English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1166-1176 DOI: 10.7536/PC190140 前一篇   后一篇

• •

过渡金属硫化物改性锂硫电池正极材料

樊潮江, 燕映霖**(), 陈利萍, 陈世煜, 蔺佳明, 杨蓉   

  1. 西安理工大学化学电源研究所 西安 710048
  • 收稿日期:2019-01-30 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 燕映霖
  • 基金资助:
    国家国际科技合作专项(2015DFR50350); 和国家自然科学基金项目(51702256)

Transition-Metal Sulfides Modified Cathode of Li-S Batteries

Chaojiang Fan, Yinglin Yan**(), Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang   

  1. Chemical Power Research Institute, Xi’an University of Technology, Xi’an 710048, China
  • Received:2019-01-30 Online:2019-08-15 Published:2019-05-30
  • Contact: Yinglin Yan
  • About author:
  • Supported by:
    International Science and Technology Cooperation Program of China(2015DFR50350); National Natural Science Foundation of China(51702256)

锂硫电池(LSBs)由于单质硫正极具有超高能量密度(2600 Wh/kg)和超高理论比容量(1675 mAh/g),且环境友好、成本低廉,被认为是最有前景的储能体系之一。然而,硫正极的绝缘性和严重体积膨胀以及多硫化物(LiPSs)的“穿梭效应”等问题导致活性物质利用率低、循环稳定性差及电化学反应动力不足,严重阻碍了LSBs的商业化发展。最新研究表明,过渡金属硫化物作为载体或添加剂能够显著改善LSBs正极材料的电化学性能。本文从等效/共正极作用、导电性增强作用、LiPSs吸附作用和电化学反应催化作用四个方面梳理了过渡金属硫化物在LSBs正极材料中的改性机理,并指出多元过渡金属硫化物复合﹑纳米结晶和量子化作为增加比表面积和活性位点的方法是过渡金属硫化物用于锂硫电池正极材料的重要发展方向,可大幅提升LSBs的电化学性能。

Lithium-sulfur batteries(LSBs) are considered as one of the most promising energy storage systems due to the ultra-high theoretical energy density(2600 Wh/kg) and ultra-high theoretical specific capacity(1675 mAh/g), environmental friendliness and low-cost of sulfur cathode. However, the insulation of sulfur cathode, the volumetric strain and the “shuttle effect” of polysulfides lead to problems such as low utilization rate of active materials, poor cycle stability and low redox kinetics, which seriously hinder the commercial development of LSBs. Recent studies have shown that transition metal sulfides as host or additives can significantly improve the electrochemical performance of LSBs cathode materials. In this paper, the modification mechanism of transition metal sulfides in LSBs cathode materials is reviewed from four aspects: equivalent/common positive electrode effect, conductivity enhancement, LiPSs adsorption and electrochemical reaction catalysis. It is pointed out that multi-transition metal sulfides composite, nano-crystallization and quantization as important areas for increasing the specific surface area and active sites should be used as transition metal sulfides for lithium-sulfur battery cathode materials, which can greatly improving the electrochemical performance of LSBs.

