English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2540-2560 DOI: 10.7536/PC220332 前一篇   

• 综述 •

无抗生素纳米抗菌剂:现状、挑战与展望

漆晨阳, 涂晶*()   

  1. 武汉理工大学材料复合新技术国家重点实验室 武汉 430070
  • 收稿日期:2022-03-28 修回日期:2022-07-09 出版日期:2022-11-24 发布日期:2022-09-19
  • 通讯作者: 涂晶
  • 基金资助:
    国家自然科学基金项目(22005231); 中央高校基本科研专项资金(武汉理工大学)(2021IVA093); 中央高校基本科研专项资金(武汉理工大学)(2021IVB033)

Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives

Chenyang Qi, Jing Tu()   

  1. State key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology,Wuhan 430070, China
  • Received:2022-03-28 Revised:2022-07-09 Online:2022-11-24 Published:2022-09-19
  • Contact: Jing Tu
  • Supported by:
    National Natural Science Foundation of China(22005231); Fundamental Research Funds for the Central Universities (Wuhan University of Technology)(2021IVA093); Fundamental Research Funds for the Central Universities (Wuhan University of Technology)(2021IVB033)

耐药性细菌和生物膜相关的感染性疾病严重威胁全球公众健康。随着纳米技术在抗菌领域的渗透和发展,研发基于无抗生素的新型纳米抗菌剂在避免耐药性产生以及抗菌治疗方式的选择方面提供更多可能性。本文从细菌耐药性的产生机制出发,阐述利用纳米材料自身独特的理化性质,实现自体抗菌;作为纳米酶,利用类酶活性催化底物产生活性氧簇(ROS)等抗菌;随后讨论了构建随内源性/外源性环境刺激响应,以及协同多种新型治疗方式的智能纳米抗菌剂,实现高效抗菌。最后,提出了目前面临的挑战及临床应用前景,为开发更加安全、高效的纳米抗菌剂提供借鉴。

Drug-resistance bacterial and biofilm-related infectious diseases pose a significant threat to the global public health. Focusing on the drug-resistance mechanisms of bacteria to antibiotics, we aim at presenting the research progress of nanomaterial-based antibacterial agents. This review starts with clarifying nanomaterials with unique physicochemical characteristics, which act as intrinsic antibacterial agents. Subsequently, we discuss nanomaterial-based artificial enzymes, which can kill bacteria with reactive oxygen species (ROS). Furthermore, nanomaterial-based multiple synergetic modality nanoplatforms are constructed to combat infections. These multifunctional antibacterial agents, either microenvironment-oriented or external stimulants responsive, coordinate new treatments for precise medication and integration of diagnoses and treatments. In addition, the challenges and clinical prospects of these nanomaterial-based antibacterial agents are discussed, providing new perspectives of developing safer and more efficient antibacterial agents.

