English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 838-858 DOI: 10.7536/PC121023 前一篇   后一篇

• 综述与评论 •

木质素的结构研究与应用

路瑶1, 魏贤勇*1, 宗志敏1, 陆永超1,2, 赵炜1, 曹景沛1   

  1. 1. 中国矿业大学化工学院 徐州 221116;
    2. 国家海洋局天津海水淡化与综合利用研究所 天津 300192
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 魏贤勇 E-mail:wei_xianyong@163.com
  • 基金资助:

    国家自然科学基金委员会创新研究群体科学基金项目(No. 51221462)、国家重点基础研究发展计划(973)项目(No. 2012CB215302)、江苏省自然科学基金项目(No. BK2011225)、江苏省普通高校研究生科研创新计划项目(No. CXZZ11_0302)、国家大学生创新性实验计划项目(No. 201210290059)和江苏高校优势学科建设工程项目资助

Structural Investigation and Application of Lignins

Lu Yao1, Wei Xianyong*1, Zong Zhimin1, Lu Yongchao1,2, Zhao Wei1, Cao Jingpei1   

  1. 1. School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, China;
    2. The Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration, Tianjin 300192, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-05-24 Published:2013-04-15

木质素是自然界中最丰富的可再生芳香族聚合物,可制备生物燃料和高附加值化学品。在以石油为基础的现代能源与化工行业中,木质素作为替代原料展现出良好的应用前景。要实现木质素的利用,必须首先充分了解木质素的组成与结构特征。然而,由于木质素来源的多样化和结构的复杂性给了解木质素的组成结构带来巨大的困难。本文以揭示木质素的化学组成为出发点,分析比较了应用于木质素结构研究的分离提取、转化以及分析测试等方法与技术,重点阐述了木质素结构研究最新进展,包括木质素的组成单体及其连接方式、生物合成过程、模型化合物的反应和木质化理论体系等,概述了木质素及其衍生物在聚合物材料、树脂、炭纤维、活性炭和高附加值化学品制备等领域的应用,展望了木质素的结构研究与应用的发展方向并提出了需要解决的相关难点问题。

As the most abundant natural renewable aromatic polymers, lignins can be used to produce bio-fuels and value-added chemicals. Lignins attract more and more attention in energy and chemical industrials, and have the potential to substitute petroleum as raw materials to some extent. To realize the application of lignins, the chemical composition and structural characteristics should be fully understood. However, the ubiquitous crosslinks among lignins, cellulose and hemicelluloses are complex, resulting in the incomplete separation of lignin from biomass.In addition, diverse sources and complex structures embarrass the development of investigation and application.With revealing the chemical compositions of lignins as the starting point, methodologies and technologies, such as pretreatment, separation, transformation and analysis, for the structural investigation of lignins are compared, and the up-to-date advances, including monolignols and linkages of lignins, biosynthetic processes, the reactions of model compounds and lignification theories are importantly reviewed. The applications of lignins and their derivatives in the fields of polymer blends, resins, carbon fiber, activated carbon and other chemicals along with related difficult problems are pointed out. Contents
1 Introduction
2 Methods of structural investigation
2.1 Methods of pretreatment and separation of lignins from biomass
2.2 Analysis methods
3 Progress in structural investigation of lignins
3.1 Molecular mass and molecular mass distribution
3.2 Monolignols
3.3 Linkages
3.4 Lignin/phenolic carbohydrate complexes
3.5 Macromolecules and stereochemistry of lignins
3.6 Biosynthesis
3.7 Lignin-related model compounds
3.8 Models of lignins
3.9 Computer-added designing and simulation
3.10 Theories of lignification
4 Applications
4.1 Additives and blends
4.2 Lignin-based resins
4.3 Carbon fiber and activated carbon
4.4 Value-added chemicals
5 Conclusions and prospectives

中图分类号: 

()

