English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1233-1243 DOI: 10.7536/PC140227 前一篇   后一篇

• 综述与评论 •

碳纳米管与石墨烯在储能电池中的应用

李健1,2, 官亦标1, 傅凯1, 苏岳锋*2,3, 包丽颖2,3, 吴锋2,3   

  1. 1. 中国电力科学研究院 北京 10019;
    2. 北京理工大学化工与环境学院 北京 100081;
    3. 国家高技术绿色材料发展中心 北京 100081
  • 收稿日期:2014-02-01 修回日期:2014-03-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 苏岳锋 E-mail:suyuefeng@bit.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB220100)、国家自然科学基金青年科学基金项目(No.51102018,21103011)、国家高技术研究发展计划(863)项目(No.2011AA11A235,SQ2010AA1123116001)和国家电网公司科技项目(No.DG71-13-033)资助

Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries

Li Jian1,2, Guan Yibiao1, Fu Kai1, Su Yuefeng*2,3, Bao Liying2,3, Wu Feng2,3   

  1. 1. China Electric Power Research Institute, Beijing 100192, China;
    2. School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China;
    3. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received:2014-02-01 Revised:2014-03-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the State Key Development Program for Basic Research of China (No.2009CB220100),the National Natural Science Foundation of China(No.51102018, 21103011),the National High Technology Research and Development Program of China(No.2011AA11A235,SQ2010AA1123116001) and the Science and Technology Project of State Grid Corporation of China(No. DG71-13-033)

当今社会日益增长的能源与环境需求对储能电池技术的发展既是机遇也是严峻的挑战。纳米碳材料如碳纳米管与石墨烯因其优异的导电能力、良好的机械性能以及独特的形貌与结构特征在储能电池技术领域中的应用越来越普遍。本文通过综述近年来碳纳米管与石墨烯分别作为锂离子电池的复合电极材料、负极活性材料、导电添加剂以及新型锂硫电池用复合导电载体的最新应用进展,重点讨论了这两类纳米碳材料的不同应用模式对储能电池容量性能、倍率性能以及循环寿命的影响。同时对目前研究中存在的问题进行了总结,并对未来发展方向,如开发低成本与环境友好的高质量材料合成技术、提升材料的分散能力以有效构筑复合电极结构以及开发新的应用模式等进行了展望。

The ever-increasing demand for energy and environmental resources is both an opportunity and a severe challenge for the development of energy storage batteries. Nano-carbon materials such as carbon nanotubes and graphene are widely used in the electrode technology of energy storage batteries because of their many useful properties, including high electrical conductivity, outstanding mechanical strength, and unique morphology and structure characteristics. This paper provides an overview about the most recent progress in the applications of carbon nanotubes and graphene (e. g., composite electrode materials, anode active materials and conductive additives in lithium ion batteries, as well as composite conductive matrices in novel Li-S batteries). The electrochemical performance of the batteries affected by their different application modes in terms of lithium storage capability, rate capacity and cycle life are highlighted. Discussions on challenges and perspectives of these carbon materials in this exciting field such as exploring low cost and environmental friendly synthesis techniques for high-quality materials, improving the dispersion technology for efficient design of hybrid nanostructured materials and seeking for new application modes are also presented.

Contents
1 Introduction
2 Used as composite electrode materials in lithium-ion batteries
2.1 Carbon nanotubes based composite electrode materials
2.2 Graphene based composite electrode materials
3 Used as anode active materials in lithium-ion batteries
3.1 Carbon nanotubes as anode active materials
3.2 Graphene based materials as anode active materials
4 Used as conductive additives in lithium-ion batteries
5 Used as composite conductive matrices in novel Li-S batteries
5.1 Carbon nanotubes/sulfur composites
5.2 Graphene based materials/sulfur composites
6 Conclusion and outlook

中图分类号: 

()