Contents

1 Introduction

2 Drug-resistance mechanisms

3 Antibiotic-free nanomaterial-based antibacterial agents

3.1 Intrinsic antibacterial agents

3.2 Nanozyme

3.3 Intelligent responsive nanomaterial-based antibacterial agents

4 Conclusion and future perspectives

()
图1 根据ISI web of science上搜索主题“nanomaterials”和“antibacterial agent”获得的统计数据(2011—2021)
Fig. 1 The statistics of the paper indexed in the ISI web of science by the topic of “nanomaterials” and “antibacterial agent”
图2 细菌耐药性的产生机制[2,6,40? ~42].(a)浮游细菌的耐药途径和(b)细菌生物膜的形成
Fig. 2 General DR mechanisms[2,6,40? ~42].(a) The DR pathways for planktonic bacteria and (b) Formation of biofilms
图3 纳米抗菌剂的多种抗菌机制[2,6,7,54,55]
Fig. 3 Antibacterial mechanisms of nanomaterials[2,6,7,54,55]
图4 两亲性QC和QCS衍生物均相合成胶束和QCS胶束抗菌、愈合伤口示意图[72]
Fig. 4 Schematic illustration of homogeneous synthesis of micelles with amphiphilic QC and QCS derivatives and QCS micelles for antibacterial and wound healing[72]. Copyright 2022, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 (a) M-Art M制备过程; Fe-Art M中Fe2N6O作为催化中心通过(b)类POD和(c)类HPO催化产生·O2-和HClO; (d) MRSA与Fe-Art M共孵育后的SEM图像; (e)不同Art Ms捕获的MRSA数量; (g)不同Art Ms作用后的活/死细菌比率; (f) V-Art M和(h) Fe-Art M作用于MRSA活/死染色的共聚焦激光扫描显微镜(CLSM)图像的3D重建[81]
Fig. 5 (a) The preparation process of M-Art M; Fe2N6O as a catalytic center in Fe-Art M for the production of·O2-and HClO through (b) POD-like and (c) HPO-like catalytic pathways; (d) SEM images after MRSA co-incubation with Fe-Art M; (e) number of MRSAs captured by different Art Ms; (g) different Art Ms act on live/dead bacteria ratios; 3D reconstructions from confocal laser scanning microscopy (CLSM) images of (f) V-Art M and (h) Fe-Art M when treated with MRSA[81]. Copyright 2021, Springer Nature
图6 (a) L-Arg/GOx@CuBDC的制备和(b)增强协同杀灭细菌的自激活双级联反应机制[83]
Fig. 6 (a) Synthetic process for L-Arg/GOx@CuBDC and (b) the self-activated double-cascade reaction mechanism for enhanced synergistic bacteria killing[83]. Copyright 2020, American Chemical Society
表1 微环境响应型纳米抗菌剂的总结
Table 1 Summary of microenvironment-responsive nanomaterial-based antibacterial agents
图7 (a) pH响应性纳米抗菌剂(rAgNAs)的构建以及机制; (b)不同pH值PBS中rAgNAs的透过率; (c) rAgNAs的表面电荷随pH值的变化; (d) pH=7.4和5.5(n = 3)时的累积Ag+释放量[90]
Fig. 7 (a) The construction and mechanism of pH-responsive nanomaterial-based antibacterial agents (rAgNAs); (b) transmittance of rAgNAs in PBS with different pH values; (c) surface charge of rAgNAs along with changes in the pH value; (d) cumulative silver ion release amount at pH=7.4 and 5.5 (n = 3)[90]. Copyright 2019, American Chemical Society
图8 (a) CuFe5O8 NCs的制备以及(b)抗生物膜和免疫调节机制[102]
Fig. 8 (a) The synthesis process of CuFe5O8NCs and (b) anti-biofilm and immunomodulatory mechanisms[102]. Copyright 2020, American Chemical Society
图9 (a)红光触发的胶束纳米粒子释放NO[129]; (b)可见光介导的PCNO胶束中NO和CO的共释放[130]
Fig. 9 (a) Red light-triggered NO release from micellar nanoparticles[129] Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) visible light-mediated co-release of NO and CO from PCNO micelles[130]. Copyright 2022, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
表2 光衍生的多模式协同抗菌治疗
Table 2 Photo-derived multimodal synergistic antibacterial therapy
Synergistic antibacterial therapy Light(wavelength/power/time) Bacteria/Biofilm(Antibacterial concentration) ref
MoS2-BNN6 NO/PTT 808 nm, 1 W/cm2, 10min Ampr E. coli/E. faecalis/S. aureus(MoS2:200 μg/mL, BNN6:80 μg/mL) 133
SNP-PB NO/PTT 808 nm, 1 W/cm2, 5min S. aureus/E. coli(>2 mg/mL) 134
SNP@MOF@Au-Mal NO/PTT 808 nm, 1.5 W/cm2, 7min P. aeruginosa(80 μg/mL) 135
MPDA@GSNO NO/PTT 808 nm, 0.75 W/cm2, 10min S. aureus/E. coli 143
GNS/HPDA-BNN6 NO/PTT 808 nm, 1.5 W/cm2, 10min S. aureus/E. coli/MRSA(100 μg/mL) 132
α-CD-Ce6-NO-DA NO/PDT 660 nm, 0.2 W/cm2, 1min MRSA biofilms(Ce6:40 μg/mL, NO:80 μg/mL) 144
UCNP@PCN@LA-PVDF NO/PDT 980 nm, 2.5 W/cm2, 5min P. aeruginosa/S. aureus 145
Ce6&CO@FADP CO/PDT 665 nm, 11 W/cm2, 8min S. aureus/E. coli(200 μg/mL)S. aureus/E. coli biofilms(800 μg/mL) 146
Ce6@Arg-ADP NO/PDT 665 nm, 115 mW/cm2, 30min MRSA/E. coli(32 μg/mL); MRSA/E. coli biofilms 125
TPP-HF micelles CO/PDT 650 nm, 26 mW/cm2, 30min S. aureus/MRSA(0.1 g/L)/E. coli 136
MAO+ZI PDT/I 808 nm,1 W/cm2, 10min S. aureus 147
CuTCPP-Fe2O3 PDT/Fe3+/Cu2+ 660 nm, 20min P. gingivalis/F. nucleatum/S. aureus 148
Ti-RP-IR780-RGDC PTT/PDT 808 nm, 0.5 W/cm2, 10min S. aureus biofilms 149
MOF-PDA PTT/PDT 660 nm, 0.7 W/cm2, 20min S. aureus/E. coli 140
Ti-MoS2-IR780-PDA-RGDC PTT/PDT 808 nm, 0.5 W/cm2, 20min S. aureus biofilms 137
UCNPs@PFC-55 PTT/PDT 980 nm, 1.5 W/cm2 E. coli 150
CuS@BSA/rGO-PDA PTT/PDT 808 nm, 1 W/cm2, 10min S. aureus/E. coli 142
CuS@HKUST-PDA PTT/PDT 808 nm, 20min S. aureus/E. coli(300 mg/L) 141
SCN-Zn2+@GO PTT/PDT 808 nm, 1 W/cm2, 10min, 660 nm S. aureus/E. coli(50 μg/mL) 151
ZIF-8-ICG PTT/Zn2+ 808 nm,1 W/cm2,30min MRSA(15.6 μg/mL) 152
ZnO-CNP-TRGL PTT/Zn2+ 808 nm, 2 W/cm2, 5min S. aureus/E. coli(50 μg/mL) 153
HuA@ZIF-8 PTT/Zn2+ 808 nm, 20min S. aureus/E. coli(1000 μg/mL) 154
GNR-PDA@Zn PTT/Zn2+ 808 nm, 1.5 W/cm2, 5min S. aureus/E. coli 155
Au-Ag@SiO2 NCs PTT/Ag+ 808 nm, 1 W/cm2, 5min S. aureus/E. coli(128 μg/mL) 156
Ag-Bi@SiO2 NPs PTT/Ag+ 808 nm,1 W/cm2, 15min MRSA(128 μg/mL)/MRSA biofilms 157
Au/Ag NRs PTT/Ag+ 1064 nm, 0.8 W/cm2, 10min MRSA(100 μM Ag) 158
PB@PDA@Ag PTT/Ag+ 808 nm, 1 W/cm2, 5min S. aureus/MRSA/MRSA biofilms/E. coli/Ampr E. coli(200 μg/mL PB) 159
GSNCs-Cyh PTT/Ag+ 1064 nm, 0.75 W/cm2, 10min MRSA/MDR E. coli 160
C-Zn/Ag PTT/Zn2+/Ag+ 808 nm, 3 W/cm2, 10min S. aureus/E. coli(0.16 mg/mL) 161
CNSs@FeS2 PTT/Fe2+ 808 nm, 2.5 W/cm2, 10min S. aureus/E. coli/S. typhimurium/P. aeruginosa/S. mutants/M. albicans(500 μg/mL) 162
CP@WS2 NFs PTT/CDT 808 nm, 1 W/cm2, 10min S. aureus/E. coli(100 μg/mL) 163
Au/MoO3-x PTT/CDT 808 nm, 1 W/cm2, 10min MRSA(128 μg/mL) 164
RCF PTT/CDT 1064 nm, 0.5 W/cm2, 5min MRSA(256 μg/mL)/S. aureus(256 μg/mL)/E. coli(128 μg/mL) 165
Ni@Co-NC PTT/CDT 808 nm,1 W/cm2, 5min MRSA(62.5 μg/mL) 166
Cu SASs/NPC PTT/CDT 808 nm, 1 W/cm2, 10min E. coli/MRSA(300 μg/mL) 167
AI-MPDA PTT/PDT/NO 808 nm,1 W/cm2, 10min S. aureus biofilms(0.2 mg/mL) 35
GNR@mSiO2-SNO/ICG PTT/PDT/NO 808 nm, 1 W/cm2, 5min P. gingivalis/F. nucleatum/S. gordonii biofilm 168
ICG&CO@G3KBPY PTT/PDT/CO 808 nm, 1 W/cm2, 5min MRSA/MRSA biofilms(150 μg/mL) 169
DNase-AuNCs PTT/PDT/DNase I 808 nm, 2 W/cm2, 10min S. aureus/P. aeruginosa/S. epidermidis/E. coli biofilms(400 μg/mL) 170
MoS2/ICG/Ag PTT/PDT/Ag+ 808 nm, 1 W/cm2, 10min S. aureus(150 μg/mL)/E. coli(250 μg/mL) 171
AgB NDs PTT/PDT/Ag+ 808 nm, 1 W/cm2, 5min MRSA(250 μg/mL) 172
CuFe2O4/GO PTT/PDT/CDT 808 nm, 1 W/cm2, 10min S. aureus/E. coli 173
Ag-PCN@Ti3C2-BC PTT/PDT/Ag+ 780 nm S. aureus/E. coli 174
ZnO/CDots/g-C3N4 PTT/PDT/Zn2+ visible light, 1 W/cm, 15min S. aureus/E. coli(200 μg/mL) 175
CuS/GO PTT/PDT/Cu2+ 0.2 W/cm2, 15min S. aureus/E. coli 176
ZnDMZ PTT/PDT/Zn2+ 660 nm, 0.45 W/cm2, 20min S. aureus 177
MoO3-x NDs PTT/PDT/CDT 808 nm, 2 W/cm2, 20min MRSA/ESBL-producing E. coli(90 μg/mL) 178
ICG-ZnS NPs PTT/H2S/Zn2+ 808 nm, 1 W/cm2, 10min MRSA biofilm(32 μg/mL) 100
DNase-CO@MPDA NPs PTT/CO/DNase I 808 nm, 1 W/cm2, 10min MRSA biofilms(200 μg/mL) 179
Fe3O4@MoS2-Ag PTT/CDT/Ag+ 808 nm, 1 W/cm2, 15min S. aureus/B. subtilis/MRSA/C. albicans 180
SM@CuFeSe2 PTT/CDT/immunity 808 nm, 4 W/cm2, 15min S. aureus 181
FPMLC PTT/carvacrol/LYZ 808 nm, 3 W/cm2, 10min S. aureus/E. coli(100 μg/mL) 182
CuS/Cur PTT/PDT/SDT/Cur/Cu2+ 808 nm, 0.5 W/cm2, 15min S. aureus/E. coli(2 mg/mL) 183
图10 (a)核壳UCNPs@PFC-55的制备和(b)从UCNPs“核”到PFC-55“壳”的RET过程以实现NIR响应的光热和光动力效应[150]
Fig. 10 (a) Fabrication of core-shell UCNPs@PFC-55; (b) the RET process from UCNPs“core” to PFC-55“shell” for achieving NIR-response photothermal and photodynamic effects[150]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图11 (a) RCF纳米杂化物的制备和协同抗菌机制; (b)用RCF (0~1024 μg/mL)处理的MRSA形成的细菌菌落平板照片,有或无NIR照射和H2O2; (c) MRSA在用RCF处理后通过平板计数法测定的不同组中的相应细菌存活率[165]
Fig. 11 (a) Preparation of RCF nanohybrid and the antibacterial mechanism; (b) photographs of bacterial colonies formed by MRSA treated with RCF (0~1024 μg/mL) with or without NIR irradiation and H2O2; (c) the corresponding bacterial viabilities of MRSA after treatment with RCF in different groups determined by the plate counting method[165]. Copyright 2021, American Chemical Society
图12 (a) DNase-CO@MPDA NPs的制备和(b) DNase I参与,CO增强PTT的 MRSA生物膜消除机制[179]
Fig. 12 (a) The preparation of DNase-CO@MPDA NPs; (b) the MRSA biofilm elimination mechanism based on DNase I participation and CO-potentiated PTT[179]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图13 病原体受体膜包覆(112)和(100)面CuFeSe2纳米晶体的制备及抗菌机制[181]
Fig. 13 Fabrication and antibacterial mechanism of pathogen receptor membrane-coated (112)- and (100)-faceted CuFeSe2 nanocrystals[181]. Copyright 2021, American Chemical Society
图14 (a) RBC-HNTM-Pt@Au的合成、声催化机制以及通过高效SDT治疗骨髓炎; (b)不同条件处理后的MRSA菌落数和(c)相应SEM图像及活/死细菌荧光染色图像; (d)不同条件处理后MRSA内蛋白释放量; (e)用US+1-RBC-HNTM-Pt@Au、US+2-RBC-HNTM-Pt@Au和US+3-RBC-HNTM-Pt@Au处理后的MRSA菌落数及(f), (g)细胞活力(1d、3d)[190]
Fig. 14 (a) Synthesis of RBC-HNTM-Pt@Au, sonocatalytic mechanism, and the treatment of osteomyelitis by efficient SDT; (b) number of MRSA colonies treated under different conditions and (c) the corresponding SEM images and fluorescent staining images of live/dead bacteria; (d) the amount of MRSA protein leaked after treatment under different conditions; (e) number of MRSA colonies and (f),(g) cell viability (1 and 3 days) after treatment with US + 1-RBC-HNTM-Pt@Au, US + 2-RBC-HNTM-Pt@Au, and US + 3-RBC-HNTM-Pt@Au[190]. Copyright 2021, American Chemical Society
[1]
Wang Y, Yang Y N, Shi Y R, Song H, Yu C Z. Adv. Mater., 2020, 32(18): 1904106.

