English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1681-1691 DOI: 10.7536/PC180216 前一篇   后一篇

• 综述 •

锂硫电池中的石墨烯掺杂

杨蓉1*, 李兰1, 任冰2, 陈丹1, 陈利萍3, 燕映霖1   

  1. 1. 西安理工大学理学院 西安 710054;
    2. 陕西省应用物理化学研究所 西安 710061;
    3. 西安理工大学材料科学与工程学院 西安 710048
  • 收稿日期:2018-02-11 修回日期:2018-05-02 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 杨蓉,e-mail:yangrong@xaut.edu.cn E-mail:yangrong@xaut.edu.cn
  • 基金资助:
    国家国际科技合作专项(No.2015DFR50350)、国家自然科学基金项目(No.21503166)、陕西省科技计划项目(No.2017GY-160)和陕西省自然科学基础研究计划(No.2017JQ5055)资助

Doped-Graphene in Lithium-Sulfur Batteries

Rong Yang1*, Lan Li1, Bing Ren2, Dan Chen1, Liping Chen3, Yinglin Yan1   

  1. 1. School of Science, Xi'an University of Technology, Xi'an 710054, China;
    2. Shaanxi Applied Physics and Chemistry Research Institute(CNGC21);
    3. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
  • Received:2018-02-11 Revised:2018-05-02 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the International Science Technology Cooperation Program of China(No. 2015DFR50350), the National Natural Science Foundation of China(No. 21503166), the Science and Technology Project of Shaanxi Province(No. 2017GY-160), and the Basic Research Plan of Natural Science Funded by Shaanxi Science and Technology Department(No. 2017JQ5055).
锂硫电池是以锂为负极,单质硫为正极的二次电池,具有高达1675 mA·h/g的比容量及2600 W·h/kg的比能量密度。理论上讲,相较于现有的锂离子电池,锂硫电池可使容量扩展5倍,这使其成为最有前景的锂离子电池。由于硫正极的绝缘性以及充放电过程中活性物质易溶于电解液,导致其可实现的能量密度远低于理论值。异原子掺杂石墨烯因具有优异的导电性,且对多硫化锂(LiPS)具有强的吸附作用而被广泛应用于锂硫电池,有效缓解了"穿梭效应",提高了电池的循环稳定性。本文主要从单原子掺杂、双原子掺杂两方面综述了异原子(如N,P,S,B)掺杂石墨烯在锂硫电池领域的研究现状,详细分析了其应用于锂硫电池的作用机理,并从掺杂量、掺杂形式、掺杂位置等方面对电池性能的提升进行了梳理和展望。
Lithium-sulfur (Li-S) battery is a kind of rechargeable batteries with lithium as negative electrode and sulfur as positive electrode. It has a high theoretical specific capacity of 1675 mA·h/g and a specific energy density of 2600 W·h/kg. Theoretically, Li-S batteries can boost capacity fivefold over the current lithium-ion batteries, enabling it as a candidate of the most promising lithium-ion batteries. Due to the insulativity of sulfur and the easy dissolution of sulfur as active material to form polysulfide ions as electrochemical reaction intermediate material in the electrolyte during the process of charging and discharging, the poor cycle stability and high self-discharge of Li-S batteries result in the realizable energy density achieved far below the theoretical value. In this review, we target heteroatom-doped graphene, which has been widely used in Li-S batteries because of its retained excellent conductivity of graphene as well as strong adsorption to lithium polysulfide(LiPS) derived from a certain amount of defects and active sites of doped graphene. The adsorption can effectively alleviate the "shuttle effect" in the charge and discharge process and improve the cycling stability and cycling rate performance of Li-S batteries. This paper reviews current research state of heteroatom-doped graphene(such as N, P, S, B) in the Li-S batteries in terms of single-atom doping and diatomic doping. The advantages and mechanism of nitrogen-doped, nitrogen-sulfur co-doped and other doped graphene applied to Li-S batteries are analyzed utterly. Finally, the effect of battery performance is classified based on doping amount, doping form, doping location, and so on. The development direction and prospect of heteroatom-doped graphene are also predicted and forecast.
Contents
1 Introduction
2 Working principle of lithium-sulfur batteries
3 Monoatomic doping of graphene
3.1 Nitrogen-doped graphene
3.2 Boron-doped graphene
4 Diatom-doped graphene
4.1 Nitrogen and sulfur co-doped graphene
4.2 Boron and nitrogen co-doped graphene
4.3 Other heteroatoms doped graphene
5 Conclusion and outlook

