English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 563-578 DOI: 10.7536/PC161202 前一篇   

• 综述 •

硫化物催化木质素及其模型化合物转化制备高附加值化学品

纪娜1,2, 宋静静1,2, 刁新勇1,2, 宋春风1,2, 刘庆岭*1,2, 郑明远*3   

  1. 1. 天津大学环境科学与工程学院 天津 300350;
    2. 生物基油气全国石油化工行业重点实验室 天津 300350;
    3. 中国科学院大连化学物理研究所 大连 116023
  • 收稿日期:2016-12-02 修回日期:2017-04-14 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 刘庆岭, 郑明远 E-mail:liuql@tju.edu.cn;myzheng@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21503144,21406165,51506147,21376239),国家自然科学基金重大项目(No.21690083)和天津市应用基础与前沿技术研究计划(No.16JCQNJC05400,15JCQNJC08500)资助

Transformation of Lignin and Its Model Compounds into Value-Added Chemicals Using Sulfide Catalysts

Na Ji1,2, Jingjing Song1,2, Xinyong Diao1,2, Chunfeng Song1,2, Qingling Liu1,2, Mingyuan Zheng3   

  1. 1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China;
    2. Key Laboratory of Biomass-Derived Gas and Oil for Chinese Petrochemical Industry, Tianjin 300350, China;
    3. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2016-12-02 Revised:2017-04-14 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21503144,21406165,51506147,21376239),the Major Projects of the National Natural Science Foundation of China (No.21690083),and the Tianjin Research Program of Application Foundation and Advanced Technique (No.16JCQNJC05400,15JCQNJC08500).
木质素主要由羟基或甲氧基取代的苯丙烷基结构组成,是自然界中唯一可大量生产芳香族化学品的可再生原料。通过选择合适的催化剂,打断其长链结构,高选择性地获得某种或某类目标产物是木质素综合利用的重要途径。金属硫化物催化剂由于具有良好的加氢及脱氧活性,几十年来被广泛应用于木质素催化转化领域。本文对金属硫化物催化剂在木质素及其模型化合物催化转化中的应用进行了综述,从活性组分、载体材料、反应条件及反应机理等方面进行了总结和分析。在此基础上,指出了金属硫化物催化剂在木质素催化降解中面临的难题,并对未来研究提出了建议与展望。
Lignin is mainly composed of hydroxy-substituted or methoxylated phenyl propane structures and serves as the only renewable bulk feedstock in nature for producing aromatic chemicals. By using suitable catalysts, the long chain structures of lignin can be selectively broken down to obtain different target products. This has been regarded as an important approach for the comprehensive utilization of lignin. Due to the high activity of hydrodeoxygenation, transition metal sulfide catalysts have been used in lignin conversion in recent decades. In this review, the application of transition metal sulfide catalysts in the catalytic conversions of lignin and its model compounds are summarized. The active components, support materials, reaction conditions and reaction mechanism are presented in detail. The existing challenges of sulfide catalysts in the degradation of lignin are discussed. Finally, potential solutions and future trends of this field are presented.
Contents
1 Introduction
2 The application of sulfide catalysts in the hydrodeoxygenation of lignin model compounds
2.1 Mo-based sulfide catalyst
2.2 Other sulfide catalysts
3 The application of sulfide catalysts in the degradation of lignin raw materials
4 Conclusion

中图分类号: 