doi: 10.1002/adma.201904106     URL    
[2]
Gupta A, Mumtaz S, Li C H, Hussain L, Rotello V M. Chem. Soc. Rev., 2019, 48(2): 415.

doi: 10.1039/C7CS00748E     URL    
[3]
Liu Y, Shi L Q, Su L. Z, van der Mei H C, Jutte P C, Ren Y J, Busscher H J. Chem. Soc. Rev., 2019, 48(2): 428.

doi: 10.1039/C7CS00807D     URL    
[4]
Paterson D L, Harris P N A. Lancet Infect. Dis., 2016, 16(2): 132.

doi: 10.1016/S1473-3099(15)00463-6     pmid: 26603171
[5]
Sommer M O A, Dantas G. Curr. Opin. Microbiol., 2011, 14(5): 556.

doi: 10.1016/j.mib.2011.07.005     URL    
[6]
Makabenta J M V, Nabawy A, Li C H, Schmidt-Malan S, Patel R, Rotello V M. Nat. Rev. Microbiol., 2021, 19(1): 23.

doi: 10.1038/s41579-020-0420-1     URL    
[7]
Pardhi D M, Karaman D S, Timonen J, Wu W, Zhang Q, Satija S, Mehta M, Charbe N, McCarron P A, Tambuwala M M, Bakshi H A, Negi P, Aljabali A A, Dua K, Chellappan D K, Behera A, Pathak K, Watharkar R B, Rautio J, Rosenholm J M. Int. J. Pharm., 2020, 586(30): 119531.

doi: 10.1016/j.ijpharm.2020.119531     URL    
[8]
Willyard C. Nature, 2017, 543: 15.

doi: 10.1038/nature.2017.21550     URL    
[9]
O’Neill J. AMR Review, 2015.
[10]
Plackett B. Nature, 2020, 586: S50.

doi: 10.1038/d41586-020-02884-3     URL    
[11]
Chen B, Li F F, Zhu X K, Xie W, Hu X, Zan M H, Li X K, Li Q Y, Guo S S, Zhao X Z,. Jiang Y A, Cao Z J, Liu W. Biomater. Sci., 2021, 9(3): 826.

doi: 10.1039/D0BM01397H     URL    
[12]
Xu C, Akakuru O U, Ma X H, Zheng J P, Zheng J J, Wu A G. Bioconjugate Chem., 2020, 31(7): 1708.

doi: 10.1021/acs.bioconjchem.0c00297     URL    
[13]
Makvandi P, Wang C Y, Zare E N, Borzacchiello A, Niu L N, Tay F R. Adv. Funct. Mater., 2020, 30(22): 1910021.

doi: 10.1002/adfm.201910021     URL    
[14]
Natan M, Banin E. FEMS Microbiol. Rev., 2017, 41(3): 302.

doi: 10.1093/femsre/fux003     URL    
[15]
P.Linklater D, P.Ivanova E. Nano Today, 2022, 43: 101404.

doi: 10.1016/j.nantod.2022.101404     URL    
[16]
Xie Y Z Y, Liu Y, Yang J C, Liu Y, Hu F P, Zhu K, Jiang X Y. Angew. Chem. Int. Ed., 2018, 57(15): 3958.

doi: 10.1002/anie.201712878     URL    
[17]
Elbourne A, Cheeseman S, Atkin P,. Truong N P, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville C F, Dickey M D, Crawford R J, Kalantar-Zadeh K, Chapman J, Daeneke T, Truong V K. ACS Nano, 2020, 14(1): 802.

doi: 10.1021/acsnano.9b07861     pmid: 31922722
[18]
Mukherjee A, Barman R, Das B, Ghosh S. Chem. Mater. 2021, 33(22): 8656.

doi: 10.1021/acs.chemmater.1c02392     URL    
[19]
Wang L, Li S X, Yin J X, Yang J C, Li Q Z, Zheng W F, Liu S Q, Jiang X Y. Nano Lett., 2020, 20(7): 5036.

doi: 10.1021/acs.nanolett.0c01196     pmid: 32463246
[20]
Jiang Y J, Zheng W, Tran K, Kamilar E, Bariwal J, Ma H, Liang H J. Nat Commun., 2022, 13(1): 197.

doi: 10.1038/s41467-021-27193-9     URL    
[21]
Huang Y Y, Ren J S, Qu X G. Chem. Rev., 2019, 119(6): 4357.

doi: 10.1021/acs.chemrev.8b00672     URL    
[22]
Zhao Y, Meng X Q, Yan X Y, Fan K L. Chin. J. Appl. Chem., 2021, 38(5): 524.
(赵越, 孟祥芹, 阎锡蕴, 范克龙. 应用化学, 2021, 38(5): 524.).

doi: 10.19894/j.issn.1000-0518.210174    
[23]
Wang X H, Shan M Y, Zhang S K, Chen X, Liu W T, Chen J Z, Liu X Y. Adv. Sci., 2022: 2104843.
[24]
Wang Z, Liu X Y, Duan Y W, Huang Y. Biomaterials, 2022, 280: 121249.

doi: 10.1016/j.biomaterials.2021.121249     URL    
[25]
Xiao Y, Xu, M R, lv N, Cheng C, Huang P, Li J B, Hu Y, Sun M. Acta Biomater. 2021, 121: 291.
[26]
Pan X T, Wu N, Tian S Y, Guo J, Wang C H, Sun Y, Huang Z Z, Chen F Z, Wu Q Y, Jing Y, Yin Z, Zhao B H, Xiong X L, Liu H Y, Zhou D S. Adv. Funct. Mater., 2022: 2112145.
[27]
Li W Y, Wen W Y, Wu X P, Zhao Y N, Dai H L. Biomater. Sci., 2020, 8(16): 4492.

doi: 10.1039/D0BM00673D     URL    
[28]
Zhang Y, He Y, Shi C X, Sun M D, Yang C, Li H J, Chen F M, Chang Z M, Zheng X, Wang Z, Dong W F, She J J, Shao D. ACS Sustainable Chem. Eng. 2020, 8(3): 1695.

doi: 10.1021/acssuschemeng.9b07576     URL    
[29]
Tu J, Boyle A L, Friedrich H, Bomans P H H, Bussmann J, Sommerdijk N A J M, Jiskoot W, Kros A. ACS Appl. Mater. Interfaces, 2016, 8(47): 32211.

doi: 10.1021/acsami.6b11324     URL    
[30]
Huang T, Holden J A, Reynolds E C, Heath D E, O’Brien-Simpson N M, O’Connor A J. ACS Appl. Mater. Interfaces, 2020, 12(50): 55696.