()
图1 过渡金属硫化物用于LSBs促进作用示意图
Fig. 1 Schematic diagram of the effect of transition metal sulfides on the promotion of LSBs
图2 MoSx作为LSBs硫等效材料的电化学性能:(a)MoS2等效正极充放电曲线,(b)“激活”后MoS2等效正极充放电曲线,(c,d) MoS3等效正极电化学性能曲线[34]
Fig. 2 Electrochemical performance of MoSx as a sulfur equivalent material for LSBs:(a)MoS2 equivalent positive charge and discharge curve,(b)MoS2 equivalent positive charge and discharge curve after “activation”,(c,d) MoS3 equivalent positive electrode electrochemical performance curves[34]
图3 NiS2/FeS用作LSBs等效正极的电化学性能[36]
Fig. 3 Electrochemical performance of NiS2/FeS as equivalent positive electrode of LSBs[36]
图4 NiS2/S共正极材料的表征[39]
Fig. 4 Characterization and performance of NiS2/S cathode[39]
表1 不同过渡金属硫/氧化物电导率对比表
Table 1 Different transition-metal sulfide/oxide conductivity
表2 过渡金属硫化物对LiPSs结合能表
Table 2 Binding energy of transition-metal sulfides to LiPSs
图5 元素对结合能的影响[61]
Fig. 5 Effect of elements on binding energy[61]
图6 过渡金属硫化物对LiPSs的吸附实验图[33,62,63]
Fig. 6 Adsorption test of transition metal sulfides on LiPSs[33,62,63]
图7 金属硫化物对LiPSs的吸附能:(a)Ni3S2对不同LiPSs吸附能的吸附能,(b)不同金属硫化物对不同类型LiPSs吸附能,(c)不同晶面结构硫化物对LiPSs吸附能[35,63]
Fig. 7 Adsorption energy of transition metal sulfides to LiPSs:(a)Adsorption energy of Ni3S2 for adsorption energy of different LiPSs,(b)Adsorption energy of different metal sulfides for different types of LiPSs,(c)Adsorption energy of LiPSs by sulfides of different crystal plane structures[35,63]
图8 TMSs对LiPSs的吸附模型示意图:(a)物理模型[66],(b)化学模型[67]
Fig. 8 Schematic diagram of the adsorption model of TMSs on LiPSs:(a) physical model[66],(b) chemical model[67]
图9 极性导体材料在增强电化学反应动力学中的作用[68,69]
Fig. 9 The role of polar conductor materials in enhancing electrochemical reaction kinetics[68,69]
图10 CoS2添加对氧化还原反应催化作用示意图[33]
Fig. 10 Schematic diagram of the catalytic action of CoS2 on redox reaction[33]
图11 各种金属硫化物表面的锂离子扩散特性及机理分析:(a)氧化过程CV峰值电流与扫描速率的平方根,(b)各种金属硫化物扩散过程的能量分布,(c)不同复合电极在0.5 C下300次循环的循环性能和库仑效率[62]
Fig. 11 Lithium ion diffusion properties on the surface of various metal sulfides with mechanism analysis:(a)oxidation process versus the square root of the scan rates,(b)energy profiles for diffusion processes of Li ion on Ni3S2, SnS2, FeS, CoS2, VS2, TiS2, and graphene and(c)cycling performance and coulombic efficiency of the different composite electrodes at 0.5 C for 300 cycles[62]
表3 TMSs作为LSBs不同组件的数据报告
Table 3 Data report of TMSs as different components in LSBs
[1]
陈兆旭(Chen Z X), 黄玉成(Huang Y C), 李哲(Li Z), 康国俊(Kang G J) . 化学进展( Progress in Chemistry), 2009,21(11):2271.
[2]
Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F . Advanced Energy Materials, 2015,1500212.
[3]
杨蓉(Yang R), 邓坤发(Deng K F), 刘晓艳(Liu X Y), 曲冶(Qu Y), 雷京(Lei J), 任冰(Ren B) . 化工进展( Chemical Industry and Engineering Progress), 2015,34(5):1340.
[4]
万文博(Wan W B), 蒲薇华(Pu W H), 艾德生(Ai D S) . 化学进展( Progress in Chemistry), 2013,25(11):1830.
[5]
李巧乐(Li Q L), 燕映霖(Yan Y L), 杨蓉(Yang R), 陈利萍(Chen L P), 任冰(Ren B), 许云华(Xu Y H) . 化工进展( Chemical Industry and Engineering Progress), 2017,36(9):3353.
[6]
Jeddi K, Ghaznavi M, Chen P . Journal of Materials Chemistry A, 2013,1(8):2769.
[7]
胡素琴(Hu S Q), 杨改(Yang G), 蔡飞鹏(Cai P F), 蒋波(Jiang B) . 化工学报( Journal of Chemical Industry & Technology), 2011,62(2):1.
[8]
Lee J H, Lee H Y, Oh S M, Lee S J, Lee K Y, Lee S M . Journal of Power Sources, 2007,166(1):250.
[9]
Ji X L, Lee K T, Nazar L F . Nature Materials, 2009,8(6):500. https://www.ncbi.nlm.nih.gov/pubmed/19448613

doi: 10.1038/nmat2460     URL     pmid: 19448613
[10]
Xu G L, Xu Y F, Fang J C, Peng X X, Fu F, Huang L, Li J T, Sun S G . Applied Materials & Interfaces, 2013,5(21):10782. https://www.ncbi.nlm.nih.gov/pubmed/24090340