[1] Baurhoo B, Ruiz-Feria C A, Zhao X. Anim. Feed Sci. Technol., 2008, 144: 175-184
[2] Freudenberg K. Constitution and Biosynthesis of Lignins. Bertin Heidelberg, New York: Springer, 1968
[3] Chen Y R, Sarkanen S. Cellulose Chem. Technol., 2006, 40: 149-163
[4] Davin L B, Lewis N G. Curr. Opin. Biotech., 2005, 16: 407-415
[5] Chen Y R, Sarkanen S. Phytochemistry, 2010, 71: 453-462
[6] Ralph J, Brunow G, Harris P J, Dixon R A, Schatz P F, Boerjan W. Recent Advances in Polyphenol Research (Eds. Fouad D, Vincenzo L). Blackwell, 2008. 36-66
[7] Wang H, de Vries Frits P, Jin Y. J. Environ. Sci., 2009, 21: 488-493
[8] Maziero P, Neto M O, Machado D, Batista T, Cavalheiro C C S, Neumann M G, Craievich A F, Rocha G J M, Polikarpov I, Gonalves A R. Ind. Crop. Prod., 2012, 35: 61-69
[9] Rencoret J, Gutiérrez A, L Nieto, Jiménez-Barbero J, Faulds C B, Kim H, Ralph J, MartínezÁ T, del Río J C. Plant Physiology, 2011, 155: 667-682
[10] Nakashima J, Chen F, Jackson L, Shadle G, Dixon R A. New Phytol., 2008, 179: 738-750
[11] Ruel K, Berrio-Sierra J, Derikvand M M, Pollet B, Thévenin J, Lapierre C, Jouanin L, Joseleau J P. New Phytol., 2009, 184: 99-113
[12] Gierlinger N, Schwanninger M. Spectroscopy, 2007, 21: 69-89
[13] Shi C, Koch G, Ouzunova M, Wenzel G, Zein I, Lübberstedt T. Plant Mol. Biol., 2006, 62: 697-714
[14] Davison B H, Drescher S R, Tuskan G A, Davis M F, Nghiem N P. Appl. Biochem. Biotechnol., 2006, 129/132: 427-435
[15] Rencoret J, Marques G, Gutiérrez A, Ibarra D, Li J, Gellerstedt G, Santos J I, Jiménez-Barbero J, Martínez A T, del Río J C. Holzforschung, 2008, 62: 514-526
[16] Tapin S, Sigoillot J C, Asther M, Petit-Conil M. J. Agric. Food Chem., 2006, 54: 3697-3703
[17] Hu Z, Yeh T F, Chang H, Matsumoto Y, Kadla J F. Holzforschung, 2006, 60, 389-397
[18] Lin S Y, Lin I S. Ullmann's Encylcopedia of Industrial Chemistry. VCH: Weinheim, Germany, 1990. 305
[19] Savage D. Metso LignoBoost: Lignin from Black Liquor, Results Pulp & Paper, 2009, 3: 22-23
[20] Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Bioresour. Technol., 2005, 96: 673-686
[21] Scholze B, Hanser C, Meier D J. Anal. Appl. Pyrolysis, 2001, 58/59: 387-400
[22] Kim J Y, Shin E J, Eom I Y, Won K, Kim Y H, Choi D, Choi I G, Choi J W. Bioresour. Technol., 2011, 102: 9020-9025
[23] Capanema E A, Balakshin M Y, Chen C L. Holzforschung, 2004, 58: 464-472
[24] Zakzeski J, Bruijnincx P C, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110: 3552-3599
[25] Hatakeyama H, Hatakeyama T. Adv. Polym. Sci., 2010, 232: 1-63
[26] Holladay J E, Bozell J J, White J F, Johnson D. Top Value Added Candidates from Biomass, Volume II: Results of Screening for Potential Candidates from Biorefinery Lignin. Pacific Northwest National Laboratory, Richland, WA, 2007
[27] Baumberger S, Abaecherli A, Fasching M, Gellerstedt G, Gosselink R, Hortling B, Li J, Saake B, de Jong E. Holzforschung, 2007, 61: 459-468