doi: 10.1021/acsami.0c17550     URL    
[31]
Dong Y L, Zhao S Y, Wang C R, Liu W S, Zhang Y M, Deng L D, Zhang J H, Huang P H, Wang W W, Dong A J. J. Mater. Chem. B, 2021, 9(2): 357.

doi: 10.1039/D0TB02233K     URL    
[32]
Li H, Wang P L, Guo W B, Huang X M, Tian X H, Wu G R, Xu B, Li F F, Yan C, Liang X J, Lei H M. ACS Nano, 2019, 13(6): 6770.

doi: 10.1021/acsnano.9b01346     URL    
[33]
Huo J J, Jia Q Y, Huang H, Zhang J, Li P, Dong X C, Huang W. Chem. Soc. Rev., 2021, 50(15): 8762.

doi: 10.1039/D1CS00074H     URL    
[34]
Ran B, Wang Z K, Cai W L, Ran L, Xia W X, Liu W J, Peng X J. J. Am. Chem. Soc. 2021, 143(43): 17891.

doi: 10.1021/jacs.1c08679     URL    
[35]
Yuan Z, Lin C C, He Y, Tao B L, Chen M W, Zhang J X, Liu P, Cai K Y. ACS Nano, 2020, 14(3): 3546.

doi: 10.1021/acsnano.9b09871     pmid: 32069025
[36]
Jia C Y, Guo Y X, Wu F G. Small, 2022, 18(6): 2103868.

doi: 10.1002/smll.202103868     URL    
[37]
Duan S, Wu R N, Xiong Y H, Ren H M, Lei C Y, Zhao Y Q, Zhang X Y, Xu F J. Prog. Mater. Sci., 2022, 125: 100887.

doi: 10.1016/j.pmatsci.2021.100887     URL    
[38]
Clatworthy A E, Pierson E, Hung D T. Nat. Chem. Biol., 2007, 3(9): 541.

pmid: 17710100
[39]
Li X S, Bai H T, Yang Y C, Yoon J Y, Wang S, Zhang X. Adv. Mater., 2019, 31(5): 1805092.
[40]
Qi Y, Ren S S, Che Y, Ye J W, Ning G L. Acta Chim. Sinica, 2020, 78(7): 613.

doi: 10.6023/A20040126    
(齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲. 化学学报, 2020, 78(7): 613.).

doi: 10.6023/A20040126    
[41]
Walsh C. Nature, 2000, 406(6797): 775.

doi: 10.1038/35021219     URL    
[42]
Rabin N, Zheng Y, Opoku-Temeng C, Du Y X, Bonsu E, Sintim H O. Future Med. Chem., 2015, 7(4): 493.

doi: 10.4155/fmc.15.6     pmid: 25875875
[43]
Singh B N, Prateeksha, Upreti D K, Singh B R, Defoirdt T, Gupta V K, Souza A O D, Singh H B, Barreira J C M, Ferreira I C F R, Vahabi K. Crit. Rev. Biotechnol., 2017, 37(4): 525.

doi: 10.1080/07388551.2016.1199010     URL    
[44]
Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Science, 2002, 295(5559): 1487.

pmid: 11859186
[45]
Oubekka S D, Briandet R, Fontaine-Aupart M P, Steenkeste K. Antimicrob. Agents Chemother., 2012, 56(6): 3349.

doi: 10.1128/AAC.00216-12     pmid: 22450986
[46]
Bjarnsholt T. APMIS, 2013, 121(s136): 1.
[47]
Flemming H C, Wingender J, Szewzyk U, Steinberg P, Rice S A, Kjelleberg S. Nat. Rev. Microbiol., 2016, 14(9): 563.

doi: 10.1038/nrmicro.2016.94     URL    
[48]
Saidin S, Jumat M A, Amin N A A M, Al-Hammadi, A S S. Mater. Sci. Eng., C, 2021, 118:111382.

doi: 10.1016/j.msec.2020.111382     URL    
[49]
Chen Z W, Wang Z Z, Ren J S, Qu X G. Acc. Chem. Res., 2018, 51(3): 789.

doi: 10.1021/acs.accounts.8b00011     URL    
[50]
Wei T, Yu Q, Chen H. Adv. Healthcare Mater., 2019, 8(3): 1801381.

doi: 10.1002/adhm.201801381     URL    
[51]
Gupta D, Singh A, Khan A U. Nanoscale Res. Lett., 2017, 12(1): 454.

doi: 10.1186/s11671-017-2222-6     URL    
[52]
Altun E, Aydogdu M O, Chung E, Ren G G, Homer-Vanniasinkam S, Edirisinghe M. Appl. Phys. Rev., 2021, 8: 041303.

doi: 10.1063/5.0060299     URL    
[53]
Ahmad N, Nordin N A H M, Jaafar J, Ismail A F, Ramli M K N B. J. Environ. Chem. Eng., 2021, 9: 105887.

doi: 10.1016/j.jece.2021.105887     URL    
[54]
Ma W S, Cui Y, Zhao Y Y, Zheng W F, Zhang W, Jiang X Y, Zhang W J. Acta Biophys. Sin., 2010, 26(08): 638.
(马万顺, 崔燕, 赵玉云, 郑文富, 张伟, 蒋兴宇, 张文杰. 生物物理学报, 2010, 26(08): 638).
[55]
Wang L L, Hu C, Shao L Q. Int. J. Nanomed., 2017, 12: 1227.

doi: 10.2147/IJN.S121956     URL    
[56]
Cui J W, Wu D P, Li Z Y, Zhao G A, Wang, J S, Wang L, Niu B X. Ceram. Int., 2021, 47, 15759.

doi: 10.1016/j.ceramint.2021.02.148     URL    
[57]
Ivanova A, Ivanova K, Hoyo J, Heinze T, Sanchez-Gomez S, Tzanov T. ACS Appl. Mater. Interfaces, 2018, 10(4): 3314.

doi: 10.1021/acsami.7b16508     URL    
[58]
Bhatia E, Banerjee R. J. Mater. Chem. B, 2020, 8(22): 4890.

doi: 10.1039/D0TB00158A     URL    
[59]
Xu Q, Chang M L, Zhang Y, Wang E D, Xing M, Gao L, Huan Z G, Guo F, Chang J. ACS Appl. Mater. Interfaces, 2020, 12(28): 31255.

doi: 10.1021/acsami.0c08890     URL    
[60]
Zhang X C, Zhang Z C, Shu Q M, Xu C, Zheng Q Q, Guo Z, Wang C, Hao Z X, Liu X, Wang G Q, Yan W J, Chen H P, Lu C Y. Adv. Funct. Mater. 2021, 31(14): 2008720.

doi: 10.1002/adfm.202008720     URL    
[61]
Ivanova A, Ivanova K, Tied A, Heinze T, Tzanov T. Adv. Funct. Mater., 2020, 30(24): 2001284.

doi: 10.1002/adfm.202001284     URL    
[62]
Lin Y H, Xu J L, Hu J Y, Wang L H, Ong S L, Leadbetter J R, Zhang L H. Mol. Microbiol. 2003, 47(3): 849.

doi: 10.1046/j.1365-2958.2003.03351.x     URL    
[63]
Khalid S J, Ain Q, Khan S J, Jalil A, Siddiqui F M, Ahmad T, Badshah M, Adnan F. Saudi J. Biol. Sci. 2022, 29: 1673.

doi: 10.1016/j.sjbs.2021.10.064     URL    
[64]
Xin Q, Shah H, Nawaz A, Xie W J, Akram M Z, Batool A, Tian L Q, Jan S U, Boddula R, Guo B D, Liu, Q, Gong J R. Adv. Mater., 2019, 31(45): 1804838.

doi: 10.1002/adma.201804838     URL    
[65]
Wang H J, Song Z Y, Gu J J, Li S J, Wu Y, Han H Y. ACS Biomater. Sci. Eng., 2019, 5(9): 4739.

doi: 10.1021/acsbiomaterials.9b00583     URL    
[66]
Wang Y, Zhao Y N, Wu J L, Li M, Tan J, Fu W S, Tang H, Zhang P. Nano Lett., 2021, 21(22): 9433.