doi: 10.1021/am402970x     URL     pmid: 24090340
[11]
He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F . ACS Nano, 2013,7(12):10920. https://www.ncbi.nlm.nih.gov/pubmed/24229005

doi: 10.1021/nn404439r     URL     pmid: 24229005
[12]
Yan Y L, Wei Y Q, Li Q L, Shi M M, Zhao C, Chen L P, Fan C J, Matthew J C, Yang R, Xu Y H . Journal of Solid State Chemistry, 2019,269:24.
[13]
Gu X X, Lai C . Journal of Materials Research, 2018,33(1):1.
[14]
Li G R, Cai W L, Liu B H, Li Z P . Journal of Power Sources, 2015,294:187.
[15]
Wang L N, Zhao Y, Thomas M L, Byon H R . Advanced Functional Materials, 2014,24(15):2248.
[16]
Zhao Y, Wu W L, Li J X, Xu Z C, Guan L H . Advanced Materials, 2014,26(30):5113. https://www.ncbi.nlm.nih.gov/pubmed/24897930

doi: 10.1002/adma.201401191     URL     pmid: 24897930
[17]
Seh Z W, Yu J H, Li W Y, Hsu P O, Wang H T, Sun Y M, Yao H B, Zhang Q F, Cui Y . Nature Communications, 2014,5; 5017. https://www.ncbi.nlm.nih.gov/pubmed/25254637

doi: 10.1038/ncomms6017     URL     pmid: 25254637
[18]
Zhang Y, Wang L Z, Zhang A Q, Song Y H, Li X F, Feng H, Wu X B, Du P P . Solid State Ionics, 2010,181(17):835.
[19]
Zheng S Y, Chen Y, Xu Y H, Feng Y, Liu Y H, Yang J H, Wang C S . ACS Nano, 2013,7(12):10995. https://www.ncbi.nlm.nih.gov/pubmed/24251957

doi: 10.1021/nn404601h     URL     pmid: 24251957
[20]
Xu Z, You H H, Zhang L, Yang Q H . Carbon, 2017,124:722.
[21]
Wu S P, Ge R Y, Lu M J, Xu R, Zhang Z . Nano Energy, 2015,15:379
[22]
Sun K, Zhang Q, Bock D C, Tong X, Su D, Marschilok A C, Takeuchi K J, Takeuchi E S, Gan H . Journal of the Electrochemical Society, 2017,164(6):A1291.
[23]
Liu Q, Zhang J Y . CrystEngComm, 2013,15(25):5087.
[24]
Zhang Y J, Qu J, Hao S M, Chang W, Ji Q Y, Yu Z Z . ACS Applied Materials & Interfaces, 2017,9(48):41878. https://www.ncbi.nlm.nih.gov/pubmed/29125283

doi: 10.1021/acsami.7b13558     URL     pmid: 29125283
[25]
Lu Y, Li X N, Liang J W, Hu L, Zhu Y C, Qian Y T . Nanoscale, 2016,8(40):17616. https://www.ncbi.nlm.nih.gov/pubmed/27714156

doi: 10.1039/c6nr05626a     URL     pmid: 27714156
[26]
Sun K, Zhao C, Lin C H, Stavitski E, Williams G J, Bai J, Dooryhee E, Attenkofer K, Thieme J, Gan H . Scienpngic Reports, 2017,7(1):12976. https://www.ncbi.nlm.nih.gov/pubmed/29021527

doi: 10.1038/s41598-017-12738-0     URL     pmid: 29021527
[27]
Xu J, Zhang W X, Fan H B, Cheng F L, Su D W, Wang G X . Nano Energy, 2018,51:73.
[28]
Lei T Y, Chen W, Huang J W, Yan C Y, Sun H X, Wang C, Zhang W L, Li Y R, Xiong J . Advanced Energy Materials, 2017,7(4):1601843.
[29]
Cheng Z B, Xiao Z B, Pan H, Wang S Q, Wang R H . Advanced Energy Materials, 2017,8(10):1702337.
[30]
Sreedharan R, Vijayakumari A M, Satpati B, Roy A, Basu P K, Bhattacharjee K . Materials Research Express, 2017,4(11):115012.
[31]
He Y Y, Xu L Q, Li C C, Chen X X, Xu G, Jiao X Y . Nano Research, 2017,11(7):3555.
[32]
Hong X, Liang J, Tang X, Yang H, Li F . Chemical Engineering Science, 2019,194:148.
[33]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei W F, Zhang Q . Nano Letters, 2016,16(1):519. https://www.ncbi.nlm.nih.gov/pubmed/26713782