()
[1] Dapsens P Y, Mondelli C, Pérez-Ramírez J. ACS Catal., 2012, 2:1487.
[2] Hanson S K, Baker R T, Gordon J C, Scott B L, Thorn D L. Inorg. Chem., 2010, 49:5611.
[3] 张勤生(Zhang Q S), 王来来(Wang L L). 分子催化(Journal of Molecular Catalysis), 2013, 27(01):89.
[4] 路瑶(Lu Y), 魏贤勇(Wei X Y), 宗志敏(Zong Z M), 陆永超(Lu Y C), 赵炜(Zhao W), 曹景沛(Cao J P). 化学进展(Progress in Chemistry), 2013, 25(05):838.
[5] Song Q, Cai J Y, Zhang J J, Yu W Q, Wang F, Xu J. Chin. J. Catal., 2013, 34:651.
[6] Ma R, Hao W Y, Ma X L, Tian Y, Li Y D. Angew. Chem. Int. Ed., 2014, 126:7438.
[7] Azadi P, Inderwildi O R, Farnood R, King D A. Renew. Sustain. Energy Rev., 2013, 21:506.
[8] 龙金星(Long J X), 徐莹(Xu Y), 王铁军(Wang T J), 张兴华(Zhang X H), 张琦(Zhang Q), 马隆龙(Ma L L), 李宇萍(Li Y P). 新能源进展(Advances in New and Renewable Energy), 2014, 2(02):83.
[9] Rinaldi R, Jastrzebski R, Clough M T, Ralph J, Kennema M, Bruijnincx P C A, Weckhuysenet B M. Angew. Chem. Int. Ed., 2016, 55:8164.
[10] Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115:11559.
[11] 包冲荣(Bao C R), 殷平(Yin P), 唐清华(Tang Q H), 陈磊(Chen L). 化工时刊(Chemical Industry Times), 2008, 22(12):53.
[12] 王安杰(Wang A J), 王瑶(Wang Y), 遇治权(Yu Z Q), 董婷(Dong T), 李翔(Li X), 陈永英(Chen Y Y). 大连理工大学学报(Journal of Dalian University of Technology), 2016, 56(03):321.
[13] Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110:3552.
[14] Alpert S B, Shuman S C. Canadian Patent 851709, 1970.
[15] Elliott D C. Am. Chem. Soc. Div. Pet. Chem. Prepr., 1983, 28:3.
[16] Bredenberg J B, Huuska M, Räty J, Korpio M. J. Catal., 1982, 77:242.
[17] Gevert B S, Otterstedt J E, Massoth F E. Appl. Catal., 1987, 31:119.
[18] Petrocelll F P, Kleln M T. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24:635.
[19] Hurfft S J, Kleln M T. Ind. Eng. Chem. Fundam, 1983, 22:426.
[20] Bredenberg B S, Huuska M, Toropainen P. J. Catal., 1989, 120:401.
[21] Odebunmi E O, Ollis D F. J. Catal., 1983, 80:56.
[22] Jongerius A L, Jastrzebski R, Bruijnincx P C A, Weckhuysen B M. J. Catal., 2012, 285:315.
[23] Itthibenchapong V, Ratanatawanate C, Oura M, Faungnawakij K. Catal. Commun., 2015, 68:31.
[24] Leiva K, Sepúlveda C, García R, Fierro J L G, Reyes P, Villarroel M, Escalona N. J. Chil. Chem. Soc., 2013, 58:1947.
[25] Bui V N, Laurenti D, Afanasiev P, Geantet C. Appl. Catal. B, 2011, 101:239.
[26] Laurent E, Delmon B. Appl. Catal. A, 1994, 109:77.
[27] Wildschut J. Doctoral Dissertation of University of Groningen, 2009.
[28] Badawi M, Paul J F, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A, Kondratieva E, Goupil J M, El Fallah J, Gilson J P, Mariey L, Travert A, Maugé F. J. Catal., 2011, 282:155.
[29] Popov A, Kondratieva E, Mariey L, Goupil J M, El Fallah J, Gilson J, Travert A, Maugé F. J. Catal., 2013, 297:176.
[30] 包建国(Bao J G), 杨运泉(Yang Y Q), 王威燕(Wang W Y), 蒋新民(Jiang X M), 李娅(Li Y). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39:59.
[31] Breysse M, Afanasiev P, Geantet C, Vrinat M. Catal. Today, 2003, 86:5.
[32] Song W, Liu Y, Barath E, Zhao C, Lercher J. Green Chem., 2014, 17:1204.
[33] Ferrari M, Delmon B, Grange P. Micropor. Mesopor. Mater., 2002, 56:279.
[34] Ferrari M, Maggi R, Delmon B, Grange P. J. Catal., 2001, 198:47.