doi: 10.1021/acs.nanolett.1c02697     pmid: 34752115
[67]
Song Z Y, Wang H J, Wu Y, Gu J J, Li S J, Han H Y. ACS Omga, 2018, 3(10):14517.
[68]
Liang J S, Zeng J M, Li J J, She J Q, Tan R X, Liu B. Progress in Chemistry, 2019, 31(9): 1263.
(梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 化学进展, 2019, 31(9): 1263.).

doi: 10.7536/PC190222    
[69]
Zhang H, Liu J, Cui K, Jiang T, Ma Z. Progress in Chemistry, 2019, 31(5): 681.

doi: 10.7536/PC180930    
(张浩, 刘静, 崔崑, 姜涛, 马志. 化学进展, 2019, 31(5): 681.).

doi: 10.7536/PC180930    
[70]
Li H, Zhao Y Y, Peng H N. Progress in Chemistry, 2018, 30(8): 1228.
(李红, 赵媛媛, 彭浩南. 化学进展, 2018, 30(8): 1228.).

doi: 10.7536/PC180201    
[71]
Guo L X, Wang H P, Wang Y X, Liu F, Feng L H. ACS Appl. Mater. Interfaces, 2020, 12(19): 21254.

doi: 10.1021/acsami.9b19921     URL    
[72]
Xie F, Jiang L, Xiao X M, Lu Y W, Liu R H, Jiang W, Cai J. Small, 2022, 18(12):2104885.

doi: 10.1002/smll.202104885     URL    
[73]
Mei L Q, Zhu S, Liu Y P, Yin W Y, Gu Z J, Zhao Y L. Chem. Eng. J., 2021, 418: 129431.

doi: 10.1016/j.cej.2021.129431     URL    
[74]
Gao L Z, Zhuang J, Zie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X Y. Nature Nanotech., 2007, 2(9): 577.

doi: 10.1038/nnano.2007.260     URL    
[75]
Ali A, Ovais M, Zhou H G, Rui Y K, Chen C Y. Biomaterials, 2021, 275: 120951.

doi: 10.1016/j.biomaterials.2021.120951     URL    
[76]
Fan X, Yang F, Nie C X, Ma L, Cheng C, Haag R. Adv. Mater., 2021, 33(33): 2100637.

doi: 10.1002/adma.202100637     URL    
[77]
Shan J Y, Li X, Yang K L, Xiu W J, Wen Q R, Zhang Y Q, Yuwen L H, Weng L X, Teng Z G, Wang L H. ACS Nano, 2019, 13(12): 13797.

doi: 10.1021/acsnano.9b03868     URL    
[78]
Tasia W, Lei C, Cao Y X, Ye Q S, He Y, Xu C. Nanoscale, 2020, 12(4): 2328.

doi: 10.1039/C9NR08467C     URL    
[79]
Liu Z W, Wang F M, Ren J S, Qu X G. Biomaterials, 2019, 208: 21.

doi: 10.1016/j.biomaterials.2019.04.007     URL    
[80]
Wu K l, Zhu D D, Dai X L, Wang W N, Zhong X Y, Fang Z B, Peng C, Wei X W, Qian H S, Chen X L, Wang X W, Zha Z B, Cheng L. Nano Today, 2022, 43: 101380.

doi: 10.1016/j.nantod.2022.101380     URL    
[81]
Long Y P, Li L, Xu T, Wu X Z, Gao Y, Huang J B, He C, Ma T, Ma L, Cheng C, Zhao C S. Nat Commun., 2021, 12(1): 6143.

doi: 10.1038/s41467-021-26456-9     URL    
[82]
Gaut J P, Yeh G C, Tran H D, Byun J, Henderson J P, Richter G M, Brennan M L, Lusis A J, Belaaouaj A, Hotchkiss R S, Heinecke J W. Proc Natl Acad Sci U S A., 2001, 98(21): 11961.

pmid: 11593004
[83]
Cheng X Q, Zhang S, Liu H H, Chen H M, Zhou J H, Chen Z W, Zhou X, Xie Z X, Kuang Q, Zheng N S. ACS Appl Mater Interfaces, 2020, 12(33): 36996.

doi: 10.1021/acsami.0c12159     URL    
[84]
Zhang Y, Lai L G, Liu Y J, Chen B N, Yao J, Zheng P W, Pan Q S, Zhu W F. ACS Appl Mater Interfaces, 2022, 14(5): 6453.

doi: 10.1021/acsami.1c23808     URL    
[85]
Wang Y J, Huang X L, Chen J J, Liang Y B, Xiong M H. Mater. Rep., 2019, 33(01): 5.
(王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 材料导报, 2019, 33(01): 5.).
[86]
Wang D B W, Kuzma M L, Lan X Y, He T C, Dong C, Liu Z W, Yang J. Adv. Drug Delivery Rev., 2021, 179: 114036.

doi: 10.1016/j.addr.2021.114036     URL    
[87]
Gao Y F, Wang J, Chai M Y, Li X, Deng Y Y, Jin Q, Ji J. ACS Nano, 2020, 14(5): 5686.

doi: 10.1021/acsnano.0c00269     URL    
[88]
Ji H W, Dong K, Yan Z Q, Ding C, Chen Z W, Ren J S, Qu X G. Small, 2016, 12(45): 6200.

doi: 10.1002/smll.201601729     URL    
[89]
Wang J H, Chen X Y, Zhao Y, Yang Y M, Wang W J, Wu C, Yang B Z, Zhang Z T, Zhang L S, Liu Y, Du X C, Li W F, Qiu L, Jiang P J, Mou X Z, Li Y Q. ACS Nano, 2019, 13(10): 11686.

doi: 10.1021/acsnano.9b05608     URL    
[90]
Wu J H, Li F Y, Hu X, Lu J X, Sun X L, Gao J Q, Ling D S. ACS Cent. Sci., 2019, 5(8): 1366.

doi: 10.1021/acscentsci.9b00359     URL    
[91]
Qiao Z Z, Yao Y, Song S M, Yin M H, Luo J B. J Mater Chem B, 2019, 7(5):830.

doi: 10.1039/C8TB02917B     URL    
[92]
Xie X L, Sun T C, Xue J Z, Miao Z H, Yan X, Fang W W, Li Q, Tang R P, Lu Y, Tang L X, Zha Z B, He T. Adv. Funct. Mater., 2020, 30(17): 2000511.

doi: 10.1002/adfm.202000511     URL    
[93]
Xiu W J, Gan S Y, Wen Q R, Qiu Q, Dai S L, Dong H, Li Q, Yuwen L H, Weng L X, Teng Z G, Mou Y B, Wang L H. Research, 2020, 2020: 9426453.
[94]
Wang C Y, Zhao W, Cao B, Wang Z X, Zhou Q, Lu S Y, Lu L G, Zhan M X, Hu X L. Chem. Mater., 2020, 32(18): 7725.

doi: 10.1021/acs.chemmater.0c02055     URL    
[95]
Qiao Z Z, Yao Y, Song S M, Yin M H, Yang M, Yan D P, Yang L J, Luo J B. J. Mater. Chem. B, 2020, 8(15): 3138.

doi: 10.1039/D0TB00298D     URL    
[96]
Liu M L, He D F, Yang T, Liu W, Mao L, Zhu Y, Wu J, Luo G X, Deng J. J Nanobiotechnology. 2018, 16(1): 23.

doi: 10.1186/s12951-018-0348-z     URL    
[97]
Xu Q, Jiang F, Guo G Y, Wang E D, Younis M R, Zhang Z W B, Zhang F Y, Huan Z g, Fan C, Yang C, Shen H, Chang J. Nano Today, 2021, 41: 101330.

doi: 10.1016/j.nantod.2021.101330     URL    
[98]
Xu X Y, Fan M L, Yu Z H, Zhao Y, Zhang H B, Wang J, Wu M Z, Sun F, Xu X Y, Ding C M, Li J S. Chem. Eng. J., 2022, 429: 132491.

doi: 10.1016/j.cej.2021.132491     URL    
[99]
Zhang W, Zhou Y N, Fan Y T, Cao R, Xu Y Y, Weng Z Z, Ye J, He C, Zhu Y, Wang X L. Adv. Mater. 2022, 34: 2105738.

doi: 10.1002/adma.202105738     URL    
[100]
Zhang Y, Yue T X, Gu W T, Liu A D, Cheng M Y, Zheng H Y, Bao D D, Li F Z, Pao J G. J Nanobiotechnology. 2022, 20(1): 55.

