English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1942-1959 DOI: 10.7536/PC180405 前一篇   后一篇

• 综述 •

多功能锂硫电池隔膜

杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*   

  1. 中山大学广东省低碳化学与过程节能重点实验室/光电材料与技术国家重点实验室 广州 510275
  • 收稿日期:2018-04-13 修回日期:2018-07-17 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 王拴紧, 孟跃中 E-mail:wangshj@mail.sysu.edu.cn;mengyzh@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51573215,U1301244)资助

Multifunctional Lithium-Sulfur Battery Separator

Kai Yang, Shengnan Zhang, Dongmei Han, Min Xiao, Shuanjin Wang*, Yuezhong Meng*   

  1. The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2018-04-13 Revised:2018-07-17 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51573215, U1301244).
锂硫电池具有远超锂离子电池的高理论比容量(1675 mAh ·g-1),并且兼具硫资源丰富、生产成本低廉以及环境友好等优势。然而,多硫离子的穿梭效应造成金属锂负极钝化、引起电池容量和库仑效率下降、循环稳定性变差等严重问题,限制锂硫电池的实际应用。从正极和负极之间的隔膜层出发,引入多硫离子穿梭的阻挡层被认为是极为有效的研究策略。这些研究策略在缓解多硫离子穿梭、提高活性物质利用效率、延长循环寿命和循环稳定性方面具有显著效果。本文分类综述了近年来锂硫电池隔膜功能化的研究进展,并对未来隔膜功能化的研究趋势进行了预测。
Lithium-sulfur batteries, with the advantages of rich sulfur resources, low production costs, and environmental friendliness, have a high theoretical specific capacity(1675 mAh·g-1). However, polysulfide shuttle causes serious problems such as the passivation of metal lithium anode, the decrease of battery capacity and coulomb efficiency, and hinders its practical applications. It is considered to be an extremely effective strategy to introduce a barrier layer to restrain polysulfide shuttle between the cathode and anode, which presents excellent performance in alleviating polysulfide shuttle, improving the utilization efficiency of active materials and extending cycle life and cycle stability. Herein, the research progress of the functional lithium sulfur battery separators is reviewed. Furthermore, the future research trend is also predicted.
Contents
1 Introduction
2 The principle and configuration of lithium-sulfur batteries
3 Technical challenges of research and application
4 Research development of functional separator
4.1 Functional separator with adsorption
4.2 Functional separator with catalytic function
4.3 Functional separator with electrostatic repulsion
4.4 Functional separator with physical barrier
4.5 Novel multifunctional separator fabrication
4.6 Functional separator for protecting Li metal anode, synergistically
5 Conclusion and outlook

中图分类号: 