doi: 10.1021/acs.nanolett.5b04166     URL     pmid: 26713782
[34]
Ye H L, Ma L, Zhou Y, Wang L, Han N, Zhao F P, Deng J, Wu T P, Li Y G, Lu J . Proceedings of the National Academy of Sciences, 2017,114(50):13091.
[35]
Sonia T S, Anjali P, Roshny S, Subramanian K R V, Nair S V, Balakrishnan A . Ceramics International, 2014,40(6):8351.
[36]
Liang K, Marcus K, Zhang S F, Zhou L, Li Y L, Oliveira S T D, Orlovskaya N, Sohn Y H, Yang Y . Advanced Energy Materials, 2017,7(22):1701309.
[37]
Pang Q, Kundu D, Nazar L F . Materials Horizons, 2016,3(2):130.
[38]
Su Y S, Manthiram A . Journal of Power Sources, 2014,270:101.
[39]
Liu L J, Chen Y, Zhang Z F, You X L, Walle M D, Li Y G, Liu Y N . Journal of Power Sources, 2016,325:301.
[40]
Wang Y H, Zhang Y Y, Li H, Peng Y Y, Li J Y, Wang J, Hwang B J, Zhao J B . Chemical Engineering Journal, 2018,332:49.
[41]
Qiu B, Zhao X Y, Xia D G . Journal of Alloys & Compounds, 2013,579(10):372.
[42]
Babu G, Masurkar N, Al Salem H, Arava L M R . Journal of the American Chemical Society, 2016,139(1):171. https://www.ncbi.nlm.nih.gov/pubmed/28001059

doi: 10.1021/jacs.6b08681     URL     pmid: 28001059
[43]
Hong X D, Li S L, Tang X N, Sun Z H, Li F . Journal of Alloys and Compounds, 2018,749:586.
[44]
Liu Z, Zheng X, Luo S L, Xu S Q, Yuan N Y, Ding J N . Journal of Materials Chemistry A, 2016,4(35):13395.
[45]
Wang H T, Zhang Q F, Yao H B, Liang Z, Lee H K, Hsu P C, Zheng G Y, Cui Y . Nano Letters, 2014,14(12):7138. https://www.ncbi.nlm.nih.gov/pubmed/25372985

doi: 10.1021/nl503730c     URL     pmid: 25372985
[46]
Tran D T, Dong H, Walck S D, Zhang S S . RSC Advances, 2015,5(107):87847.
[47]
Ye C, Zhang L, Guo C X, Li D D, Vasileff A, Wang H H, Qiao S Z . Advanced Functional Materials, 2017,27(33):1702524.
[48]
Pang Q, Kundu D, Cuisinier M, Nazar L F . Nature Communications, 2014,5:4759. https://www.ncbi.nlm.nih.gov/pubmed/25154399

doi: 10.1038/ncomms5759     URL     pmid: 25154399
[49]
Wei T X, Liu Y F, Dong W J, Zhang Y, Huang C Y, Sun Y, Chen X, Dai N . Applied Materials & Interfaces, 2013,5(21):10473. https://www.ncbi.nlm.nih.gov/pubmed/24138006

