English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1154-1158 DOI: 10.7536/PC170414 前一篇   

• 综述 •

光催化耦合微生物同步降解污染物

丁蕊1,2, 赵峰1*   

  1. 1. 中国科学院城市环境研究所 中国科学院城市污染物转化重点实验室 厦门 361021;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2017-04-13 修回日期:2017-07-27 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 赵峰,e-mail:fzhao@iue.ac.cn E-mail:fzhao@iue.ac.cn
  • 基金资助:
    国家重大科学仪器设备开发专项课题(No.2013YQ17058508)和国家自然科学基金面上项目(No.41471260)资助

Intimate Coupling of Photocatalysis and Biodegradation to Synchronously Degrade Pollutants

Rui Ding1,2, Feng Zhao1*   

  1. 1. CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-04-13 Revised:2017-07-27 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Major Scientific Instrument Equipment Development Project (No.2013YQ17058508) and the General Program of National Natural Science Foundation of China (No.41471260).
由于水体中新兴污染物不断增多,如何运用新型处理技术来弥补传统污水处理方法的缺陷已成为当前的研究热点。光催化耦合微生物同步降解污染物(ICPB)在保留生物法处理废水优点的同时,耦合了光催化高效、迅速的特性,可实现对多种污染物质的有效降解,节约了能源和成本,成为水体污染物有效去除的一个重要研究方向。ICPB体系主要由多孔载体、光催化材料及生物膜构成;其主要的工作原理是通过光激发载体上的光催化材料,将水体中难生物降解的污染物转化为可生物降解的物质,同时在载体内部微生物的代谢作用下,将这些污染物的中间降解产物继续矿化。本文根据光催化耦合微生物同步降解污染物体系中的关键构成,归纳总结了载体种类、光催化材料和负载生物的研究进展,探讨了该方法在去除水体污染物中的实际应用,并展望了其将来发展的方向和趋势。
Due to the growing emerging contaminants in water, how to overcome the defect of traditional sewage treatment method with the new technology has become a current research hot spot. Intimate coupling of photocatalysis and biodegradation (ICPB) as a new method of pollutant removal, which contains the advantages of biological treatment and the efficient and rapid characteristics of photocatalytic reactions, has attracted a lot of attention and become an important research field. The system is mainly composed of porous carriers, photocatalytic materials and biofilms. The key principle of ICPB is that bio-recalcitrant pollutants are transformed to biodegradable products by photocatalysis that occurs on the surface of porous carriers. The biodegradable products are simultaneously mineralized by the biofilm that cultivated in the carriers. The bacteria can keep activity even under the harsh light because of the protection of carriers. The combination of photocatalysis and biodegradation has been used to degrade a variety of contaminants with efficiency and rapidity. This technology breaks the traditional concept, which holds the point that photocatalytic reaction and biodegradation must be separated in different reactors, improves the sewage purification ability and saves the cost. This review introduces the different types of carriers, photocatalysts and biofilm, and presents the main applications in purification of sewage and possible development direction and trend in the future.
Contents
1 Introduction
2 The carriers
2.1 Macroporous cellulosic cubes
2.2 Porous ceramic particles
2.3 Polyurethane sponge
3 Photocatalyst materials
3.1 Ultraviolet-light photocatalysts
3.2 Visible-light photocatalysts
4 Biofilm
5 Applications
5.1 Denitrification
5.2 Dechlorination
5.3 Degradation of reactive dyes
5.4 Degradation of antibiotics
6 Conclusion and Outlook

中图分类号: 

