English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1658-1664 DOI: 10.7536/PC150429 前一篇   后一篇

• 综述与评论 •

生物铵转运蛋白对NH3/NH4+作用机理研究

张明明, 樊建芬*, 于怡, 闫希亮, 许健   

  1. 苏州大学材料与化学化工学部 苏州 215123
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 樊建芬 E-mail:jffan1305@163.com
  • 基金资助:
    国家自然科学基金项目(No.21173154)和国家重点基础研究发展计划(973项目)(No.2012CB825803)资助

Studying on the Mechanisms of NH3/NH4+through Ammonium Transport Proteins

Zhang Mingming, Fan Jianfen*, Yu Yi, Yan Xiliang, Xu Jian   

  1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21173154)and the National Key Basic Research and Development Program of China(973 Program)(No.2012CB825803).
铵转运蛋白广泛存在于细菌、真菌、植物以及动物等各种生命体中。生物铵转运蛋白对NH3/NH4+的传输作用已被广泛研究,然而,对于通过铵转运蛋白疏水性孔腔的物种是带电荷的NH4+离子还是电中性的NH3分子,仍存在很大争议。本文综述了近年来生物铵转运蛋白对NH3/NH4+作用机理的研究进展,主要包括NH3或NH4+的传输及NH3和H+共传输等机理。
Ammonium transport proteins widely exist in various life forms including bacteria, fungi, plants, animals, etc. The transport of NH3/NH4+ through an ammonium transport protein has been widely studied. However, the issue that the ionic NH4+ or the electrically neutral NH3 species truly goes through the hydrophobic pore of an ammonium transport protein remains controversial. This review surveys the progress in studying on the transport mechanisms of NH3/NH4+ through several typical ammonium transport proteins. The main mechanisms include the single transport of NH3 or NH4+, and the cooperative transport of NH3 and H+, etc.

Contents
1 Introduction
2 NH3 transport mechanism
3 NH4+ transport mechanism
4 Cooperative transport of NH3 and H+
5 Other transport mechanisms
6 Conclusion

中图分类号: 

