English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 593-604 DOI: 10.7536/PC170333 前一篇   后一篇

• 综述 •

化学结合力载体在锂硫电池中的应用

吴锋1,2, 赵双义1,2, 卢赟1*, 李健1, 苏岳锋1,2*, 陈来1   

  1. 1. 北京理工大学材料学院环境科学与工程北京市重点实验室 北京 100081;
    2. 北京电动车辆协同创新中心 北京 100081
  • 收稿日期:2017-03-21 修回日期:2017-04-20 出版日期:2017-06-15 发布日期:2017-06-06
  • 通讯作者: 卢赟,e-mail:daisy_lu_2003@126.com;苏岳锋,suyuefeng@bit.edu.cn E-mail:daisy_lu_2003@126.com;suyuefeng@bit.edu.cn

Chemical Bonding Hosts for Lithium-Sulfur Batteries

Feng Wu1,2, Shuangyi Zhao1,2, Yun Lu1*, Jian Li1, Yuefeng Su1,2*, Lai Chen1   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing 100081, China
  • Received:2017-03-21 Revised:2017-04-20 Online:2017-06-15 Published:2017-06-06
  • Contact: 10.7536/PC170333 E-mail:daisy_lu_2003@126.com;suyuefeng@bit.edu.cn
在环境问题日益严峻,化石能源日益枯竭的今天,开发具有高比能的二次电池系统显得尤为重要。锂硫电池以其高理论能量密度和低环境影响的优势成为最有潜力的下一代电化学储能系统之一。然而受制于硫的绝缘性质以及由多硫化锂的溶解所引起的穿梭效应,锂硫电池的实用化进程还面临着诸多困难。为弥补常用的碳质载体对稳定硫电极的物理限制作用的不足,近年来对多硫化物具有强烈化学结合作用的载体材料的应用,显著提升了复合硫电极的综合性能,为锂硫电池正极材料的设计提供了新的思路。本文综述了各种具有化学吸附特性的载体材料在复合硫电极中的应用进展,具体包括:基于极性-极性作用固定多硫化物的金属氧化物、改性的碳质材料、能够与硫发生硫化作用的有机聚合物以及对多硫化物具有路易斯酸碱作用的金属有机骨架,重点阐述了这类载体材料与多硫化物的作用机理,并展望锂硫电池的发展方向。
With the ever-increasing environment problems and insufficient fossil energy, the development of high specific energy secondary battery systems is particularly important. Owing to their overwhelming advantages of high theoretical energy density and low environmental impact, lithium-sulfur batteries are considered as ones of the most promising next generation electrochemical energy storage devices. However, due to the insulating property of sulfur and the shuttle effect associated with the dissolution of the intermediate polysulfides, the practical application of lithium-sulfur battery is facing many challenges. To overcome the limited physical forces of the conventional carbonaceous hosts on sulfur electrode stabilization, the recent applications of host materials with strong chemical bondings to polysulfides have significantly enhanced the comprehensive performance of the composite sulfur electrode, and provide new ideas for the cathode designing of lithium-sulfur batteries. This review summarizes the application of various host materials with specific chemisorption properties and elaborates the function mechanisms between the high efficient host materials and polysulfide intermediates, such as metal oxide and modified carbonaceous materials based on a polar-polar interaction with polysulfides, functionalized organic polymers that rely on sulfurization to anchor sulfur/polysulfides, and metal organic framworks that exhibit Lewis acid-base interactions with polysulfides. This review prospects the development of the lithium-sulfur battery as well.

Contents
1 Introduction
2 The mechanism of chemical bonding between hosts and polysulfide
3 Chemical bonding host materials
3.1 Metal oxide hosts
3.2 Graphene oxide, functionalized graphene hosts
3.3 Element-doped carbon hosts
3.4 Functionalized organic polymer hosts
3.5 Metal organic frameworks hosts
4 Conclusion

中图分类号: 