()
[1] Zheng Y, Xiao Y, Yang Z H, Wu S, Xu H J, Liang F Y, Zhao F. Process Biochem., 2014, 49(8):1345.
[2] Liang F Y, Xiao Y, Zhao F. Chem. Eng. J., 2013, 218:147.
[3] Onesios K M, Jim T Yu, Bouwer E J. Biodegradation, 2009, 20(4):441.
[4] 李娟(Li J). 西安建筑科技大学硕士论文(Master Dissertation of Xi'an University of Architecture and Technology), 2008.
[5] Wang S H, Zheng Y, Yan W F, Chen L X, Mahadevan G D, Zhao F. J. Hazard. Mater., 2016, 320:393.
[6] Wang L, Liu Y L, Ma J, Zhao F. Water Res., 2016, 88:322.
[7] Yan N, Xia S Q, Xu L K, Zhu J, Zhang Y M, Rittmann B E. Appl. Microbiol. Biot., 2012, 94(2):527.
[8] Zhang Y M, Wang L, Rittmann B E. Appl. Microbiol. Biot., 2010, 86(6):1977.
[9] Yang L H, Zhang Y M, Bai Q, Yan N, Xu H, Rittmann B E. J. Hazard. Mater., 2015, 287:252.
[10] Zhang G G, Zhang J S, Zhang M W, Wang X C. J. Mater. Chem., 2012, 22(16):8083.
[11] Rincón A G, Pulgarin C. Appl. Catal. B-Environ., 2004, 49(2):99.
[12] Chong M N, Jin B, Chow C W K, Saint C. Water Res., 2010, 44(10):2997.
[13] Chang L, Zhang Y M, Gan L, Xu H, Yan N, Liu R, Rittmann B E. Biodegradation, 2014, 25(4):587.
[14] 阎宁(Yan N), 夏四清(Xia S Q), 朱骏(Zhu J), 张永明(Zhang Y M). 环境科学(Environmental Science), 2011, 10:045.
[15] Wang W B, Kirumba G, Zhang Y M, Wu Y Q, Rittmann B E. Biodegradation, 2015, 1:1.
[16] Rittmann B E. 上海师范大学学报(自然科学版) (Journal of Shanghai Normal University(Natural Sciences)), 2014, 43(1):1.
[17] Marsolek M D, Torres C I, Hausner M, Rittmann B E. Biotechnol. Bioeng., 2008, 101(1):83.
[18] Zhang Y M, Pu X J, Fang M M, Zhu J, Chen L J, Rittmann B E. Biodegradation, 2012, 23(4):575.
[19] Li G Z, Park S, Rittmann B E. Water Res., 2012, 46(19):6489.
[20] Buchtmann C, Kies U, Deckwer W D, Hecht V. Biotechnol. Bioeng., 1997, 56(3):295.
[21] Wen D H, Li G Z, Xing R, Park S, Rittmann B E. Appl. Microbiol. Biot., 2012, 95(1):263.
[22] Li G Z, Park S, Kang D W, Brown R K, Rittmann B E. Environ. Sci. Technol., 2011, 45(19):8359.
[23] Wang Z J, Zheng Z Y, Zheng S Q, Chen S L, Zhao F. Journal of Power Sources, 2015, 287:269.
[24] Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M, Bahnemann D W. Chem. Rev., 2014, 114(19):9919.
[25] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S, Hamilton J W, Byrne J A, O'shea K. Appl. Catal. B-Environ., 2012, 125:331.
[26] Zhang L L, Xing Z P, Zhang H, Li Z Z, Wu X Y, Zhang X D, Zhang Y, Zhou W. Appl. Catal. B-Environ., 2016, 180:521.
[27] Lim T H, Kim S D. Chemosphere, 2004, 54(3):305.
[28] Zhou D D, Xu Z X, Dong S S, Huo M X, Dong S S, Tian X D, Cui B, Xiong H F, Li T T, Ma D M. Environ. Sci. Technol., 2015, 49(13):7776.
[29] Yu K, Zhang T. PloS one, 2012, 7(5):e38183.
[30] Adav S S, Chen M Y, Lee D J, Ren N Q. Biotechnol. Bioeng., 2007, 96(5):844.
[31] Itoh K, Tashiro Y, Uobe K, Kamagata Y, Suyama K, Yamamoto H. Appl. Environ. Microb., 2004, 70(4):2110.
[32] Steinle P, Stucki G, Stettler R, Hanselmann K W. Appl. Environ. Microb., 1998, 64(7):2566.
[33] Zhou D D, Dong S S, Shi J L, Cui X C, Ki D W, Torres, Rittmann B E. Chem. Eng. J., 2017, 317:882.
[34] Li G Z, Park S, Rittmann B E. Biotechnol. Bioeng., 2012, 109(4):884.
[35] Sarmah A K, Meyer M T, Boxall A B. Chemosphere, 2006, 65(5):725.
[36] Xiong H F, Zou D L, Zhou D D, Dong S S, Wang J W, Rittmann B E. Chem. Eng. J., 2017, 316:7.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[11] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[14] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[15] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.