()
[1] Kleiner D. FEMS Microbiol. lett., 1985, 32:87.
[2] Von Wrién N, Merrick M. Molecular Mechanisms Controlling Transmembrane Transport. BER:Springer, 2004. 95.
[3] Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Kramer R, Burkovski A. Microbiology, 2001, 147:135.
[4] Marini A M, Soussi-Boudekou S, Vissers S, Andre B. Mol. Cell. Biol., 1997, 17:4282.
[5] Sohlenkamp C, Wood C C, Roeb G W, Udvardi M K. Plant Physiol., 2002, 130:1788.
[6] Ludewig U, Neuhäuser B, Dynowski M. FEBS Lett., 2007, 581:2301.
[7] Khademi S, O'Connell J, Remis J, Robles-Colmenares Y, Miericke L J, Stroud R M. Science, 2004, 305:1587.
[8] Zheng L, Kostrewa D, Bernèche S, Winkler F K, Li X D. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:17090.
[9] Andrade S L A, Dickmanns A, Ficner R, Einsle O. Proc. Natl. Acad. Sci. U. S. A., 2005, 102:14994.
[10] Lupo D, Li X D, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, Winkler F K. Proc. Natl. Acad. Sci. U. S. A., 2007, 104:19303.
[11] Gruswitz F, Chaudhary S, Ho J D, Schlessinger A, Pezeshki B, Ho C M, Sali A, Westhoff C M, Stroud R M. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:9638.
[12] Javelle A, Lupo D, Li X D, Merrick M, Chami M, Ripoche P, Winkler F K. J. Struct. Biol., 2007, 158:472.
[13] Lamoureux G, Javelle A, Baday S, Wang S, Bernèche S. Transfus. Clin. Biol., 2010, 17:168.
[14] Luzhkov V B, Almlöf M, Nervall M, Åqvist J. Biochemistry, 2006, 45:10807.
[15] Nygaard T P, Alfonso-Prieto M, Peters G H, Jensen M O, Rovira C. J. Phys. Chem. B, 2010, 114:11859.
[16] Akgun U, Khademi S. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:3970.
[17] Ishikita H, Knapp E W. J. Am. Chem. Soc., 2007, 129:1210.
[18] Lin Y, Cao Z, Mo Y. J. Phys. Chem. B, 2009, 113:4922.
[19] Liu Y, Hu X. J. Phys. Chem. A, 2006, 110:1375.
[20] Nygaard T P, Rovira C, Peters G H, Jensen M O. Biophys. J., 2006, 91:4401.
[21] Yang H, Xu Y, Zhu W, Chen K, Jiang H. Biophys. J., 2007, 92:877.
[22] Wang J, Yang H, Zuo Z, Yan X, Wang Y, Luo X, Jiang H, Chen K, Zhu W. J. Phys. Chem. B, 2010, 114:15172.
[23] Wang J, Fulford T, Shao Q, Javelle A, Yang H, Zhu W, Merrick M. PLoS One, 2013, 8:e62745.
[24] Lin Y, Cao Z, Mo Y. J. Am. Chem. Soc., 2006, 128:10876.
[25] Bostick D L, Brooks C L. PLoS Comput. Biol., 2007, 3:e22.
[26] Lide D R. Handbook of Chemistry and Physics. Cleveland, OH:Chemical Rubber Publishing, 2001.
[27] Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron J P. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:17222.
[28] Zidi-Yahiaoui N, Mouro-Chanteloup I, D'Ambrosio A, Lopez C, Gane P, Le Van Kim C, Cartron J P, Colin Y, Ripoche P. Biochem. J., 2005, 391:33.
[29] Ludewig U. Transfus. Clin. Biol., 2006, 13:111.
[30] Mayer M, Schaaf G, Mouro I, Lopez C, Colin Y, Neumann P, Cartron J P, Ludewig U. J. Gen. Physiol., 2006, 127:133.
[31] Neuhäuser B, Dynowski M, Ludewig U. FEBS Lett., 2009, 583:2833.
[32] Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M, Winkler F K. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:5040.
[33] Cao Z, Mo Y, Thiel W. Angew. Chem. Int. Ed., 2007, 119:6935.
[34] Javelle A, Severi E, Thornton J, Merrick M. J. Biol. Chem., 2004, 279:8530.
[35] Zidi-Yahiaoui N, Callebaut I, Genetet S, Le Van Kim C, Cartron J P, Colin Y, Ripoche P, Mouro-Chanteloup I. Am. J. Physiol. Cell Physiol., 2009, 297:C537.
[36] Bostick D L, Brooks C L. Biophys. J., 2007, 92:L103.
[37] Baday S, Wang S, Lamoureux G, Bernèche S. Biochemistry, 2013, 52:7091.
[38] Lamoureux G, Klein M L, Bernèche S. Biophys. J., 2007, 92:L82.
[39] Ludewig U, von Wirén N, Frommer W B. J. Biol. Chem., 2002, 277:13548.
[40] Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P, El Bakkoury M, Marini A M, Andre B, Hamacher T, Boles E, von Wirén N, Frommer W B. J. Biol. Chem., 2003, 278:45603.
[41] Mayer M, Dynowski M, Ludewig U. Biochem. J., 2006, 396:431.
[42] Wood C C, Porée F, Dreyer I, Koehler G J, Udvardi M K. FEBS Lett., 2006, 580:3931.
[43] Mayer M, Ludewig U. Plant Biology, 2006, 8:522.
[44] Neuhäuser B, Dynowski M, Mayer M, Ludewig U. Plant Physiol., 2007, 143:1651.
[45] Søgaard R, Alsterfjord M, Macaulay N, Zeuthen T. Pflügers Arch., 2009, 458:733.
[46] Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Chérif-Zahar B, Planelles G. J. Biol. Chem., 2004, 279:15975.
[47] Wacker T, Garcia-Celma J J, Lewe P, Andrade S L. Proc. Natl. Acad. Sci. U. S. A., 2014, 111:9995.
[48] Nakhoul N L. Am. J. Physiol. Renal Physiol., 2005, 288:F170.
[49] Nakhoul N L, Schmidt E, Abdulnour-Nakhoul S M, Hamm L L. Transfus. Clin. Biol., 2006, 13:147.
[50] Wang S, Orabi E A, Baday S, Bernèche S, Lamoureux G. J. Am. Chem. Soc., 2012, 134:10419.
[51] Javelle A, Lupo D, Zheng L, Li X D, Winkler F K, Merrick M. J. Biol. Chem., 2006, 281:39492.
[52] Hall J A, Kustu S. Proc. Natl. Acad. Sci. U. S. A., 2011, 108:13270.
[53] Ortiz-Ramirez C, Mora S I, Trejo J, Pantoja O. J. Biol. Chem., 2011, 286:31113.
[54] Neuhäuser B, Ludewig U. J. Biol. Chem., 2014, 289:11650.
[55] Neuhäuser B, Dynowski M, Ludewig U. Channels, 2014, 8:496.
[56] Westhoff C M, Ferreri-Jacobia M, Mak D O, Foskett J K. J. Biol. Chem., 2002, 277:12499.
[57] Mak D O D, Dang B, Weiner I D, Foskett J K, Westhoff C M. Am. J. Physiol., 2006, 290:F297.
[58] Ludewig U. J. Physiol., 2004, 559:751.
[59] Westhoff C M, Siegel D L, Burd C G, Foskett J K. J. Biol. Chem., 2004, 279:17443.
[1] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[2] 吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学结合力载体在锂硫电池中的应用[J]. 化学进展, 2017, 29(6): 593-604.
[3] 李晓佩, 黄昆, 林洁媛, 徐怡庄, 刘会洲. Hofmeister离子序列及其调控水溶液中大分子溶质行为的作用机制[J]. 化学进展, 2014, 26(08): 1285-1291.
[4] 徐刚, 姜平元, 苟少华*. 抗肿瘤多核铂配合物的研究[J]. 化学进展, 2012, (9): 1707-1719.
[5] 田圆, 赵倩莹, 胡靖, 周辰, 缪灵, 江建军. 衬底上石墨烯制备及改性研究[J]. 化学进展, 2012, 24(04): 512-522.
[6] 张鹭 侯玉霞 袁会珠 覃兆海. 复合物Ⅲ抑制剂型杀菌剂——结构类型和作用机理*[J]. 化学进展, 2010, 22(09): 1852-1868.
[7] 柴永明,安高军,柳云骐,刘晨光. 过渡金属硫化物催化剂催化加氢作用机理*[J]. 化学进展, 2007, 19(0203): 234-242.
[8] 杨频,高飞,马贵斌. 化学核酸酶及其作用机理[J]. 化学进展, 1997, 9(03): 273-.
[9] 商振华,周良模. 膜亲和色谱的现状、发展和应用[J]. 化学进展, 1995, 7(01): 47-.