[35] Ferrari M, Delmon B, Grange P. Carbon, 2002, 40:497.
[36] Centeno A, Laurent E, Delmon B. J. Catal., 1995, 154:288.
[37] De la Puente G, Gil A, Pis J J, Grange P. Langmuir, 1999, 15:5800.
[38] Ruiz P E, Frederick B G, de Sisto W J, Austin R N, Ra dovic L R, Leiva K, García R, Escalona N, Wheeler M C. Catal. Commun., 2012, 27:44.
[39] Klicpera T, Zdra?il M. J. Catal., 2002, 206:314.
[40] Yang Y, Gilbert A, Xu C B. Appl. Catal. A, 2009, 360:242.
[41] Loricera C V, Pawelec B, Infantes-Molina A, Álvarez-Galván M C, Huirache-Acuña R, Nava R, Fierro J L G. Catal. Today, 2011, 172:103.
[42] 王威燕(Wang W Y), 杨运泉(Yang Y Q), 罗和安(Luo H A), 杨彦松(Yang Y S), 胡韬(Hu T), 刘文英(Liu W Y), 何兵(He B), 钦柏豪(Qin B H). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39(12):924.
[43] Quaschning V, Deutsch J, Druska P, Niclas H J, Kemnitz E. J. Catal., 1998, 177:164.
[44] Pratt K C, Sanders J V, Christov V. J. Catal., 1990, 124:416.
[45] Payen E, Gengembre L, Mauge F, Duchet J C, Lavalley J C. Catal. Today, 1991, 10:521.
[46] Afanasiev P, Geantet C, Breysse M. J. Catal., 1995, 153:17.
[47] 程新孙(Cheng X S), 罗来涛(Luo L T), 鲁勋(Lu X). 环境科学研究(Research of Environmental Sciences), 2008, 21(1):139.
[48] Bui V N, Laurenti D, Delichère P, Geantet C. Appl. Catal. B,2011, 101:246.
[49] Ratcliff M A, Johnson D K, Posey F L, Chum H L. Appl. Biochem. Biotechnol., 1988, 17:151.
[50] Girgis M J, Gates B C. Ind. Eng. Chem. Res., 1991, 30:2021.
[51] Viljava T R, Krause A O I. Stud. Surf. Sci. Catal., 1997, 106:343.
[52] Massoth F E, Politzer P, Concha M C, Murray J S, Jakow ski J, Simons J. J. Phys. Chem. B, 2006, 110:14283.
[53] Ryymin E, Honkela M L, Viljava T, Krause A O I. Appl. Catal. A, 2010, 389:114.
[54] Viljava T R, Komulainen R S, Krause A O I. Catal. Today, 2000, 60:83.
[55] Viljava T R, Saari E R M, Krause A O I. Appl. Catal. A, 2001, 209:33.
[56] ?enol O, Ryymin E M, Viljava T R, Krause A O I. J. Mol. Catal. A-Chem, 2007, 277:107.
[57] Hensen E J M, Kooyman P J, van der Meer Y, van der Kraan A M, de Beer V H J, van Veen J A R, van Santen R A. J. Catal., 2001, 199:224.
[58] Schweiger H, Raybaud P, Kresse G, Toulhoat H. J. Catal., 2002, 207:76.
[59] Yang Y Q, Tye C T, Smith K J. Catal. Commun., 2008, 9:1364.
[60] Yoosuk B, Tumnantong D, Prasassarakich P. Chem. Eng. Sci., 2012, 79:1.
[61] Yoosuk B, Tumnantong D, Prasassarakich P. Fuel, 2012, 91:246.
[62] Wang W Y, Zhu G H, Li L, Tan S, Wu K, Zhang X Y, Yang Y Q. Fuel, 2016, 174:1.
[63] Wang W Y, Tan S, Zhu G H, Wu K, Tan L, Li Y Z, Yang Y Q. RSC Adv., 2015, 5:94040.
[64] Guo J, Chen X, Yi Y J, Li W Z, Liang C H. RSC Adv., 2014, 4:16716.
[65] 刘宁(Liu N). 大连理工大学硕士论文(Master Dissertation of Dalian University of Technology), 2013.
[66] Genuit D, Afanasiev P, Vrinat M. J. Catal., 2005, 235:302.
[67] Kouzu M, Uchida K, Kuriki Y, Ikazaki F. Appl. Catal. A, 2004, 276:241.
[68] Wang W Y, Li L, Zhang K, Qiao Z Q, Liu P L, Yang Y Q. Reac. Kinet. Mech. Cat., 2014, 113:417.
[69] Wang W Y, Li L, Wu K, Zhu G, Tan S, Li W, Yang Y. RSC Adv., 2015, 5:61799.
[70] Yoosuk B, Song C S, Kim J H, Ngamcharussrivichai C, Prasassarakich P. Catal. Today, 2010, 149:52.