[28] Xie X, Goodell B, Zhang D, Nagle D C, Qian Y, Peterson M L, Jellison J. Bioresour. Technol., 2009, 100: 1797-1802
[29] Sun X F, Jing Z X, Fowler P, Wu Y G, Rajaratnam M. Ind. Crop. Prod., 2011, 33: 588-598
[30] Takada D, Ehara K, Saka S. J. Wood Sci., 2004, 50: 253-259
[31] Kilpelaeinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. J. Agric. Food. Chem., 2007, 55: 9142-9148
[32] Heikkinen S, Toikka M M, Karhunen T, Kilpelainen I A. J. Am. Chem. Soc., 2003, 125: 4362-4367
[33] Capanema E A, Balakshin M Y, Chen C L, Gratzl J S, Gracz H. Holzforschung, 2001, 54: 302-308
[34] Balakshin M Y, Capanema E A, Chen C L, Gracz H. J. Agric. Food Chem., 2003, 51: 6116-6127
[35] Capanema E A, Balakshin M Y, Chen C L, Gratzl J S, Gracz H. Proc. 7th Brazilian Symp. Chem. of Lignin and Other Wood Components, Brazil, 61-68
[36] Lu F, Ralph J. Plant J., 2003, 35: 535-544
[37] Ralph J, Akiyama T, Kim H, Lu F, Schatz P F, Marita J M, Ralph S A, Reddy M S S, Chen F, Dixon R A. J. Biol. Chem., 2006, 281: 8843-8853
[38] Koda K, Gaspar A R, Yu L, Argyropoulos D S. Holzforschung, 2005, 59: 612-619
[39] Lundquist K, Langer V, Li S, Stomberg R. Proceedings of the Twelfth International Symposium on Wood and Pulping Chemistry. Madison: U. Wisconsin-Madison Press, 2003. 239-244
[40] Boerjan W, Ralph J, Baucher M. Ann. Rev. Plant Biol., 2003, 54: 519-546
[41] Van Parijs F R D, Morreel K, Ralph J, Boerjan W, Merks R M H. Plant Physiol., 2010, 153: 1332-1344
[42] Ritter S K. Chem. Eng. News, 2007, 85: 15-24
[43] Baumberger S, Dole P, Lapierre C. J. Agric. Food Chem., 2002, 50: 2450-2453
[44] Brunow G. Biorefineries-Industrial Processes and Products. (Eds. Kamm B, Gruber P R, Kamm M), Wiley-VCH Verlag, 2006. 151
[45] Da Costa Sousa L. Chundaway S P S, Balan V, Dale B E. Curr. Opin. Biotechnol., 2009, 20: 339-347
[46] Fujimoto A, Matsumoto Y, Meshitsuka G, Chang H. J. Wood Sci., 2005, 51: 89-91
[47] Capanema E A, Balakshin M Y, Katahira R, Chang H, Jameel H. Structural Variations in Hardwood Lignins. Proc. 14th Intern. Symp. Wood Fibre Pulping Chem., CD-ROM. Durban, South Africa, 2007
[48] Balakshin M Y, Capanema E A, Chang H. Holzforschung, 2007, 61: 1-7
[49] Holtman K M, Chang H, Kadla J F. J. Agric. Food Chem., 2004, 52: 720-726
[50] Guerra A, Filpponen I, Lucia L A, Argyropoulos D S. J. Agric. Food Chem., 2006, 54: 9696-9705
[51] Guerra A, Filppone I, Lucia L A, Saquing C, Baumberger S, Argyropoulos D S. J. Agric. Food Chem., 2006, 54: 5939-5947
[52] Liitiä T M, Maunu S L, Hortling B, Toikka M, Kilpeläinen I. J. Agric. Food. Chem., 2003, 51: 2136-2143
[53] Scholze B, Meier D. J. Anal. Appl. Pyrolysis, 2001, 60: 41-54
[54] Hughes P. Cellulosic Ethanol——The Sustainable Fuel, Lignol Energy. Burnaby, BC, Canada, 2009
[55] Lora J H, Glasser W G. J. Polym. Environ., 2002, 10: 39-48