()
[1] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2011, 11:19.
[2] Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Chem. Rev., 2014, 114:11751.
[3] Urbonaite S, Poux T, Novák P. Adv. Energy Mater., 2015, 5:1500118.
[4] 易梓琦(Yi Z Q). 华中科技大学博士论文(Doctoral Dissertation of Huazhong University of Science and Technology), 2015.
[5] 王久林(Wang J L). 中国科学院上海微系统与信息技术研究所博士论文(Doctoral Dissertation of Shanghai Institute of Microsystem and Information Technology), 2002.
[6] 李林艳(Li L Y),崔晓兰(Cui X L),单忠强(Shan Z Q),田建华(Tian J H),刘肖燕(Liu X Y). 功能材料(Journal of Functional Materials), 2014, 45:11087.
[7] 苗力孝(Miao L X). 北京理工大学博士论文(Doctoral Dissertation of Beijing Institute of Technology), 2014.
[8] 邓南平(Deng N P),马晓敏(Ma X M),阮艳莉(Ruan Y L),王晓清(Wang X Q),康卫民(Kang W M),程博闻(Cheng B W). 化学进展(Prog.Chem.), 2016, 28:1435.
[9] Seh Z W, Sun Y, Zhang Q, Cui Y. Chem. Soc. Rev., 2016, 45:5605.
[10] Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X. Chem. Commun., 2014, 50:14209.
[11] Sun Z, Xiao M, Wang S, Han D, Song S, Chen G, Meng Y. J. Mater. Chem. A, 2014, 2:15938.
[12] Akridge J R, Mikhaylik Y V, White N. Solid State Ionics, 2004, 175:243.
[13] Shim J, Striebel K A,Cairns E J. J. Electrochem. Soc., 2002, 149:A1321.
[14] Zhang S. Energies, 2012, 5:5190.
[15] Bai S, Liu X, Zhu K, Wu S, Zhou H. Nat. Energy, 2016, 1:16094.
[16] Chang C, Chung S H, Manthiram A. Small, 2016, 12:174.
[17] Chen M, Jiang S, Cai S, Wang X, Xiang K, Ma Z, Song P, Fisher A C. Chem. Eng. J., 2017, 313:404.
[18] Deng N, Kang W, Liu Y, Ju J, Wu D, Li L, Hassan B S, Cheng B. J. Power Sources, 2016, 331:132.
[19] Barchasz C, Molton F, Duboc C, Lepretre J C, Patoux S, Alloin F. Anal. Chem., 2012, 84:3973.
[20] Wild M, O'Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer G J. Energy Environ. Sci., 2015, 8:3477.
[21] Danuta H, Juliusz U. Electric Dry Cells and Storage Batteries. US3043896, 1962.
[22] Allen M J, Tung V C, Kaner R B. Chemical Reviews, 2010, 110:132.
[23] Liu X, Huang J Q, Zhang Q, Mai L. Adv. Mater., 2017, 29:1601759.
[24] Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K, Deng T, Tang H. ChemSusChem, 2016, 9:3023.
[25] Yan B, Li X, Bai Z, Song X, Xiong D, Zhao M, Li D, Lu S. 2017, 338:34.
[26] Wang J L, Yang J, Xie J, Xu N. Adv. Mater., 2002, 14:963.
[27] Wang J L, He Y S, Yang J. Adv. Mater., 2015, 27:569.
[28] Wang J L, Lin F, Jia H, Yang J, Monroe C W, Nuli Y. Angew. Chem. Int. Ed., 2015, 126:10263.
[29] Ji X, Lee K T, Nazar L F. Nat. Mater., 2009, 8:500.
[30] Geng X, Rao M, Li X, Li W. J. Solid State Electrochem., 2013, 17:987.
[31] Li G C, Hu J J, Li G R, Ye S H, Gao X P. J. Power Sources, 2013, 240:598.
[32] Yu M, Ma J, Song H, Wang A, Tian F, Wang Y, Qiu H, Wang R. Energy Environ. Sci., 2016, 9:1495.
[33] Sun Y, Zhao Y, Cui Y, Zhang J, Zhang G, Luo W, Zheng W. Electrochim. Acta, 2017, 239:56.
[34] Tao Y, Wei Y, Liu Y, Wang J, Qiao W, Ling L, Long D. Energy Environ. Sci., 2016, 9:3230.
[35] Zhang J, Shi Y, Ding Y, Zhang W, Yu G. Nano Lett., 2016, 16.
[36] Al Salem H, Babu G, Rao C V, Arava L M. J. Am. Chem. Soc., 2015, 137:11542.
[37] Chang C H, Chung S H, Han P, Manthiram A. Mater. Horiz., 2017, 4:908.
[38] Fanous J, Wegner M, Grimminger J, Andresen Ä, Buchmeiser M R. Chem. Mater., 2012, 23:5024.
[39] Yao H, Yan K, Li W, Zheng G, Kong D, Seh Z W, Narasimhan V K, Liang Z, Cui Y. Energy Environ. Sci., 2014, 7:3381.