()
[1] Turner J A. Science, 1999, 285(5428):687.
[2] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4):1167.
[3] Brandt K. Solid State Ionics, 1994, 69(3/4):173.
[4] Ellis B L, Lee K T, Nazar L F. Chem. Mat., 2010, 22(3):691.
[5] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ. Sci., 2011, 4(9):3243.
[6] Tarascon J M, Armand M. Nature, 2001, 414(6861):359.
[7] Manthiram A, Fu Y, Su Y S. Acc. Chem. Res., 2012, 46(5):1125.
[8] Yin Y X, Xin S, Guo Y G, Wan L J. Angew. Chem. Int. Ed., 2013, 52(50):13186.
[9] Ma L, Hendrickson K E, Wei S, Archer L A. Nano Today, 2015, 10(3):315.
[10] Wang D W, Zeng Q, Zhou G, Yin L, Li F, Cheng H M, Gentle I R, Lu G Q M. J. Mater. Chem. A, 2013, 1(33):9382.
[11] Ji X, Nazar L F. J. Mater. Chem., 2010, 20(44):9821.
[12] Kolosnitsyn V, Karaseva E. Russ. J. Electrochem., 2008, 44(5):506.
[13] Wu F, Qian J, Chen R, Zhao T, Xu R, Ye Y, Li W, Li L, Lu J, Amine K. Nano Energy, 2015, 12:742.
[14] Wu F, Ye Y, Chen R, Qian J, Zhao T, Li L, Li W. Nano Lett., 2015, 15(11):7431.
[15] Ji X, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6):500.
[16] Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134(45):18510.
[17] Li Z, Jiang Y, Yuan L, Yi Z, Wu C, Liu Y, Strasser P, Huang Y. ACS Nano, 2014, 8(9):9295.
[18] He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F. ACS Nano, 2013, 7(12):10920.
[19] Jayaprakash N, Shen J, Moganty S S, Corona A, Archer L A. Angew. Chem., 2011, 123(26):6026.
[20] Böttger H F, Kempe P, Cox G, Panchenko A, Janssen N, Petzold A, Thurn A T, Borchardt L, Rose M, Kaskel S. Angew. Chem. Int. Ed., 2013, 52(23):6088.
[21] Schuster J, He G, Mandlmeier B, Yim T, Lee K T, Bein T, Nazar L F. Angew. Chem., 2012, 124(15):3651.
[22] Sun L, Li M, Jiang Y, Kong W, Jiang K, Wang J, Fan S. Nano Lett., 2014, 14(7):4044.
[23] Chen R, Zhao T, Lu J, Wu F, Li L, Chen J, Tan G, Ye Y, Amine K. Nano Letters, 2013, 13(10):4642.
[24] Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Adv. Mater., 2011, 23(47):5641.
[25] Zheng G, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10):4462.
[26] Wu F, Shi L, Mu D, Xu H, Wu B. Carbon, 2015, 86:146.
[27] Wu F, Li J, Su Y, Wang J, Yang W, Li N, Chen L, Chen S, Chen R, Bao L. Nano Letters, 2016, 16(9):5488.
[28] Evers S, Nazar L F. Chem. Commun., 2012, 48(9):1233.
[29] Pang Q, Liang X, Kwok C, Nazar L F. J. Electrochem. Soc., 2015, 162(14):A2567.
[30] Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Engelhard M H, Zhang J G, Liu J. Nano Lett., 2014, 14(5):2345.
[31] Park J H, Choi K M, Lee D K, Moon B C, Shin S R, Song M K, Kang J K. Sci. Rep., 2016, 6:25555.
[32] Wang X, Gao T, Fan X, Han F, Wu Y, Zhang Z, Li J, Wang C. Adv. Funct. Mater., 2016, 26(39):7164.
[33] Wang J, Yang J, Wan C, Du K, Xie J, Xu N. Adv. Funct. Mater., 2003, 13(6):487.
[34] Liu M, Ye F, Li W, Li H, Zhang Y. Nano Research, 2016, 9(1):94.
[35] Song M S, Han S C, Kim H S, Kim J H, Kim K T, Kang Y M, Ahn H J, Dou S, Lee J Y. J. Electrochem. Soc., 2004, 151(6):A791.
[36] Choi Y, Jung B, Lee D, Jeong J, Kim K, Ahn H, Cho K, Gu H. Phys. Scripta, 2007, 2007(T129):62.
[37] Zheng W, Hu X, Zhang C. Electrochem. Solid State Lett., 2006, 9(7):A364.
[38] Evers S, Yim T, Nazar L F. J. Phys. Chem. C, 2012, 116(37):19653.