[1] 邹勇进(Zou Y J), 向翠丽(Xiang C L), 邱树君(Qiu S J), 褚海亮(Chu H L), 孙立贤(Sun L X), 徐芬(Xu F). 化学进展(Progress in Chemistry), 2013, 25: 115.
[2] Li X, Wei B Q. Nano Energy, 2013, 2(2): 159.
[3] Li H, Wang Z X, Chen L Q, Huang X. Adv. Mater., 2009, 21(45): 4539.
[4] 刘张波(Liu Z B), 刘蓓蓓(Liu P P), 夏长荣(Xia C R). 化学进展(Progress in Chemistry), 2013, 25: 1821.
[5] Nishi Y. The Chemical Record, 2001, 1: 406.
[6] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144(4): 1188.
[7] Zhang Y J, Lu L G, Han X B, Li J, Ouyang M. J. Power Sources, 2013, 226(15): 33.
[8] 王维坤(Wang W K), 余仲宝(Yu Z B), 苑克国(Yuan K G), 王安邦(Wang A B), 杨裕生(Yang Y S). 化学进展(Progress in Chemistry), 2011, 23: 540.
[9] Yin Y X, Xin S, Guo Y G, Wan L J. Angew. Chem. Int. Ed., 2013, 52: 2.
[10] Iijima S. Nature, 1991, 354: 56.
[11] Lota G, Fic K, Frackowiak E. Energy Environ. Sci., 2011, 4(5): 1592.
[12] Saito N, Usui Y, Aoki K. Chem. Soc. Rev., 2009, 38(7): 1897.
[13] Schnorr J M, Swager T M. Chem. Mater., 2011, 23(3): 646.
[14] Ando Y, Zhao X, Shimoyama H. Int. J. Inorg. Mater., 1999, 1(1): 77.
[15] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5659): 666.
[16] Pumera M. Energy Environ. Sci., 2011, 4(3): 668.
[17] Moon I K, Lee J, Rodney S, Lee H. Nat. Commun., 2010, 1: 73.
[18] Liu X M, Huang Z D, Oh S, Ma P C, Chan P C, Vedam G K, Kang K, Kim J K. J. Power Sources, 2010, 195: 4290.
[19] Zhou H, Liu L, Wang X, Liang F, Bao S, Lv D, Tang Y, Jia D. J. Mater. Chem. A, 2013, 1: 8525.
[20] Yang J, Wang J, Li X, Wang D, Liu J, Liang G, Gauthier M, Li Y, Geng D, Li R, Sun X. J. Mater. Chem., 2012, 22: 7537.
[21] Xia H, Ragavendran K R, Xie J, Lu L. J. Power Sources, 2012, 212: 28.
[22] Jia X, Yan C, Chen Z, Wang R, Zhang Q, Guo L,Wei F, Lu Y. Chem. Commun., 2011, 47: 9669.
[23] He Y, Huang L, Cai J S, Zheng X M, Sun S G. Electrochim. Acta, 2010, 55: 1140.
[24] Ko S, Lee J I, Yang H S, Park S, Jeong U. Adv. Mater., 2012, 24: 4451.
[25] Forney M W, Ganter M J, Staub J W, Ridgley R D, Landi B J. Nano Lett., 2013, 13: 4158.
[26] Dileo R A, Frisco S, Ganter M J, Rogers R E, Raffaelle R P, Landi B J. J. Phys. Chem. C, 2011, 115: 22609.
[27] Bindumadhavan K, Srivastava S K, Mahanty S. Chem. Commun., 2013, 49: 1823.
[28] Reddy A L, Shaijumon M M, Gowda S R, Ajayan P M. Nano Lett., 2009, 9(3): 1002.
[29] Liu H, Wang G, Park J, Wang J, Liu H, Zhang C. Electrochim. Acta, 2009, 54(6): 1733.
[30] Wu Y, Wei Y, Wang J, Jiang K, Fan S. Nano Lett., 2013, 13: 818.
[31] Ye J, Zhang H, Yang R, Li X, Qi L. Small, 2010, 6(2): 296.
[32] Li Z, Liu N, Wang X,Wang C, Qi Y, Yin L. J. Mater. Chem., 2012, 22(32): 16640.
[33] Zhou G, Li L, Zhang Q, Li N, Li F. Phys. Chem. Chem. Phys., 2013, 15(15): 5582.
[34] Evanoff K, Khan J, Balandin A A, Magasinski A, Ready W J, Fuller T F, Yushin G. Adv. Mater., 2012, 24(4): 533.
[35] Seng K H, Park M H, Guo Z P, Liu H K, Cho J. Angew. Chem. Int. Ed., 2012, 51(23): 5657.
[36] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nature Nanotech., 2008, 3(2): 101.
[37] Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Carlsson L S, Blighe F M, De S, Wang Z, Mcgovern I T, Duesberg G S, Coleman J N. J. Am. Chem. Soc., 2009, 131(10): 3611.
[38] Xiang H, Zhang K, Ji G, Lee J Y, Zou C, Chen X, Wu J. Carbon, 2011, 49(5): 1787.