[40] Wei H, Ma J, Li B, Zuo Y, Xia D. ACS Appl. Mater. Interfaces, 2014, 6:20276.
[41] Chung S H, Manthiram A. Adv. Funct. Mater., 2015, 24:5299.
[42] Kim H M, Hwang J Y, Manthiram A, Sun Y K. ACS Appl. Mater. Interfaces, 2016, 8:983.
[43] Chung S H, Han P, Manthiram A. ACS Appl. Mater. Interfaces, 2016, 8:4709.
[44] Chung S H, Manthiram A. J. Phys. Chem. Lett., 2014, 5:1978.
[45] Chung S H, Manthiram A. Adv. Mater., 2014, 26:7352.
[46] Liu N, Huang B, Wang W, Shao H, Li C, Zhang H, Wang A, Yuan K, Huang Y Q. ACS Appl. Mater. Interfaces, 2016, 8:16101.
[47] Wang H, Zhang W, Liu H, Guo Z P. Angew. Chem. Int. Ed., 2016, 55:3992.
[48] Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L. Adv. Funct. Mater., 2015, 25:5285.
[49] Tang H, Yao S, Shen X, Xi X, Xiao K. Energy Tech., 2017, 5:623.
[50] Oh C, Yoon N, Choi J, Choi Y, Ahn S, Lee J K. J. Mater. Chem. A, 2017, 5:5750.
[51] Kim J H, Jung G Y, Lee Y H, Kim J H, Lee S Y, Kwak S K, Lee S Y. Nano Lett., 2017, 17:2220.
[52] Zhu J, Ge Y, Kim D, Lu Y, Chen C, Jiang M, Zhang X. Nano Energy, 2016, 20:176.
[53] Zeng P, Huang L, Han Y, Zhang X, Zhang R, Chen Y. ChemElectroChem, 2018, 5:375.
[54] Ma G, Huang F, Wen Z, Wang Q, Hong X, Jin J, Wu X W. J. Mater. Chem. A, 2016, 4:16968.
[55] Evers S, Yim T, Nazar L F. J. Phys. Chem. C, 2012, 116:19653.
[56] Xu Q, Hu G C, Bi H L, Xiang H F. Ionics, 2015, 21:981.
[57] Zhang Z, Lai Y, Zhang Z, Zhang K, Li J. Electrochim. Acta, 2014, 129:55.
[58] Zhu J, Yildirim E, Aly K, Shen J, Chen C, Lu Y, Jiang M, Kim D, Tonelli A E, Pasquinelli M A, Bradford P D, Zhang X. J. Mater. Chem. A, 2016, 4:13572.
[59] Sun W, Ou X, Yue X, Yang Y, Wang Z, Rooney D, Sun K. Electrochim. Acta, 2016, 207:198.
[60] Liu M, Li Q, Qin X, Liang G, Han W, Zhou D, He Y B, Li B, Kang F. Small, 2017, 13:1602539.
[61] Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y. Small, 2016, 8:13638.
[62] Tang H, Yao S, Mi J, Wu X, Hou J, Shen X. Mater. Lett., 2017, 186:127.
[63] Liu N, Ai F, Wang W, Shao H, Zhang H, Wang A, Xu Z J, Huang Y. Electrochim. Acta, 2016, 215:162.
[64] Shao H, Huang B, Liu N, Wang W, Zhang H, Wang A, Wang F, Huang Y Q. J. Mater. Chem. A, 2016, 4:16627.
[65] Xu G, Yan Q B, Wang S, Kushima A, Bai P, Liu K, Zhang X, Tang Z, Li J. Chem. Sci., 2017, 8:6619.
[66] Zhang S S. Inorg. Chem. Front., 2015, 2:1059.
[67] Wu F, Qian J, Chen R, Ye Y, Sun Z, Xing Y, Li L. J. Mater. Chem. A, 2016, 4:17033.
[68] Zhang Z A, Wang G, Lai Y, Li J, Zhang Z, Chen W. J. Power Sources, 2015, 300:157.
[69] Zhou X, Wang P, Zhang Y, Wang L, Zhang L, Zhang L, Xu L, Liu L. J. Mater. Chem. A, 2017, 5:12958.
[70] Cheng X, Wang W, Wang A, Yuan K, Jin Z, Yang Y, Zhao X. RSC Adv., 2016, 6:89972.
[71] Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G. Adv. Energy Mater., 2017, 7:1602876.
[72] Ramakrishnan P, Baek S H, Park Y, Kim J H. Carbon, 2017, 115:249.
[73] Yuan X, Wu L, He X, Zeinu K, Huang L, Zhu X, Hou H, Liu B, Hu J, Yang J. Chem. Eng. J., 2017, 320:178.
[74] Xu J, Su D, Zhang W, Bao W, Wang G. J. Mater. Chem. A, 2016, 4:17381.
[75] Xing L B, Xi K, Li Q, Su Z, Lai C, Zhao X, Kumar R V. J. Power Sources, 2016, 303:22.
[76] Yuan X, Liu B, Hou H, Zeinu K, He Y, Yang X, Xue W, He X, Huang L, Zhu X, Wu L, Hu J, Yang J, Xie J. RSC Adv., 2017, 7:22567.