doi: 10.1186/s12951-022-01262-7     URL    
[101]
Li M, Lan X, Han X M, Shi S, Sun H, Kang Y, Dan J, Sun J, Zhang W T, Wang J L. ACS Appl. Mater. Interfaces, 2021, 13(25): 29269.

doi: 10.1021/acsami.1c03409     URL    
[102]
Guo G Y, Zhang H L, Shen H, Zhu C Z, He R K, Tang J, Wang Y, Jiang X Y, Wang J X, Bu W B, Zhang X L. ACS Nano, 2020, 14(10): 13391.

doi: 10.1021/acsnano.0c05255     URL    
[103]
Yang N, Guo H, Cao C Y, Wang X R, Song X J, Wang W J, Yang D L, Xi L, Mou X Z, Dong X C. Biomaterials, 2021, 275: 120918.

doi: 10.1016/j.biomaterials.2021.120918     URL    
[104]
Liu Y N, Lin A G, Liu J W, Chen X, Zhu X F, Gong Y C, Yuan G L, Chen L M, Liu J. ACS Appl. Mater. Interfaces, 2019, 11(30): 26590.

doi: 10.1021/acsami.9b07866     URL    
[105]
Lin X D, Fang Y, Hao Z, Wu H T, Zhao M Y, Wang S, Liu Y Q. Small, 2021, 17(51): 2103303.

doi: 10.1002/smll.202103303     URL    
[106]
Li Z, Lu S, Liu W Z, Dai T, Ke J X, Li X J, Li R F, Zhang Y X, Chen Z, Chen X Y. Angew Chem Int Ed., 2021, 60(35): 19201.

doi: 10.1002/anie.202103943     URL    
[107]
Lin A G, Liu Y N, Zhu X F, Chen X, Liu J W, Zhou Y H, Qin X Y, Liu J. ACS Nano, 2019, 13(12): 13965.

doi: 10.1021/acsnano.9b05766     URL    
[108]
Shi Y T, Cao Y F, Cheng J, Yu W W, Liu M S, Yin J J, Huang C S, Liang X Q, Zhou H C, Liu H B, Yang Z, Fang Y, Wei H, Zhao G H. Adv. Funct. Mater., 2022, 2111148.
[109]
Yan L X, Wang B B, Zhao X, Chen L J, Yan X P. ACS Appl Mater Interfaces, 2021, 13(51): 60955.

doi: 10.1021/acsami.1c21318     URL    
[110]
Zhang L F, Zhang L, Deng H, Li H, Tang W T, Guan L Y, Qiu Y, Donovan M J, Chen Z, Tan W H. Nat. Commun., 2021, 12(1): 2002.

doi: 10.1038/s41467-021-22286-x     URL    
[111]
Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky L, Pani B, Lechpammer M, Vasilyev N, Shatalina E, Rebatchouk D, Mironov A, Fedichev P, Serganov A, Nudler E. Science, 2021, 372(6547): 1169.

doi: 10.1126/science.abd8377     URL    
[112]
Kumari N, Kumar S, Karmacharya M, Dubbu S, Kwon T, Singh V, Chae K H, Kumar A, Cho Y K, Lee I S. Nano Lett., 2021, 21(1): 279.

doi: 10.1021/acs.nanolett.0c03639     pmid: 33306397
[113]
Wei G Q, Yang G, Wang Y, Jiang H Z, Fu Y Y, Yue G, Ju R. Theranostics, 2020, 10(26): 12241.

doi: 10.7150/thno.52729     URL    
[114]
Xu X M, Liu X M, Tan L, Cui Z D, Yang X J, Zhu S L, Li Z Y, Yuan X B, Zheng Y F, Yeung K W K, Chu P K, Wu S L. Acta Biomater., 2018, 77: 352.

doi: 10.1016/j.actbio.2018.07.030     URL    
[115]
Aksoy I, Küçükkeçeci H, Sevgi F, Metin Ö, Patir I H. ACS Appl. Mater. Interfaces, 2020, 12(24): 26822.

doi: 10.1021/acsami.0c02524     URL    
[116]
Wu S M, Xu C, Zhu Y W, Zheng L, Zhang L D, Hu Y, Yu B R, Wang Y G, Xu F J. Adv. Funct. Mater., 2021, 31(33): 2103591.

doi: 10.1002/adfm.202103591     URL    
[117]
Zhang H, Zhu Y N, Li Y, Qi X Y, Yang J, Qi H S, Li Q S, Ma Y M, Zhang Y, Zhang X, Zhang L. Adv. Funct. Mater., 2021, 31(42): 2104799.

doi: 10.1002/adfm.202104799     URL    
[118]
Yang J, Tu J, Lamers G E M, Olsthoorn R C L, Kros A. Adv. Healthcare Mater., 2017, 6(20): 1700759.

doi: 10.1002/adhm.201700759     URL    
[119]
Li R, Chen T T, Pan X L. ACS Nano, 2021, 15(3): 3808.

doi: 10.1021/acsnano.0c09617     URL    
[120]
Tu J, Wang T X, Shi W, Wu G S, Tian X H, Wang Y H, Ge D T, Ren L. Biomaterials, 2012, 33(31): 7903.

doi: 10.1016/j.biomaterials.2012.07.025     URL    
[121]
Bagchi D, Bhattacharya A, Dutta T, Nag S, Wulferding D, Lemmens P, Pal S K. ACS Appl. Bio Mater., 2019, 2(4): 1772.

doi: 10.1021/acsabm.9b00223     URL    
[122]
Chen H, Li S L, Wu M, Kenry, Huang Z M, Lee C S, Liu B. Angew. Chem. Int. Ed. 2020, 59(2): 632.

doi: 10.1002/anie.201907343     pmid: 31670869
[123]
Younis M R, He G, Qu J L, Lin J, Huang P, Xia X H. Adv. Sci., 2021, 8(21): 2102587.

doi: 10.1002/advs.202102587     URL    
[124]
Ren Y W, Han Y J, Li Z Y, Liu X M, Zhu S L, Liang Y Q, Yeung K W K, Wu S L. Bioact. Mater., 2020, 5: 201.
[125]
Zhu J W, Tian J, Yang C, Chen J P, Wu L H, Fan M L, Cai X J. Small, 2021, 17(32): 2101495.

doi: 10.1002/smll.202101495     URL    
[126]
Fei Y, Wu J B, An H W, Zhu K, Peng B, Cai J Q, Zhang Y H, Li L L, Wang H, Huang Z J. J. Med. Chem., 2020, 63(17): 9127.

doi: 10.1021/acs.jmedchem.9b01832     URL    
[127]
Park D, Kim J, Lee Y M, Park J, Kim W J. Adv. Healthcare Mater., 2016, 5(16): 2019.

doi: 10.1002/adhm.201600150     URL    
[128]
He Q J, Chen D Y, Fan M J. J. Inorg. Mater., 2018, 33(8): 811.

doi: 10.15541/jim20170529     URL    
(何前军, 陈丹阳, 范明俭. 无机材料学报, 2018, 33(8): 811.)

doi: 10.15541/jim20170529    
[129]
Shen Z Q, Zheng S Q, Xiao S Y, Shen R, Liu S Y, Hu J M. Angew Chem Int Ed., 2021, 60(37): 20452.

doi: 10.1002/anie.202107155     URL    
[130]
Gao L, Cheng J, Shen Z Q, Zhang G Y, Liu S Y, Hu J M. Angew. Chem. Int. Ed., 2022, 61(3): e202112782.
[131]
Ren Y W, Liu H P, Liu X M, Zheng Y F, Li Z Y, Li C Y, Yeung K W K, Zhu S L, Liang Y Q, Cui Z D, Wu S L. Cell Rep. Phys. Sci. 2020, 1(11): 100245.
[132]
Liang Z Y, Liu W K, Wang Z Q, Zheng P L, Liu W, Zhao J F, Zhong Y L, Zhang Y, Lin J, Xue W, Yu S M. Acta Biomater., 2022.
[133]
Gao Q, Zhang X, Yin W Y, Ma D Q, Xie C J, Zheng L R, Dong X H, Mei L Q, Yu J, Wang C Z, Gu Z J, Zhao Y L. Small, 2018, 14(45): 1802290.