[39] Li Q, Zhang Z, Zhang K, Xu L, Fang J, Lai Y, Li J. J. Solid State Electr., 2013, 17(11):2959.
[40] Ding B, Shen L, Xu G, Nie P, Zhang X. Electrochim. Acta, 2013, 107:78.
[41] Ji X, Evers S, Black R, Nazar L F. Nat. Commun., 2011, 2:325.
[42] Lee K T, Black R, Yim T, Ji X, Nazar L F. Adv. Energy Mater., 2012, 2(12):1490.
[43] Kim H, Lee J T, Lee D C, Magasinski A, Cho W I, Yushin G. Adv. Energy Mater., 2013, 3(10):1308.
[44] Seh Z W, Li W, Cha J J, Zheng G, Yang Y, Mcdowell M T, Hsu P C, Cui Y. Nat. Commun., 2013, 4:1331.
[45] Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Seh Z W, Cai Q, Li W, Zhou G. Nat. Commun., 2016, 7:11203.
[46] Pang Q, Kundu D, Cuisinier M, Nazar L F. Nat. Commun., 2014, 5:4759.
[47] Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y, Liang C, Zhang W, Cui Y. Nano Lett., 2014, 14(9):5288.
[48] Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. Nat. Commun., 2015, 6:5682.
[49] Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J, Zhang Y. J. Am. Chem. Soc., 2011, 133(46):18522.
[50] Zhang L, Ji L, Glans P A, Zhang Y, Zhu J, Guo J. Phys. Chem. Chem. Phys., 2012, 14(39):13670.
[51] Zhou G, Yin L C, Wang D W, Li L, Pei S, Gentle I R, Li F, Cheng H M. ACS Nano, 2013, 7(6):5367.
[52] Ding B, Yuan C, Shen L, Xu G, Nie P, Lai Q, Zhang X. J. Mater. Chem. A, 2013, 1(4):1096.
[53] Xu H, Deng Y, Shi Z, Qian Y, Meng Y, Chen G. J. Mater. Chem. A, 2013, 1(47):15142.
[54] 李健(Li J),官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F).化学进展(Progress in Chemistry), 2014, 26(7):1233.
[55] Zu C, Manthiram A. Adv. Energy Mater., 2013, 3(8):1008.
[56] Wang Z, Dong Y, Li H, Zhao Z, Wu H B, Hao C, Liu S, Qiu J, Lou X W. Nat. Commun., 2014, 5:5002.
[57] Qiu Y, Li W, Zhao W, Li G, Hou Y, Liu M, Zhou L, Ye F, Li H, Wei Z. Nano Lett., 2014, 14(8):4821.
[58] Sun X G, Wang X, Mayes R T, Dai S. ChemSusChem, 2012, 5(10):2079.
[59] Song J, Xu T, Gordin M L, Zhu P, Lv D, Jiang Y B, Chen Y, Duan Y, Wang D. Adv. Funct. Mater., 2014, 24(9):1243.
[60] Song J, Gordin M L, Xu T, Chen S, Yu Z, Sohn H, Lu J, Ren Y, Duan Y, Wang D. Angew. Chem. Int. Ed., 2015, 54(14):4325.
[61] Peng H J, Hou T Z, Zhang Q, Huang J Q, Cheng X B, Guo M Q, Yuan Z, He L Y, Wei F. Adv. Mater. Interfaces, 2014, 1(7):1400227.DOI:10.1002/admi.201400227.
[62] Zhu P, Song J, Lv D, Wang D, Jaye C, Fischer D A, Wu T, Chen Y. J. Phys. Chem. C, 2014, 118(15):7765.
[63] Tang C, Zhang Q, Zhao M Q, Huang J Q, Cheng X B, Tian G L, Peng H J, Wei F. Adv. Mater., 2014, 26(35):6100.
[64] Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y. J. Mater. Chem. A, 2014, 2(14):5018.
[65] Zhou G, Zhao Y, Manthiram A. Adv. Energy Mater., 2015, 5(9):1402263.
[66] Seredych M, Bandosz T J. J. Mater. Chem. A, 2013, 1(38):11717.
[67] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(46):11496.
[68] Liu Z, Nie H, Yang Z, Zhang J, Jin Z, Lu Y, Xiao Z, Huang S. Nanoscale, 2013, 5(8):3283.
[69] Wu F, Li J, Tian Y, Su Y, Wang J, Yang W, Li N, Chen S, Bao L. Sci. Rep., 2015, 5:13340.
[70] Zhou G, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6:7760.
[71] Yang C P, Yin Y X, Ye H, Jiang K C, Zhang J, Guo Y G. ACS Appl. Mater. Interfaces, 2014, 6(11):8789.