[77] Zhou G, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6:7760.
[78] Wu F, Li J, Tian Y, Su Y, Wang J, Yang W, Li N, Chen S, Bao L Y. Sci. Rep., 2015, 5:13340.
[79] Pang Q, Tang J, Huang H, Liang X, Hart C, Tam K C, Nazar L F. Adv. Mater., 2015, 27:6021.
[80] Balach J, Singh H K, Gomoll S, Jaumann T, Klose M, Oswald S, Richter M, Eckert J, Giebeler L. ACS Appl. Mater. Interfaces, 2016, 8:14586.
[81] Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Nano Lett., 2016, 16:519.
[82] Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. Adv. Mater., 2016, 28:9551.
[83] Zuo P, Hua J, He M, Zhang H, Qian Z, Ma Y, Du C, Cheng X, Gao Y, Yin G P. J. Mater. Chem. A, 2017, 5:10936.
[84] Balach J, Jaumann T, Muhlenhoff S, Eckert J, Giebeler L. Chem. Commun., 2016, 52:8134.
[85] Ren Y X, Zhao T S, Liu M, Zeng Y K, Jiang H R. J. Power Sources, 2017, 361:203.
[86] Jin Z, Xie K, Hong X, Hu Z, Liu X. J. Power Sources, 2012, 218:163.
[87] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Energy Environ. Sci., 2013, 7:347.
[88] Bauer I, Thieme S, Brückner J, Althues H, Kaskel S. J. Power Sources, 2014, 251:417.
[89] Ma L, Nath P, Tu Z, Tikekar M, Archer L A. Chem. Mater., 2016, 28:5147.
[90] Abbas S A, Ibrahem M A, Hu L H, Lin C N, Fang J, Boopathi K M, Wang P C, Li L J, Chu C W. J. Mater. Chem. A, 2016, 4:9661.
[91] Conder J, Forner-Cuenca A, Gubler E M, Gubler L, Novak P, Trabesinger S. ACS Appl. Mater. Interfaces, 2016, 8:18822.
[92] Abbas S A, Ibrahem M A, Hu L H, Lin C N, Fang J, Boopathi K M, Wang P C, Li L J, Chu C W. J. Mater. Chem. A, 2016, 4:9661.
[93] Li Z, Jiang Q, Ma Z, Liu Q, Wu Z, Wang S Y. RSC Adv., 2015, 5:79473.
[94] Conder J, Urbonaite S, Streich D, Novak P, Gubler L. RSC Adv., 2015, 5:79654.
[95] Yu X, Joseph J, Manthiram A. Mater. Horiz., 2016, 3.
[96] Zeng F, Jin Z, Yuan K, Liu S, Cheng X, Wang A, Wang W, Yang Y S. J. Mater. Chem. A, 2016, 4:12319.
[97] Hao Z, Yuan L, Li Z, Liu J, Xiang J, Wu C, Zeng R, Huang Y. Electrochim. Acta, 2016, 200:197.
[98] Ahn W, Lim S N, Dong U L, Kim K B, Chen Z, Yeon S H, Jin C S. J. Mater. Chem. A, 2015, 3:9461.
[99] Yim T, Han S H, Park N H, Park M S, Lee J H, Shin J, Choi J W, Jung Y, Jo Y N, Yu J S. Adv. Funct. Mater., 2016, 26:7817.
[100] Zhao Y, Liu M, Lv W, He Y B, Wang C, Yun Q, Li B, Kang F, Yang Q H. Nano Energy, 2016, 30:1.
[101] 黄佳琦(Huang J Q), 孙滢智(Sun Y Z), 王云飞(Wang Y F), 张强(Zhang Q). 化学学报(Acta Chimica Sinica), 2017, 75:173.
[102] Jiang Y, Chen F, Gao Y, Wang Y, Wang S, Gao Q, Jiao Z, Zhao B, Chen Z. J. Power Sources, 2017, 342:929.
[103] Peng H J, Wang D W, Huang J Q, Cheng X B, Yuan Z, Wei F, Zhang Q. Adv. Sci., 2016, 3:1500268.
[104] Jin J, Lin C, Zhang W, Wang L, Wang Z G, Zhao W, Duan W, Zhao Z G, Liu B. J. Mater. Chem. A, 2016, 4:5993.
[105] Park J, Yu B C, Park J S, Choi J W, Kim C, Sung Y E, Goodenough J B. Adv. Energy Mater., 2017, 7:1602567.
[106] Ghazi Z A, He X, Khattak A M, Khan N A, Liang B, Iqbal A, Wang J, Sin H, Li L, Tang Z Y. Adv. Mater., 2017, 29:1606817.
[107] Geim A K. Science, 2009, 324:1530.
[108] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438:197.
[109] Galpaya D. Nature, 2015, 448:457.
[110] Li H, Yang X, Wang X, Liu M, Ye F, Wang J, Qiu Y, Li W, Zhang Y. Nano Energy, 2015, 12:468.
[111] Wang C, Wang X, Wang Y, Chen J, Zhou H, Huang Y. Nano Energy, 2015, 11:678.