中图分类号: 

()
[1] 吕鹏(Lv P), 冯奕钰(Feng Y Y), 张学全(Zhang X Q), 李瑀(Li Y), 封伟(Feng W). 中国科学:技术科学(Science China Technologica), 2010, 11(11):1247.
[2] Li G X, Sun J H, Hou W P, Jiang S D, Huang Y, Geng J X. Nature Communications, 2016, 7:10601.
[3] Zhou X Y, Liao Q C, Tang J J, Bai T, Chen F, Yang J. Journal of Electroanalytical Chemistry, 2016, 768:55.
[4] Li Y Y, Wang L, Gao B, Li X X, Cai Q F, Li Q W, Peng X. Electrochimica Acta, 2017, 229:352.
[5] Li Z, Jiang Y, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. ACS Nano, 2014, 8:9295.
[6] Li H, Sun L, Wang G. ACS Applied Materials & Interfaces, 2016, 8:6061.
[7] Cheng X B. Annual Meeting of China Chemical Industry Association, Beijing, 2015.
[8] Guo J, Xu Y, Wang C. Nano Letters, 2011, 11:4288.
[9] Ma L, Zuang H L, Wei S Y, Hendrickson D E, Kim M S, Cohn G, Hennig R G, Archer L A. ACS Nano, 2016, 10:1050.
[10] Zeng L, Jiang Y, Xu J, Wang M, Li W, Yu Y. Nanoscale, 2015, 7:10940.
[11] Shi Z, Jin G, Wang J, Zhang J. Journal of Electroanalytical Chemistry, 2017, 795:26.
[12] Lei F, Zuang H L, Zhang K H, Cooper V R, Li Q, Lu Y Y. Adv. Sci., 2016, 3:1600175.
[13] Li Z, Huang Y, Yuan L, Hao Z X, Huang Y H. Carbon, 2015, 92:41.
[14] Yan L L, Wang X X, Zhao S C, Li Y Q, Gao Z, Zhang B, Cao M S, Qin Y. ACS Applied Materials & Interfaces, 2017, 9:11116.
[15] Huang J K, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9:3002.
[16] Cao J, Chen C, Zhao Q, Zhang N, Lu Q Q, Wang X Y, Niu Z Q, Chen J. Advanced Materials, 2016, 28:9629.
[17] Hu X F, Leng K T, Zhang C J, Luo J Y. RSC Advances, 2018, 8:18502.
[18] Papandrea B, Xu X, Xu Y, Chen C Y, Lin Z Y, Wang G M, Luo Y Z, Liu M, Huang Y, Mai L Q, Duan X F. Nano Research, 2016, 9:240.
[19] Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwaet J P, Wang C S, Xu X X. Advanced Energy Materials, 2017, 1602923.
[20] Hu G, Xu C, Sun Z, Wang S G, Cheng H M, Li F, Ren W C. Advanced Materials, 2016, 28:1603.
[21] Lu S, Cheng Y, Wu X, Liu J. Nano Letters, 2013, 13:2485.
[22] 杨蓉(Yang R), 李兰(Li L), 王黎晴(Wang L Q), 付欣(Fu X), 燕映霖(Yan Y L), 陈利萍(Chen L P), 路蕾蕾(Lu L L). 化工学报(CIESC Journal), 2017, 68(11):4333.
[23] Chen F B, Wang Y N, Wu B R, Xiong Y K, Liao W L, Wu F, Sun Z. Journal of Inorganic Materials, 2014, 29:627.
[24] Yang Y, Yu G, Cha J J, Wu H, Vosqueritchian M, Yao Y, Bao Z, Cui Y. ACS Nano, 2011, 5:9187.
[25] Chang C H, Chung S H, Manthiram A. Journal of Materials Chemistry A, 2015, 3:18829.
[26] Lei W, Dong W, Zhang F, Jin J. Nano Letters, 2013, 13:4206.
[27] Song M K, Zhang Y, Cairns E J. Nano Letters, 2013, 13:5891.
