.
[26] Babarao R, Jiang J W. Energy Environ. Sci., 2008, 1:139.
[27] Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131:8875.
[28] Kahveci Z, Islamoglu T, Shar G A, Ding R S, El-Kader H M. CrystEngComm., 2013, 15:1524.
[29] Lan J, Cao D, Wang D, Smit B. ACS Nano, 2010, 4:4225.
[30] Zhao Y, Yao K X, Teng B, Zhang T, Han Y. Energy Environ.Sci., 2013, 6:3684.
[31] Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134:19524.
[32] Wei H, Chai S, Hu N, Yang Z, Wei L, Wang L. Chem. Commun., 2015, 51:12178.
[33] Kaleeswaran D, Vishnoi P, Murugavel R. J. Mater. Chem. C, 2015, 3:7159.
[34] Gomes R, Bhanja P, Bhaumik A. Chem. Commun., 2015, 51:10050.
[35] Deblase C R, Dichtel W R. Macromolecules, 2016, 49:5297.
[36] Huang N, Chen X, Krishna R, Jiang D. L. Angew. Chem. Int. Ed., 2015, 127:3029.
[37] Huang N, Krishna R, Jiang D. J. Am. Chem. Soc., 2015, 137:7079.
[38] Qlajire A A. J. CO2 Utilization, 2017, 17:137.
[39] Klontzas E, Tylianakis E, Froudakis G E. Nano Lett., 2010, 10:452.
[40] Li Y, Yang R T. AIChE J., 2007, 54:269.
[41] Kim D, Jung D H, Kim K H, Guk H, Han S S, Choi K, Choi S H. J. Phys. Chem. C, 2011, 116:1479.
[42] Assfour B, Seifert G. Chem. Phys. Lett., 2010, 489:86.
[43] Ke Z P, Cheng Y Y, Yang S Y, Li F, Ding L F. Int. J. Hydrogen Energy, 2017,42:11461.
[44] Xia L Z, Wang F L, Liu Q. Mater. Lett., 2016, 162:9.
[45] Yu J T, Chen Z, Sun J, Huang Z H, Zheng Q Y. J. Mater. Chem., 2012, 22:5369.
[46] Babu K S, Hyunchul O, Michael H, Daniel E, Christian W. Chem. Eur. J., 2012, 18:10848.
[47] Mendoza-Cortes J L, Goddard W A, Furukawa H, Yaghi O M. J. Phys. Chem. Lett., 2012, 3:2671.
[48] Kalidindi S B, Fischer R A. Phys. Status. Solidi., 2013, 250:1119.
[49] Mendoza-Cortes J L, Pascal T A, Goddard W A. J. Phys. Chem. A, 2011, 115:13852.
[50] Zhao J, Yan T. RSC Adv., 2014, 4:15542.
[51] Frenkel D, Smit B. Understanding Molecular Simulation:From Algorithms to Applications(2nd ed). Califonia:Elsevier, 2002. 66.
[52] Hu J, Zhao J, Yan T. J. Phys. Chem. C, 2015, 119:2010.
[53] Wu M X, Yang Y W. Chin. Chem. Lett., 2017, 28:1135.
[54] Lan J H, Cao D P, Wang W C. Langmuir, 2010, 26:220.
[55] Doonan C J, Tranchemontagne D J, Glover T G, Hunt J R, Yaghi O M. Nat. Chem., 2010, 2:235.
[56] Tong M M, Yang Q Y, Zhong C L. Micropor. Mesopor. Mater., 2015, 210:142.
[57] Kang Z X, Peng Y W, Qian Y H, Yuan D Q, Addicoat M A, Heine T, Hu Z G, Tee L, Guo Z G, Zhao D. Chem. Mater., 2016, 28:1277.
[58] Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R, J.Am. Chem. Soc. 2013, 135:5328.
[59] Kandambeth S, Venkatesh V, Shinde D B, Kumari S, Halder A, Verma S, Banerjee R. Nat. Commun., 2015, 6:6786.
[60] Fu J R, Das S, Xing G L, Ben T, Valtcheva V, Qiu S L. J. Am. Chem. Soc., 2016, 138:7673.