[112] Wang H, Yang Y, Liang Y, Robinson J T, Li Y, Jackson A, Cui Y, Dai H. Nano Lett., 2011, 11:2644.
[113] Lu Y, Gu S, Guo J, Rui K, Chen C, Zhang S, Jin J, Yang J, Wen Z Y. ACS Appl. Mater. Interfaces, 2017, 9:14878.
[114] Wang X, Wang Z, Chen L. J. Power Sources, 2013, 242:65.
[115] Lin W, Chen Y, Li P, He J, Zhao Y, Wang Z, Liu J, Qi F, Zheng B, Zhou J. J. Electrochem. Soc., 2015, 162:A1624.
[116] Zhuang T Z, Huang J Q, Peng H J, He L Y, Cheng X B, Chen C M, Zhang Q. Small, 2016, 12:381.
[117] Hwang J Y, Kim H M, Shin S, Sun Y K. Adv. Funct. Mater., 2018, 28:1704294.
[118] Ou X, Yu Y, Wu R, Tyagi A, Zhuang M, Ding Y, Abidi I H, Wu H, Wang F, Luo Z. ACS Appl. Mater. Interfaces, 2018, 10:5534.
[119] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6:1322.
[120] Lin C, Zhang W, Wang L, Wang Z, Zhao W, Duan W, Zhao Z, Liu B, Jin J. J. Mater. Chem. A, 2016, 4:5993.
[121] Song J, Su D, Xie X, Guo X, Bao W, Shao G, Wang G X. ACS Appl. Mater. Interfaces, 2016, 8:29427.
[122] Babu G, Masurkar N, Al Salem H, Arava L M. J. Am. Chem. Soc., 2017, 139:171.
[123] Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y. Adv. Mater., 2016, 28:9797.
[124] Fan C Y, Yuan H Y, Li H H, Wang H F, Li W L, Sun H Z, Wu X L, Zhang J P. ACS Appl. Mater. Interfaces, 2016, 8:16108.
[125] Li C, Ward A L, Doris S E, Pascal T A, Prendergast D, Helms B A. Nano Lett., 2015, 15:5724.
[126] Li Z, Han Y, Wei J, Wang W, Cao T, Xu S, Xu Z H. ACS Appl. Mater. Interfaces, 2017, 9:44776.
[127] Yu B C, Park K, Jang J H, Goodenough J B. ACS Energy Lett., 2016, 1:633.
[128] Freitag A, Stamm M, Ionov L. J. Power Sources, 2017, 363:384.
[129] Wang Y, Zhang Z, Haibara M, Sun D, Ma X, Jin Y, Munakata H, Kanamura K. Electrochim. Acta, 2017, 255:109.
[130] Deng N, Wang Y, Yan J, Ju J, Li Z, Fan L, Zhao H, Kang W, Cheng B. J. Power Sources, 2017, 362:243.
[131] Zhu P, Zhu J, Zang J, Chen C, Lu Y, Jiang M, Yan C, Dirican M, Selvan R K, Zhang X W. J. Mater. Chem. A, 2017, 5:15096.
[132] Zhu J, Chen C, Lu Y, Zang J, Jiang M, Kim D, Zhang X W. Carbon, 2016, 101:272.
[133] Bai S, Zhu K, Wu S, Wang Y, Yi J, Ishida M, Zhou H. J. Mater. Chem. A, 2016, 4:16812.
[134] Wu F, Ye Y S, Chen R J, Qian J, Zhao T, Li L, Li W H. Nano Lett., 2015, 15:7431.
[135] Kim J S, Hwang T H, Kim B G, Min J, Choi J W. Adv. Funct. Mater., 2014, 24:5359.
[136] Kim P J H, Seo J, Fu K, Choi J, Liu Z, Kwon J, Hu L B, Paik U. NPG Asia Mater., 2017, 9:e375.
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[4] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[5] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[6] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[7] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[8] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[9] 吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学结合力载体在锂硫电池中的应用[J]. 化学进展, 2017, 29(6): 593-604.
[10] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.
[11] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[12] 李健, 官亦标, 傅凯, 苏岳锋, 包丽颖, 吴锋. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(07): 1233-1243.
[13] 万文博, 蒲薇华, 艾德生. 锂硫电池最新研究进展[J]. 化学进展, 2013, 25(11): 1830-1841.
[14] 梁宵, 温兆银, 刘宇. 高性能锂硫电池材料研究进展[J]. 化学进展, 2011, 23(0203): 520-526.
[15] 赖超, 李国春, 叶世海, 高学平. 高容量硫/碳复合正极材料[J]. 化学进展, 2011, 23(0203): 527-532.
阅读次数
全文


摘要

多功能锂硫电池隔膜