[28] Liao H, Wang H, Ding H, Meng X S, Xu H, Wang B S, Ai X P, Wang C. Journal of Materials Chemistry A, 2016, 4:7416.
[29] Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y. Nanoscale, 2016, 8:13638.
[30] Li Z, Zhang J, Lou X W. Angewandte Chemie, 2015, 54:12886.
[31] An T H, Deng D R, Lei M, Wu Q H, Tian Z W, Zheng M S, Dong Q F. J. Mater. Chem. A, 2016, 4:12858.
[32] Liu X, Huang J Q, Zhang Q, Mai L Q. Advanced Materials, 2017, 29:1601759.
[33] Cui Z, Zu C, Zhou W, Manthiram A, Goodenough J B. Advanced Materials, 2016, 28:6926.
[34] Ma G Q, Wen Z Y, Wang Q S, Jin J, Wu X W, Zhang J C. Journal of Inorganic Materials, 2015, 30:913.
[35] Hao Z, Yuan L, Chen C, Xiang J W, Li Y Y, Huang Z M, Hu P, Huang Y H. Journal of Materials Chemistry A, 2016, 45:17711.
[36] 李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26(7):1233.
[37] 李宛飞(Li W F), 刘美男(Liu M N), 王健(Wang J), 张跃钢(Zhang Y G). 物理化学学报(Acta Physico-Chimica Sinica), 2017, 33(1):165.
[38] Song J, Xu T, Gorgin M L, Zhu P Y, Lv D P, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Advanced Functional Materials, 2014, 24:1243.
[39] Wang H, Yang Y, Liang Y, Robinson J T, Li Y G, Jackson A, Cui Y, Dai H J. Nano Letters, 2011, 11:2644.
[40] Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society, 2004, 151:A1969.
[41] 陈旭(Chen X), 何大平(He D P), 木士春(Mu S C). 化学进展(Progress in Chemistry), 2013, 25(8):1292.
[42] Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. 2D Materials, 2015, 2.
[43] Qiu Y C, Li W F, Zhao W, Li G Z, Hou Y, Liu M N, Zhou L S, Ye F M, Li H F, Wei Z H, Yang S H, Daun W H, Ye Y F, Guo J H, Zhang Y G. Nano Letters, 2014, 14:4821.
[44] Li L, Zhou G M, Yin L C, Koratkar N, Li F, Cheng H M. Carbon, 2016, 108:120.
[45] Hao Y, Li X F, Sun X L, Wang C L. Materials Science and Engineering B, 2016, 213:83.
[46] Liu S K, Hong X B, Li Y J, Xu J, Zhen C M, Xie K. Chinese Chemical Letters, 2017, 28:412.
[47] Li C, Sui X L, Wang Z B, Wang Q, Gu D M. Chemical Engineering Journal, 2017, http://dx.doi.org/10.1016/j.cej.2017.05.154.
[48] Su D W, Cortie M, Wang G X. Advanced Energy Materials, 2017, 1602014.
[49] Zhang Z, Kong L L, Liu S, Li G R, Gao X P. Advanced Energy Materials, 2017, 7:1602543.
[50] Li Y J, Fan J M, Zheng M S, Dong Q F. Energy & Environmental Science, 2016, 9:1998.
[51] Yang R, Li L, Chen D, Chen L P, Ren B, Yan Y L, Xu Y H. Chemistryselect, 2017, 2:11697.
[52] Wang X W, Zhang Z A, Qu Y H, Lai Y Q, Li J. Journal of Power Sources, 2014, 256:361.
[53] Yan H, Cheng M, Zhong B, Chen Y X. Ionics, 2016, 22:1999.