[61] Biswal B P, Chaudhari H D, Banerjee R, Kharul U K. Chem. Eur. J., 2016, 22:4695.
[62] Wang Y, Li J P, Yang Q Y, Zhong C L. ACS Appl. Mater. Interf., 2016, 8:8694.
[63] Yin Z J, Xu S Q, Zhan T G, Qi Q Y, Wu Z Q, Zhao X. Chem. Commun., 2017, 53:1.
[64] Fang Q R, Gu S, Zheng J, Zhuang Z B, Qiu S L, Yan Y S. Angew. Chem., 2014, 126:2922.
[65] 付先彪(Fu X B),喻桂朋(Yu G P).化学进展(Progress in Chemistry), 2016, 28:1006.
[66] Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133:19816.
[67] Liu J L, Hu Y J, Cao J J. Catal. Commun., 2015, 66:91.
[68] Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irleb S, Jiang D L. Chem. Commun., 2014, 50:1292.
[69] Hou Y X, Zhang X M, Sun J S, Lin S, Qi D D, Hong R R, Li D Q, Xiao X, Jiang J Z. Micropor. Mesopor. Mater., 2015,214:108.
[70] Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7:905.
[71] Wang X R, Han X, Zhang J, Wu X W, Liu Y, Cui Y. J. Am. Chem. Soc., 2016, 138:12332.
[72] Dong B, Wang L Y, Zhao, Ge R L, Song X D, Wang Y, Gao Y N. Chem. Commun., 2016, 52:7082.
[73] Sun Q, Aguila B, Perman J, Nguyen N, Ma S Q. J. Am. Chem. Soc., 2016, 138:15790.
[74] Li H, Pan Q Y, Ma Y C, Guan X Y, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. J. Am. Chem. Soc., 2016, 138:14783.
[75] Lin G Q, Ding H M, Chen R F, Peng Z K, Wang B S, Wang C. J. Am. Chem. Soc., 2017, 139:8705.
[76] Miyaura N, Suzuki A. Chem. Rev., 1995,95:2457.
[77] Amatore C, Jutand A, M'Barki M A. Organometallics, 1992, 11:3009.
[78] Amatore C, Jutand A, Suarez A. J. Am. Chem. Soc., 1993,115:9531.
[79] Pachfule P, Panda M K, Kandambeth S, Shivaprasad S M, Díaz D D, Banerjee R. J. Mater. Chem. A, 2014, 2:7944.
[80] Leng W G, Peng Y S, Zhang J Q, Lu H, Feng X, Ge R L, Dong B, Wang B, Hu X P, Gao Y N. Chem.-Eur. J., 2016, 22:9087.
[81] Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5:2789.
[82] Mu M M, Wang Y W, Qin Y T, Yan X L, Li Y, Chen L G. ACS Appl. Mater. Interf., 2017, 9:22856.
[83] Thote J, Aiyappa H B, Deshpande A, Díaz Díaz D, Kurungot S, Banerjee R. Chem. Eur. J., 2014, 20:15961.
[84] Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2008, 47:8826.
[85] Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2009, 48:5439.
[86] Zhang W, Qiu L, Yuan Y, Xie A, Shen Y, Zhu J. J. Hazard. Mater., 2012, 221/222:147.
[87] Zhang Y, Shen X, Feng X, Xia H, Mu Y, Liu X. Chem. Commun., 2016, 52:11088.
[88] Li Z, Zhang Y, Xia H, Mu Y, Liu X. Chem. Comm., 2016, 52:6613.
[89] 丁三元(Ding S Y). 兰州大学博士论文(Doctoral Dissertation of Lanzhou University), 2014.
[90] Ding S, Dong M, Wang Y, Chen Y, Wang H, Su C, Wang W. J. Am. Chem. Soc., 2016, 138:3031.
[91] Zhang C L, Zhang S M, Yan Y H, Xia F, Huang A N, Xian Y Z. ACS Appl. Mater. Interf., 2017, 9:13415.
[92] Wang T, Xue R, Chen H Q, Shi P L, Lei X, Wei Y L, Guo H, Yang W. New J. Chem., 2017, 41:14272.