doi: 10.1021/am4039568     URL     pmid: 24138006
[50]
Wang Z Y, Dong Y F, Li H J, Zhao Z B, Wu H B, Hao C, Liu S H, Qiu J S, Lou X W . Nature Communications, 2014,5(1):5002.
[51]
Jeng H T, Guo G Y . Physical Review B, 2002,240(1/3):436.
[52]
Ki W, Huang X Y, Li J . Journal of Materials Research, 2007,22(05):1390.
[53]
Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X . Journal of Applied Physics, 2011,109(5):053717.
[54]
Bither T A, Bouchard R J, Cloud W H, Donohue P C, Siemons W J . Inorganic Chemistry, 1968,7(11):220.
[55]
杨华(Yang H) . 天津大学硕士论文( Master Dissertation of Tianjin University), 2013.
[56]
Chen H W, Shen Y B, Wang C H, Hu C J, Lu W, Wu X D, Chen L W . Journal of the Electrochemical Society, 165(1):A6034.
[57]
Ma L, Wei S Y, Zhuang H L, Hendrickson K, Hennig R, Archer L A . Journal of Materials Chemistry A, 2015,3(39):19857.
[58]
陈翔(Chen X), 侯廷政(Hou T Z), 彭翃杰(Peng H J), 程新兵(Cheng X B), 黄佳琦(Huang J Q), 张强(Zhang Q) . 储能科学与技术( Energy Storage Science and Technology), 2017,6(3):500.
[59]
Rubha P, Kannan A G, Jun H A, Kim D W . ACS Applied Materials & Interfaces., 2016,8(6):4000. https://www.ncbi.nlm.nih.gov/pubmed/26808673

doi: 10.1021/acsami.5b11327     URL     pmid: 26808673
[60]
Zhang S S, Tran D T . Electrochimica Acta, 2015,176:784.
[61]
Chen X, Peng H J, Zhang R, Hou T Z, Huang J Q, Li B, Zhang Q . ACS Energy Letters, 2017,2(4):795.
[62]
Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y . Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840.
[63]
Li Z, Zhang S G, Xu M, Tatara R, Dokko K, Watanabe M, Zhang J H . ACS Applied Materials & Interfaces, 2017,9(44):38477. https://www.ncbi.nlm.nih.gov/pubmed/29035508

doi: 10.1021/acsami.7b11065     URL     pmid: 29035508
[64]
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H . Advanced Science, 2017,5(1):1700270. https://www.ncbi.nlm.nih.gov/pubmed/29375960

doi: 10.1002/advs.201700270     URL     pmid: 29375960
[65]
韩东梅(Han D M), 王拴紧(Wang S J), 沈培康(Shen P K), 孟跃中(Meng Y Z), . 电池( Battery Bimonthly), 2013,43(1):6.
[66]
Kaiser M R, Liang X, Liu H K, Dou S X, Wang J Z . Carbon, 2016,103:163.
[67]
Fei L F, Li X G, Bi W T, Zhuo Z W, Wei W F, Sun L, Lu W, Wu X J, Xie K Y, Wu C Z, Chan H, Wang Y . Advanced Materials, 2015,27(39):5936. https://www.ncbi.nlm.nih.gov/pubmed/26310671

doi: 10.1002/adma.201502668     URL     pmid: 26310671
[68]
Peng H J, Zhang G, Chen X, Zhang Z X, Xu W T, Huang J Q, Zhang Q . Angewandte Chemie, 2016,128(42):13184.
[69]
Xu J, Zhao W X, Fan H B, Cheng F L, Su D W, Wang G X . Nano Energy, 2018,51:73.
[70]
Ma Z L, Li Z, Hu K, Liu D D, Huo J, Wang S Y . Journal of Power Sources, 2016,325:71.
[71]
He J R, Chen Y F, Manthiram A . Energy & Environmental Science, 2018,11:2560.
[72]
Dirlam P T, Park J, Simmonds A G, Domanik K, Arrington C B, Schaefer J L, Pyun J . ACS Applied Materials & Interfaces, 2016,8(21):13437. https://www.ncbi.nlm.nih.gov/pubmed/27171646

doi: 10.1021/acsami.6b03200     URL     pmid: 27171646
[73]
Ghazi Z A, He X, Khattak A M, Khan N A, Liang B, Iqbal A, Wang J X, Sin H, Li L S, Tang Z Y . Advanced Materials, 2017,29(21):1606817.
[74]
Park J, Yu B C, Park J S, Choi J W, Kim C, Sung Y E, Goodenough J B . Advanced Energy Materials, 2017,7(11):1602567. http://doi.wiley.com/10.1002/aenm.v7.11

doi: 10.1002/aenm.v7.11     URL    
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[4] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[5] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[8] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[9] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[10] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[11] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[12] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[13] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[14] 吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学结合力载体在锂硫电池中的应用[J]. 化学进展, 2017, 29(6): 593-604.
[15] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.