[39] Xue D J, Xin S, Yan Y, Jiang K C, Yin Y X, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134(5): 2512.
[40] Ji L, Tan Z, Kuykendall T, An E J, Fu Y, Battaglia V, Zhang Y. Energy Environ. Sci., 2011, 4(9): 3611.
[41] Wang H, Cui L F, Yang Y, Casalongue H S, Robinson J T, Liang Y, Cui Y, Dai H J. J. Am. Chem. Soc., 2010, 132(40): 13978.
[42] Wang X, Zhou X, Yao K C, Zhang Z, Liu Z. Carbon, 2011, 49(1): 133.
[43] Kim H, Seo D H, Kim S W, Kim J, Kang K. Carbon, 2011, 49(1): 326.
[44] Wang R, Xu C, Sun J, Gao L, Lin C. J. Mater. Chem. A, 2013, 1(5): 1794.
[45] Lu L Q, Wang Y. Electrochem. Commun., 2012, 14(1): 82.
[46] Cao H, Li B, Zhang J, Lian F, Kong X, Qu M. J. Mater. Chem., 2012, 22(19): 9759.
[47] Sun Y, Hu X, Luo W, Huang Y. ACS Nano, 2011, 5(9): 7100.
[48] Liu H, Yang G, Zhang X, Gao P, Wang L, Fang J, Pinto J, Jiang X. J. Mater. Chem., 2012, 22(22): 11039.
[49] Lee J W, Lim S Y, Jeong H M, Hwang T H, Kang J K, Choi J W. Energy Environ. Sci., 2012, 5(12): 9889.
[50] Zhou X, Wang F, Zhu Y, Liu Z. J. Mater. Chem., 2011, 21(10): 3353.
[51] Shi Y, Chou S L, Wang J Z, Wexler D, Li H J, Liu H K, Wu Y. J. Mater. Chem., 2012, 22: 16465.
[52] Xu H, Cheng B, Wang Y. Inter. J. Electrochem. Sci., 2012, 7(11): 10627.
[53] Jiang K C, Xin S, Lee J S, Kin J, Xiao X L, Guo Y G. Phys. Chem. Chem. Phys., 2012, 14: 2934.
[54] Kumar T P, Ramesh R, Lin Y Y, Fey G. Electrochem. Commun., 2004, 520.
[55] Kawasaki S, Hara T, Iwai Y, Suzuki Y. Mater. Lett., 2008, 62: 2917.
[56] Chew S Y, Ng S H, Wang J, Novak P, Krumeich F, Chou S L, Chen J, Liu H K. Carbon, 2009, 47: 2976.
[57] Zhou J, Song H, Fu B, Wu B, Chen X. J. Mater. Chem., 2010, 20(14): 2794.
[58] Meunier V, Kephart J, Roland C, Bernholc J. Phys. Rev. Lett., 2002, 88: 075566
[59] Schauerman C M, Ganter M J, Gaustad G, Babbitt C W, Raffaelle R P, Landi B J. J. Mater. Chem., 2012, 22: 1200.
[60] Lahiri I, Oh S W, Hwang J Y, Cho S, Sun Y K, Banerjee R, Choi W. ACS Nano, 2010, 4(6): 3440.
[61] Kang C, Lahiri I, Baskaran R, Kim W G, Sun Y K, Choi W. J. Power Sources, 2012, 219: 364.
[62] Welna D T, Qu L, Taylor B E, Dai L, Durstock M F. J. Power Sources, 2011, 196: 1455.
[63] Gao B, Bower C, Lorentzen J D, Kleinhammes A, Tang X P, McNeil L E, Wu Y, Zhou O. Chem. Phys. Lett., 2000, 327: 69.
[64] Yang S, Huo J, Song H, Chen X. Electrochim. Acta, 2008, 53: 2238.
[65] Shimoda H, Gao B, Tang X B, Kleinhammes A, Fleming L, Wu Y, Zhou O. Phys. Rev. Lett., 2002, 88: 015502.
[66] Eom J Y, Kwon H S, Liu J, Zhou O. Carbon, 2004, 42: 2589.
[67] Bulusheva L G, Okotrub A V, Kurenya A G, Zhang H, Zhang H, Chen X, Song H. Carbon, 2011, 49: 4013.
[68] Li X, Liu J, Zhang Y, Li Y, Liu H, Meng X, Yang J, Geng D, Wang D, Li R, Sun X. J. Power Sources, 2012, 197(1): 238.
[69] Shin W H, Jeong H M, Kin B G, Kang J K, Choi J W. Nano Lett., 2012, 12: 2283.
[70] Garau C, Frontera A, Quinonero D, Costa A, Ballester P, Deya P M. Chem. Phys. Lett., 2003, 374: 548.
[71] Wang X X, Wang J N, Chang H, Zhang Y F. Adv. Funct. Mater., 2007, 17: 3613.
[72] Oktaviano H S, Yamada K, Waki K. J. Mater. Chem., 2012, 22: 25167.
[73] Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman B D. J. Am. Chem. Soc., 2010, 132: 12556.