[54] Yin L C, Liang J, Zhou G M, Li F, Saito R, Cheng H M. Nano Energy, 2016, 25:203.
[55] Singh G, Sutar D S, Divakar B V, Narayanam P K, Talwar S S, Srinivasa R S, Major S S. Nanotechnology, 2013, 24:355704.
[56] Yanilmaz A, Tomak A, Akbali B, Bacaksiz C, Ozceri E, Ari O, Senger R T, Selamet Y, Zareie H M. RSC Advances, 2017, 7:28383.
[57] 华文婷(Hua W T), 王鹏(Wang P), 孙雅馨(Sun Y X). 安徽工业大学学报(Journal of Anhui University of Technology), 2015, 32(4):325.
[58] Xie Y, Meng Z, Cai T W, Han W Q. ACS Applied Materials & Interfaces, 2015, 7:25202.
[59] 王璐(Wang L). 化学技术与开发(Technology & Development of Chemical Industry), 2016, 45(5):10.
[60] Denis P A, Huelmo C P, Iribarne F. Computational & Theoretical Chemistry, 2014, 1049:13.
[61] Zhou G M, Peak E, Hwang G S, Mathiram A. Nature Communication, 2015, 6:7760.
[62] Xu J, Su D W, Zhang W X, Bao W Z, Wang G X. Journal of Materials Chemistry A, 2016, 4:17381.
[63] Wang L, Yang Z, Nie H G, Gu C C, Hua W X, Xu X J, Chen X A, Chen Y, Huang S M. J. Mater. Chem. A, 2016, 4:15343.
[64] Yuan X Q, Liu B C, Hou H J, Zeinu K, He Y H, Yang X R, Xue W J, He X L, Huang L, Zhu X L, Wu L S, Hu J P, Yang J K, Xie J. RSC Advances, 2017, 7:22567.
[65] 高瑞玲(Gao G L), 缪灵(Miao L), 宋家琪(Song J Q), 吴忧(Wu Y). 全国功能材料科技与产业高层论坛(Functional Materials Technology and Industry Forum), 镇江(Zhenjiang), 2009.
[66] Cai W L, Zhou J B, Li G R, Zhang K L, Liu X Y, Wang C, Zhou H, Zhu Y C, Qian Y T. ACS Appl. Mater. Interfaces, 2016, 8:27679.
[67] Li F, Zhao J J, Su Y. Physical Chemistry Chemical Physics, 2016, 18:25241.
[68] Liang C, Feng J R, Zhou H H, Fu C P, Wang G C, Yang L M, Xu C X, Chen Z X, Yang W J, Kuang Y F. J. Mater. Chem. A, 2017, 5:7403.
[69] Gu X X, Tong C J, Lai C, Qiu J X, Huang X X, Yang W L, Wen B, Liu L M, Hou Y L, Zhang S Q. Journal of Materials Chemistry A, 2015, 3:16670.
[70] Xiao Z, Yang Z, Zjang L, Pan H, Wang R H. ACS Nano, 2017, 11(8):8488.
[71] Liu Z, Li J, Xiang J, Cheng S, Wu H, Zhang N, Yuan L X, Zhang W F, Xie J, Huang Y H, Chang H X. Physical Chemistry Chemical Physics, 2017, 19:2567.
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[6] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[7] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[8] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[9] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[10] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[11] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[12] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[13] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
阅读次数
全文


摘要

锂硫电池中的石墨烯掺杂