[72] Xie Y, Meng Z, Cai T, Han W Q. ACS Appl. Mater. Interfaces, 2015, 7(45):25202.
[73] Wu F, Qian J, Wu W, Ye Y, Sun Z, Xu B, Yang X, Xu Y, Zhang J, Chen R. Nano Research, 2017, 10(2):426.
[74] Wu F, Qian J, Chen R, Ye Y, Sun Z, Xing Y, Li L. J. Mater. Chem. A, 2016, 4(43):17033.
[75] 马萍(Ma P), 张宝宏(Zhang B H), 徐宇虹(Xu Y H), 巩桂英(Gong G Y).现代化工(Modern Chemical Industry), 2007, 27(3):30.
[76] Li G C, Li G R, Ye S H, Gao X P. Adv. Energy Mater., 2012, 2(10):1238.
[77] Wu F, Chen J, Li L, Zhao T, Chen R. J. Phys. Chem. C, 2011, 115(49):24411.
[78] Li W, Zhang Q, Zheng G, Seh Z W, Yao H, Cui Y. Nano Lett., 2013, 13(11):5534.
[79] Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z, Exarhos G J, Liu J. Adv. Mater., 2012, 24(9):1176.
[80] Zhou W, Yu Y, Chen H, Disalvo F J, Abruñ A H C D. J. Am. Chem. Soc., 2013, 135(44):16736.
[81] Wang J, Yang J, Xie J, Xu N. Adv. Mater., 2002, 14(13/14):963.
[82] Zhang S S. Energies, 2014, 7(7):4588.
[83] Zhang Y, Liu S, Li G, Li G, Gao X. J. Mater. Chem. A, 2014, 2(13):4652.
[84] Ye J, He F, Nie J, Cao Y, Yang H, Ai X. J. Mater. Chem. A, 2015, 3(14):7406.
[85] Yin L, Wang J, Yang J, Nuli Y. J. Mater. Chem., 2011, 21(19):6807.
[86] Yin L, Wang J, Lin F, Yang J, Nuli Y. Energy Environ. Sci., 2012, 5(5):6966.
[87] Doan T N L, Ghaznavi M, Zhao Y, Zhang Y, Konarov A, Sadhu M, Tangirala R, Chen P. J. Power Sources, 2013, 241:61.
[88] Li H, Eddaoudi M, O'keeffe M, Yaghi O M. Nature, 1999, 402(6759):276.
[89] Chen R, Zhao T, Tian T, Cao S, Coxon P R, Xi K, Fairen J D, Vasant K R, Cheetham A K. APL Materials, 2014, 2(12):124109.
[90] Demir C R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Férey G, Tarascon J M. J. Am. Chem. Soc., 2011, 133(40):16154.
[91] Zhou J, Li R, Fan X, Chen Y, Han R, Li W, Zheng J, Wang B, Li X. Energy Environ. Sci., 2014, 7(8):2715.
[92] Wang Z, Li X, Cui Y, Yang Y, Pan H, Wang Z, Wu C, Chen B, Qian G. Cryst. Growth Des., 2013, 13(11):5116.
[93] Zhou J, Yu X, Fan X, Wang X, Li H, Zhang Y, Li W, Zheng J, Wang B, Li X. J. Mater. Chem. A, 2015, 3(16):8272.
[94] Yang Y, Zheng G, Misra S, Nelson J, Toney M F, Cui Y. J. Am. Chem. Soc., 2012, 134(37):15387.
[95] Zhou J, Lin N, Long Cai W, Guo C, Zhang K, Zhou J, Zhu Y, Qian Y. Electrochim. Acta, 2016, 218:243.
[96] Li Z, Yin L. ACS Appl. Mater. Interfaces, 2015, 7(7):4029.
[97] Bao W, Zhang Z, Qu Y, Zhou C, Wang X, Li J. J. Alloys Compd., 2014, 582:334.
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[4] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[5] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[6] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[7] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[8] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[9] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[10] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[11] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.
[12] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[13] 张明明, 樊建芬, 于怡, 闫希亮, 许健. 生物铵转运蛋白对NH3/NH4+作用机理研究[J]. 化学进展, 2015, 27(11): 1658-1664.
[14] 李晓佩, 黄昆, 林洁媛, 徐怡庄, 刘会洲. Hofmeister离子序列及其调控水溶液中大分子溶质行为的作用机制[J]. 化学进展, 2014, 26(08): 1285-1291.
[15] 李健, 官亦标, 傅凯, 苏岳锋, 包丽颖, 吴锋. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(07): 1233-1243.