[74] Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z. Chem. Mater., 2009, 21: 3136.
[75] Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Electrochim. Acta, 2010, 55: 3909.
[76] Wang G, Shen X, Yao J, Park J. Carbon, 2009, 47: 2049.
[77] Ning G, Xu C, Cao Y, Zhu X, Jiang Z, Fan Z, Qian W, Wei F, Gao J. J. Mater. Chem. A, 2013, 1: 408.
[78] Wu Z S, Ren W, Xu L, Li F, Cheng H M. ACS Nano, 2011, 5(7): 5463.
[79] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubby M, Ajayan P M. ACS Nano, 2010, 4(11): 6337.
[80] Wang Z L, Xu D, Wang H G, Wu Z, Zhang X B. ACS Nano, 2013, 7(3): 2422.
[81] Zhang B, Qin X, Li G R, Gao X P. Energy Environ. Sci., 2010, 3(10): 1531.
[82] Feng Y. Mater. Chem. Phys., 2010, 121(1/2): 302.
[83] Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T. Electrochim. Acta, 2010, 55(20): 5813.
[84] Varzi A, Taubert C, Mehrens M W. Electrochim. Acta, 2012, 78(1): 17.
[85] Chan C K, Patel P N, O'Connell M J, Korgel B A, Cui Y. ACS Nano, 2010, 4(3): 1443.
[86] Su F Y, You C, He Y B, Lv W, Cui W, Jin F, Li B, Yang Q H, Kang F. J. Mater. Chem., 2010, 20(43): 9644.
[87] Ji X, Lee K T, Nazar L F. Nat. Mater., 2009, 8: 500.
[88] Yuan L, Yuan H, Qiu X, Chen L, Zhu W. J. Power Sources, 2009, 189: 1141.
[89] Dorfler S, Hagen M, Althues H, Tubke J, Kaskel S, Hoffmann M J. Chem. Commun., 2012, 48: 4097.
[90] Guo J, Xu Y, Wang C. Nano Lett., 2011, 11: 4288.
[91] Moon S, Jung Y H, Jung W K, Jung D S, Choi J W, Kim D K. Adv. Mater., 2013, 25: 6547.
[92] Wei W, Wang J, Zhou L, Yang J, Schumann B, Nuli Y. Electrochem. Commun., 2011, 13: 399.
[93] Wang C, Chen H, Dong W, Ge J, Lu W, Wu X, Guo L, Chen L. Chem. Commun., 2014, 50: 1202.
[94] Kazazi A, Vaezi M R, Kazemzadeh A. Ionics, 2013, doi 10.1007/s11581-013-1044-5
[95] Yin L, Wang J, Yang J, Nuli Y. J. Mater. Chem., 2011, 21: 6807.
[96] Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134: 18510.
[97] Wang J Z, Lu L, Choucair M, Stride J A, Xu X, Liu H K. J. Power Sources, 2011, 196: 7030.
[98] Evers S, Nazar L F. Chem. Commun., 2012, 48: 1233.
[99] Lin T, Tang Y, Wang Y, Bi H, Liu Z, Huang F, Xie X, Jiang M. Energy Environ. Sci., 2013, 6: 1283.
[100] Zhou G, Yin L C, Wang D W, Li L, Pei S, Gentle I R, Li F, Cheng H M. ACS Nano, 2013, 7(6): 5367.
[101] Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J, Zhang Y. J. Am. Chem. Soc., 2011, 133: 18522.
[102] Wang H, Yang Y, Liang Y, Robinson J T, Li Y, Jackson A, Cui Y, Dai H. Nano Lett., 2011, 11: 2644.
[103] Ding B, Yuan C, Shen L, Xu G, Nie P, Lai Q, Zhang X. J. Mater. Chem. A, 2013, 1: 1096.
[104] Zu C, Manthiram A. Adv. Energy Mater., 2013, 3: 1008.
[105] Zhao M Q, Liu X F, Zhang Q, Tian G L, Huang J Q, Zhu W, Wei F. ACS Nano, 2012, 6: 10759.
[106] Chen R J, Zhao T, Lu J, Wu F, Li L, Chen J, Tan G Q, Ye Y, Amine K. Nano Lett., 2013, 13: 4642.

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[4] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[9] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[10] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[11] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[12] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[13] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.