doi: 10.1002/smll.201802290     URL    
[134]
Wang W Y, Ding D J, Zhou K P, Zhang M, Zhang W F, Yan F, Cheng N. J. Mater. Sci. Technol., 2021, 93: 17.

doi: 10.1016/j.jmst.2021.03.037     URL    
[135]
Wu Y, Deng G Y, Jiang K, Wang H J, Song Z Y, Han H Y. Biomaterials, 2021, 268: 120588.

doi: 10.1016/j.biomaterials.2020.120588     URL    
[136]
Cheng J, Gan G H, Shen Z Q, Gao L, Zhang G Y, Hu J M. Angew Chem Int Ed., 2021, 60(24): 13513.

doi: 10.1002/anie.202104024     URL    
[137]
Li M, Li L Q, Su K, Liu X M, Zhang T J, Liang Y Q, Jing D D, Yang X J, Zheng D, Cui Z D, Li Z Y, Zhu S L, Yeung K W K, Zheng Y F, Wang X B, Wu S L. Adv. Sci., 2019, 6(17): 1900599.

doi: 10.1002/advs.201900599     URL    
[138]
Yuan Z, Tao B L, He Y, Liu J, Liu C C, Shen X K, Ding Y, Yu Y L, Mu C Y, Liu P, Cai K Y. Biomaterials, 2019, 217: 119290.

doi: 10.1016/j.biomaterials.2019.119290     URL    
[139]
Huang B, Tan L, Liu X M, Li J, Wu S L. Bioact. Mater., 2019, 4: 17.

doi: 10.1016/j.bioactmat.2018.11.002     pmid: 30533553
[140]
Han D L, Li Y, Yeung K W K, Zheng Y F, Cui Z D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. J. Mater. Sci. Technol., 2021, 61: 83.
[141]
Han D L, Yu P L, Liu X M, Xu Y D, Wu S L. Rare Met., 2022, 41(2): 663.

doi: 10.1007/s12598-021-01786-1     URL    
[142]
Zhang Z J, Wang Y K, Teng W S Y, Zhou X Z, Ye Y X, Zhou H, Sun H X, Wang F Q, Liu A, Lin P, Cui W G, Yu X H, Wu Y, Ye Z M. Biomaterials, 2021, 274: 120853.

doi: 10.1016/j.biomaterials.2021.120853     URL    
[143]
Xu K, Yuan Z, Ding Y, He Y, Li K, Lin C C, Tao B L, Yang Y L, Li X, Liu P, Cai K Y. Appl. Mater. Today, 2021, 24:101155.
[144]
Hu D F, Deng Y Y, Jia F, Jin Q, Ji J. ACS Nano, 2020, 14(1): 347.

doi: 10.1021/acsnano.9b05493     URL    
[145]
Sun J, Fan Y, Ye W, Tian L M, Niu S C, Ming W H, Zhao J, Ren L Q. Chem. Eng. J., 2021, 417: 128049.

doi: 10.1016/j.cej.2020.128049     URL    
[146]
Ma W, Chen X Y, Fu L Q, Zhu J W, Fan M N, Chen J P, Yang C, Yang G Z, Wu L H, Mao G X, Yang X, Mou X Z, Gu Z W, Cai X J. ACS Appl. Mater. Interfaces, 2020, 12(20): 22479.

doi: 10.1021/acsami.0c01967     URL    
[147]
Teng W S Y, Zhang Z J, Wang Y K, Ye Y X, Yinwang E, Liu A, Zhou X Z, Xu J X, Zhou C W, Sun H X, Wang F Q, Zhang L L, Cheng C G, Li P, Wu Y, Gou Z R, Yu X H, Ye Z M. Small, 2021, 17(35): 2102315.

doi: 10.1002/smll.202102315     URL    
[148]
Li J, Song S, Meng J S, Tan L, Liu X M, Zheng Y F, Li Z Y, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Zhang X C, Wu S L. J. Am. Chem. Soc., 2021, 143(37) 15427.

doi: 10.1021/jacs.1c07875     URL    
[149]
Tan L, Li J, Liu X M, Cui Z D, Yang X J, Zhu S L, Li Z Y, Yuan X B, Zheng Y F, Yeung K W K, Pan H B, Wang X B, Wu S L. Adv. Mater., 2018, 30(31): 1801808.

doi: 10.1002/adma.201801808     URL    
[150]
Liu B T, Pan X T, Zhang D Y, Wang R, Chen J Y, Fang H R, Liu T F. Angew. Chem. Int. Ed., 2021, 60(49): 25701.

doi: 10.1002/anie.202110028     URL    
[151]
Li Y, Liu X M, Tan L, Cui Z D, Yang X J, Zheng Y F, Yeung K W K, Chu P K, Wu S L. Adv. Funct. Mater., 2018, 28(30): 1800299.

doi: 10.1002/adfm.201800299     URL    
[152]
Wu B Y, Fu J T, Zhou Y X, Shi Y, Wang J, Feng X Q, Zhao Y T, Zhou G L, Lu C, Quan G L, Pan X, Wu C B. Pharmaceutics, 2019, 11(9): 463.

doi: 10.3390/pharmaceutics11090463     URL    
[153]
Yang Y, Deng Y Y, Huang J B, Fan X, Cheng C, Nie C X, Ma L, Zhao W F, Zhao C S. Adv. Funct. Mater., 2019, 29(33): 1900143.

doi: 10.1002/adfm.201900143     URL    
[154]
Liu Z W, Tan L, Liu X M, Liang Y Q, Zheng Y F, Yeung K W K, Cui Z D, Zhu S L, Li Z Y, Wu S L. Colloids Surf. B, 2020, 188: 110781.

doi: 10.1016/j.colsurfb.2020.110781     URL    
[155]
Yang T T, Wang D H, Liu X Y. J. Mater. Chem. B, 2020, 8(3): 406.

doi: 10.1039/C9TB02258A     URL    
[156]
Wu S M, Li A H, Zhao X Y, Zhang C L, Yu B R, Zhao N N, Xu F J. ACS Appl. Mater. Interfaces, 2019, 11(19): 17177.

doi: 10.1021/acsami.9b01149     URL    
[157]
Cao C Y, Ge W, Yin J J, Yang D L, Wang W J, Song X J, Hu Y L, Yin J, Dong X C. Small, 2020, 16(24): 2000436.

doi: 10.1002/smll.202000436     URL    
[158]
Mei Z H, Gao D Y, Hu D H, Zhou H C, Ma, T, Huang L, Liu X, Zheng R Q, Zheng H R, Zhao P, Zhao J Q, Sheng Z H. Biomaterials, 2020, 251: 120092.

doi: 10.1016/j.biomaterials.2020.120092     URL    
[159]
Tong C Y, Zhong X H, Yang Y J, Liu X, Zhong G W, Xiao C, Liu B, Wang W, Yang X P. Biomaterials, 2020, 243: 119936.

doi: 10.1016/j.biomaterials.2020.119936     URL    
[160]
Qin Z J, Zheng Y K, Du T Y, Wang Y H, Gao H M, Quan J F, Zhang Y, Du Y, Yin L H, Wang X M, Jiang H. Chem. Eng. J., 2021, 414: 128779.

doi: 10.1016/j.cej.2021.128779     URL    
[161]
Yang Y, Wu X Z, He C, Huang J B, Yin S Q, Zhou M, Ma L, Zhao W F, Qiu L, Cheng C, Zhao C S. ACS Appl. Mater. Interfaces, 2020, 12(12): 13698.

doi: 10.1021/acsami.0c01666     URL    
[162]
Xi J Q, An L F, Huang Y L, Jiang J, Wang Y Q, Wei G, Xu Z L, Fan L, Gao L Z. Small, 2021, 17(13): 2005473.

doi: 10.1002/smll.202005473     URL    
[163]
Xie X H, Wang R, Zhang X X, Ren Y R, Du T, Ni Y S, Yan H L, Zhang L, Sun J, Zhang W T, Wang J D. Appl. Catal. B, 2021, 295:120315.

doi: 10.1016/j.apcatb.2021.120315     URL    
[164]
Cao M Y, Chang Z S, Tan J S, Wang X N, Zhang P F, Lin S, Liu J Q, Li A H. ACS Appl Mater Interfaces, 2022, 14(11): 13025.