[93] Lin G, Ding H, Yuan D, Wang B, Wang C. J. Am. Chem. Soc., 2016,138:3302.
[94] Xue R, Guo H, Wang T, Gong L, Wang Y N, Ai J B, Huang D D, Chen H Q, Yang W. Anal. Methods, 2017, 9:3737.
[95] Xie Y, Ding S, Liu J, Wang W, Zheng Q. J. Mater. Chem. C, 2015, 3:10066.
[96] Peng Y W, Huang Y, Zhu Y H, Chen B, Wang L Y, Lai Z C, Zhang Z C, Zhao M T, Tan C L, Yang N L, Shao F W, Han Y, Zhang H. J. Am. Chem. Soc., 2017, 139:8698.
[97] Ding X S, Guo J, Feng X, Honsho Y, Guo J D, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D L. Angew. Chem., 2011, 123:1325.
[98] Feng X, Liu L L, Honsho Y, Saeki A, Seki S, Irle S, Dong Y P, Nagai A, Jiang D L. Angew. Chem., 2012, 51:2618.
[99] Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T. Angew. Chem., 2013, 125:2992.
[100] Koo B T, Berard P G, Clancy P. J. Chem. Theory Comput., 2015, 11:1172.
[101] Ye Y X, Zhang L Q, Peng Q F, Wang G E, Shen Y C, Li Z Y, Wang L H, Ma X L, Chen Q H, Zhang Z J, Xiang S C. J. Am. Chem. Soc., 2015, 137:913.
[102] Ding H M, Li Y H, Hu H, Sun Y M, Wang J G, Wang C X, Wang C, Zhang G X, Wang B S, Xu W, Zhang D Q. Chem. Eur. J., 2014, 20:14614.
[103] Dalapati S, Addicoat M, Jin S B, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D L. Nat. Commun., 2015, 6:7786.
[104] Jin S B, Supur M, Addicoat M, Furukawa K, Chen L, Nakamura T, Fukuzumi S, Irle S, Jiang D L. J. Am. Chem. Soc., 2015, 137:7817.
[105] Hao L, Ning J, Luo B, Wang B, Zhang Y B, Tang Z H, Yang J H, Thomas A, Zhi L J. J. Am. Chem. Soc., 2015, 137:219.
[106] Zha Z Q, Xu L R, Wang Z K, Li X G, Pan Q M, Hu P G, Lei S B. ACS Appl. Mater. Interf., 2015, 7:17837.
[107] Xu F, Xu H, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L. Angew. Chem., 2015, 127:1.
[108] Mulzer C R, Shen L X, Bisbey R P, McKone J R, Zhang N, Abruñ H D, Dichtel W R. ACS Cent. Sci. 2016, 2:667.
[109] Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J. Am. Chem. Soc., 2015, 137:8352.
[110] Bai L Y, Phua S Z F, Lim W Q, Jana A, Luo Z, Tham H J P, Zhao L Z, Gao Q, Zhao Y L. Chem. Commun., 2016,52:4128.
[111] Vyas V S, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz J P, Lotsch B V. Adv. Mater., 2016, 28:8749.
[112] Mitra S, Sasmal H S, Kundu T, Kandambeth S, Illath K, Díaz D D, Banerjee R. J. Am. Chem. Soc., 2017, 139:4513.
[113] Li J, Yang X D, Bai C Y, Tian Y, Li B, Zhang S, Yang X Y, Ding S D, Xia C Q, Tan X Y, Ma L J, Li S J. J. Colloid Interf. Sci., 2015, 437:211.
[114] Wu M X, Chen G, Ma J T, Liu P, Jia Q. Talanta, 2016, 161:350.
[115] Wu M X, Chen G, Liu P, Zhou W H, Jia Q. J. Chromatogr. A, 2016, 1456:34.
[116] Chen Y L, Chen Z L Talanta, 2017, 165:188.
[117] Bao T, Tang P X, Kong D Y, Mao Z K, Chen Z L. J. Chromatogr. A, 2016, 1445:140.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.