[71] Wang W Y, Zhang K, Qiao Z Q, Li L, Liu P L, Yang Y Q. Ind. Eng. Chem. Res., 2014, 53:10301.
[72] Wang W Y, Zhang K, Li L, Wu K, Liu P L, Yang Y Q. Ind. Eng. Chem. Res., 2014, 53:19001.
[73] Wang W Y, Li L, Wu K, Zhang K, Jie J, Yang Y Q. Appl. Catal. A, 2015, 495:8.
[74] Wang W Y, Li L, Wu K, Zhu G H, Tan S, Liu Y, Yang Y Q. RSC Adv, 2016, 6:31265.
[75] Wang W Y, Li L, Tan S, Wu K, Zhu G H, Liu Y, Xu Y, Yang Y Q. Fuel, 2016, 179:1.
[76] Plantenga F L, Leliveld R G. Appl. Catal. A, 2003, 248:1.
[77] Yi Y J, Zhang B S, Jin X, Wang L, Williams C T, Xiong G, Su D S, Liang C H. J. Mol. Catal. A-Chem., 2011, 351:120.
[78] Wang W Y, Zhang K, Qiao Z Q, Li L, Liu P L, Yang Y Q. Catal. Commun., 2014, 56:17.
[79] Wang C L, Wu Z Z, Tang C Y, Li L H, Wang D Z. Catal. Commun., 2013, 32:76.
[80] Wang W Y, Wu K, Li L, Tan S, Zhu G H, Li W S, He Z Q, Yang Y Q. Catal. Commun., 2016, 74:60.
[81] Ji N, Wang X Y, Weidenthaler C, Spliethoff B, Rinaldi R. ChemCatChem, 2015, 7:960.
[82] Hong Y K, Lee D W, Eom H J, Lee K Y. J. Mol. Catal. A-Chem., 2014, 392:241.
[83] Escalona N, Gil Llambias F J, Vrinat M, Nguyen T S, Laurenti D, López Agudo A. Catal. Commun., 2007, 8(3):285.
[84] Ruiz P E, Leiva K, Garcia R, Reyes P, Fierro J L G, Escalona N. Appl. Catal. A, 2010, 384:78.
[85] Sepúlveda C, Escalona N, García R, Laurentib D, Vrinat M. Catal. Today, 2012, 195:101.
[86] Leiva K, Martinez N, Sepulveda C, García R, Jiménez C A, Laurenti D, Vrinat M, Geantet C, Fierro J L G, Ghampson I T, Escalona N. Appl. Catal. A, 2015, 490:71.
[87] 聂明才(Nie M C), 霍淑平(Huo S P), 孔振武(Kong Z W). 林产化学与工业(Chemistry and Industry of Forest Products), 2010, (05):115.
[88] Grilc M, Likozar B, Levec J. Appl. Catal. B, 2014, 150/151:275.
[89] Veryasov G, Grilc M, Likozar B, Jesih A. Catal. Commun., 2014, 46:183.
[90] Zhou L J, Ma Q H, Xing X T, Zhou J H. Energ. Source, Part A, 2016, 38:723.
[91] Tian W Q, Li N X, Liu J H, Wang M, Deng J Q, Zhou J C, Ma Q H. Energy Fuels, 2015, 29:255.
[92] Joffres B, Nguyen M T, Laurenti D, Lorentz C, Souchon V, Charon N, Daudin A, Quignard A, Geantet C. Appl. Catal. B, 2016, 184:153.
[93] Kumar C R, Anand N, Kloekhorst A, Cannilla C, Bonura G, Frusteri F, Barta K, Heeres H J. Green Chem., 2015, 17:4921
[1] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[2] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[3] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[4] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[5] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[6] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[7] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[8] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[9] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[10] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[11] 吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学结合力载体在锂硫电池中的应用[J]. 化学进展, 2017, 29(6): 593-604.
[12] 黄雪琼, 孔龙, 黄寿强, 李良. 金属硫化物纳米吸附剂[J]. 化学进展, 2017, 29(1): 83-92.
[13] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[14] 张兴华, 陈伦刚, 张琦, 龙金星, 王铁军, 马隆龙. 木质素基酚类化合物加氢脱氧制取碳氢燃料[J]. 化学进展, 2014, 26(12): 1997-2006.
[15] 路瑶, 魏贤勇*, 宗志敏, 陆永超, 赵炜, 曹景沛. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(05): 838-858.