doi: 10.1021/acsami.1c23676     URL    
[165]
Liu Z W, Zhao X Y, Yu B R, Zhao N N, Zhang C, Xu F J. ACS Nano, 2021, 15(4): 7482.

doi: 10.1021/acsnano.1c00894     URL    
[166]
Fan X, Wu X Z, Yang F, Wang L, Ludwig K, Ma L, Trampuz A, Cheng C, Haag R. Angew. Chem. Int. Ed., 2022, 61(8): e202113833.
[167]
Wang X W, Shi Q Q, Zha Z B, Zhu D D, Zheng L R, Shi L X, Wei X W, Lian L, Wu K L, Cheng L. Bioact. Mater., 2021, 6: 4389.
[168]
Qi M L, Ren X, Li W, Sun Y, Sun X L, Li C Y, Yu S Y, Xu L, Zhou Y M, Song S Y, Dong B, Wang L. Nano Today, 2022, 43: 101447.

doi: 10.1016/j.nantod.2022.101447     URL    
[169]
Cai X J, Tian J, Wu J W, Chen J P, Li L, Yang C, Chen J L, Chen D F. Chem. Eng. J., 2021, 426: 131919.

doi: 10.1016/j.cej.2021.131919     URL    
[170]
Xie Y Z Y, Zheng W F, Jiang X Y. ACS Appl. Mater. Interfaces, 2020, 12(8): 9041.

doi: 10.1021/acsami.9b21777     URL    
[171]
Li H, Gong M H, Xiao J Y, Hai L, Luo Y Z, He L D, Wang Z F, Deng L, He D G. Chem. Eng. J., 2022, 429: 132600.

doi: 10.1016/j.cej.2021.132600     URL    
[172]
Tang H Z, Qu X H, Zhang W K, Chen X, Zhang S T, Xu Y, Yang H T, Wang Y, Yang J P, Yuan W E, Yue B. Adv. Mater., 2022, 34(12): 2107300.

doi: 10.1002/adma.202107300     URL    
[173]
Zhang J C, Gao X Y, Ma D C, He S, Du B W, Yang W Z, Xie K N, Xie L, Deng L. Chem. Eng. J., 2021, 422: 130094.

doi: 10.1016/j.cej.2021.130094     URL    
[174]
Nie X L, Wu S L, Huang F L, Li W, Qiao H, Wang Q Q, Wei Q F. Chem. Eng. J., 2021, 416: 129072.

doi: 10.1016/j.cej.2021.129072     URL    
[175]
Xiang Y M, Zhou Q L, Li Z Y, Cui Z D, Liu X M, Liang Y Q, Zhu S L, Zheng Y F, Yeung K W K, Wu S L. J. Mater. Sci. Technol., 2020, 57: 1.

doi: 10.1016/j.jmst.2020.05.016     URL    
[176]
Lv R, Liang Y Q, Li Z Y, Zhu S L, Cui Z D, Wu S L. Rare Met., 2022, 41(2):639.

doi: 10.1007/s12598-021-01759-4     URL    
[177]
Wang C F, Luo Y, Liu X M, Cui Z D, Zheng Y F, Liang Y Q, Li Z Y, Zhu S L, Lei J, Feng X B, Wu S L. Bioact. Mater., 2022, 13: 200.
[178]
Zhang Y, Li D X, Tan J S, Chang Z S, Liu X Y, Ma W S, Xu Y H. Small, 2021, 17(1): 2005739.

doi: 10.1002/smll.202005739     URL    
[179]
Yuan Z, Lin C C, Dai L L, He Y, Hu J W, Xu K, Tao B L, Liu P, Cai K Y. Small, 2021, 17(13): 2007522.

doi: 10.1002/smll.202007522     URL    
[180]
Wei F, Cui X Y, Wang Z, Dong C C, Li J D, Han X J. Chem. Eng. J., 2021, 408: 127240.

doi: 10.1016/j.cej.2020.127240     URL    
[181]
Hou X, Zeng H, Chi X, Hu X G. Nano Lett. 2021, 21(23): 9966.

doi: 10.1021/acs.nanolett.1c03427     URL    
[182]
Nong W K, Chen Y L, Lv D Y, Yan Y T, Zheng X, Shi X M, Xu Z, Guan W L, Wu J, Guan Y G. Chem. Eng. J., 2022, 431: 134003.

doi: 10.1016/j.cej.2021.134003     URL    
[183]
Liu H P, Li J F, Liu X M, Li Z Y, Zhang Y, Liang Y Q, Zheng Y F, Zhu S L, Cui Z D, Wu S L. ACS Nano, 2021, 15(11): 18505.

doi: 10.1021/acsnano.1c08409     URL    
[184]
Xiao Z M, Zuo W B, Chen L P, Wu L, Liu N, Liu J X, Jin Q Y, Zhao Y L, Zhu X. ACS Appl. Mater. Interfaces, 2021, 13(37): 43925.

doi: 10.1021/acsami.1c10341     URL    
[185]
Pang X, Li D F, Zhu J, Cheng J L, Liu G. Nano-Micro Lett., 2020 12(1): 144.
[186]
Su K, Tan L, Liu X M, Cui Z D, Zheng Y F, Li B, Han Y, Li Z Y, Zhu S L, Liang Y Q, Feng X B, Wang X B, Wu S L. ACS Nano, 2020, 14(2): 2077.

doi: 10.1021/acsnano.9b08686     URL    
[187]
Lei J, Wang C F, Feng X B, Ma L, Liu X M, Luo Y, Tan L, Wu S L, Yang C. Chem. Eng. J., 2022, 435: 134624.

doi: 10.1016/j.cej.2022.134624     URL    
[188]
Pang X, Liu X, Cheng Y, Zhang C, Ren E, Liu C, Zhang Y, Zhu J, Chen X Y, Liu G. Adv. Mater., 2019, 31(35): 1902530.

doi: 10.1002/adma.201902530     URL    
[189]
Song M L, Cheng Y, Tian Y, Chu C C, Zhang C, Lu Z X, Chen X Y, Pang X, Liu G. Adv. Funct. Mater., 2020, 30(43): 2003587.

doi: 10.1002/adfm.202003587     URL    
[190]
Yu Y, Tan L, Li Z Y, Liu X M, Zheng Y F, Feng X B, Liang Y Q, Cui Z D, Zhu S L, Wu S L. ACS Nano, 2021, 15(6): 10628.

doi: 10.1021/acsnano.1c03424     URL    
[191]
Guan W, Tan L, Liu X M, Cui Z D, Zheng Y F, Yeung K W K, Zheng D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. Adv. Mater., 2021, 33(5): 2006047.

doi: 10.1002/adma.202006047     URL    
[192]
Zhang T Q, Huang Z M, Shen J X, Chen G Q, Shen L J, Ai F, Gu Y K, Yao W, Zhang Y Y, Guo R P, Chen M S, Huang J H. Therap Adv Gastroenterol., 2019, 12: 1756284819862966.
[193]
Fu J N, Li Y, Zhang Y, Liang Y Q, Zheng Y F, Li Z Y, Zhu S L, Li C Y, Cui Z D, Wu S L. Adv. Mater., 2021, 33(41): 2102926.

doi: 10.1002/adma.202102926     URL    
[194]
Qiao Y Q, Liu X M, Li B, Han Y, Zheng Y F, Yeung K W K, Li C Y, Cui Z D, Liang Y Q, Li C Y, Zhu S L, Wang X B, Wu S L. Nat Commun., 2020, 11(1): 4446.

doi: 10.1038/s41467-020-18268-0     URL    
[195]
Liu R, Sang L H, Wang T Y, Liu Y H, Wang Z R, Li J, Wang D K. Colloids Surf. B, 2021, 207: 112018.

doi: 10.1016/j.colsurfb.2021.112018     URL    
[196]
Wei S B, Qiao Y Q, Wu Z C, Liu X M, Li Y, Cui Z D, Li C Y, Zheng Y F, Liang Y Q, Li Z Y, Zhu S L, Wang H R, Wang X B, Che R C, Wu S L. Nano Today, 2021, 37: 101090.

doi: 10.1016/j.nantod.2021.101090     URL    
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[7] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[8] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[9] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[10] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[11] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[12] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[13] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.