[56] Tsujino J, Kawamoto H, Saka S. Wood Sci. Technol., 2004, 37: 299-307
[57] Wahyudiono, Kanetake T, Sasaki M, Goto M. Chem. Eng. Technol., 2007, 30: 1113-1122
[58] Klein M T, Virk P S. Energy Fuels, 2008, 22: 2175-2182
[59] Fort D A, Remsing R C, Swatloski R P, Moyna P, Guillermo M, Rogers R D. Green Chem., 2007, 9: 63-69
[60] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[61] Lee S H, Doherty T V, Linhardt R J, Dordick J S. Biotechnol. Bioeng., 2009, 102: 1368-1376
[62] Zhu S J. Chem. Technol. Biotechnol., 2008, 83: 777-779
[63] Sun N, Rahman M, Qin Y, Maxim M L, Rodríquez H, Rogers R D. Green Chem., 2009, 11: 646-655
[64] Pu Y Q, Jiang N, Ragauskas A J. J. Wood Chem. Technol., 2007, 27: 23-33
[65] Blanchard L A, Brennecke J F. Ind. Eng. Chem. Res., 2001, 40: 287-292
[66] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399: 28-29
[67] Fasching M, Schroeder P, Wollboldt R P, Weber H K, Sixta H. Holzforschung, 2007, 62: 15-23
[68] Li J, Gellerstedt G, Toven K. Bioresour. Technol., 2009, 100: 2556-2561
[69] Wu S B, Argyropoulos D S. J. Pulp Paper Sci., 2003, 29: 235-240
[70] Argyropoulos D S, Sun Y, Paluš E. J. Pulp Paper Sci., 2002, 28: 50-54
[71] 王少光(Wang S G), 武书彬(Wu S B), 郭伊丽(Guo Y L), 郭秀强(Guo X Q). 华南理工大学学报(J. South China Univ. Technol. ), 2006, 34(12): 101-104
[72] 武书彬(Wu S B), 李梦实(Li M S). 林产化学与工业(Chem. Ind. Forest Prod. ), 2006, 26(1): 104-108
[73] 王少光(Wang S G), 武书彬(Wu S B), 郭秀强(Guo X Q), 郭伊丽(Guo Y L). 华南理工大学学报(J. South China Univ. Technol. ), 2006, 34(3): 39-42
[74] Lou R, Wu S B. J. Cellulose Chem. Technol., 2008, 42: 371-380
[75] 武书彬(Wu S B), 娄瑞(Lou R), 赵增立(Zhao Z L). 造纸科学与技术(Paper Sci. Technol. ), 2008, 27(6): 87-92
[76] 娄瑞(Lou R), 武书彬(Wu S B), 谭杨(Tan Y), 赵增立(Zhao Z L). 南京理工大学学报(J. Nanjing Univ. Sci. Technol. ), 2009, 33(6): 824-828
[77] Yang Q, Wu S B, Lou R, Lv G J. J. Anal. Appl. Pyrol., 2010, 87: 65-69
[78] 娄瑞(Lou R), 武书彬(Wu S B), 吕高金(Lv G J), 杨卿(Yang Q). 华南理工大学学报(J. South China Univ. Technol. ), 2010, 38(8): 1-6
[79] Lou R, Wu S B, Lv G J. J. Anal. Appl. Pyrolysis, 2010, 89: 191-196
[80] Lou R, Wu S B, Lv G J. BioResources, 2010, 5: 827-837
[81] Lou R, Wu S B. Appl. Energ., 2011, 88: 316-322
[82] Donaldson L, Hague J, Snell R. Holzforschung, 2001, 55: 379-385
[83] Sun S N, Li M F, Yuan T Q, Xu F, Sun R C. Ind. Crop. Prod., 2012, 37: 51-60
[84] Mansouri N E, Salvadó J. J. Ind. Crops Prod., 2007, 26: 116-124
[85] Capanema E, Balakshin M Y, Heerman M L, Yeh T F, Yu Q, Nelson C D, Mckeand S E, Li B, Jameel H, Chang M, Mullin T J. Chemical Properties in CAD Deficient Pine and Their Effect on Pulping. Proc. 13th Intern. Symp. Wood, Fibre Pulping Chem., New Zealand, 2005. 173-180
[86] Capanema E A, Balakshin M Y, Kadla J F, Chang H. O Papel, 2007, N5: 74-79
[87] Vester J, Felby C, Nielsen O F, Barsberg S. Appl. Spectrosc., 2004, 58: 404-409
[88] Saariaho A M, Jaaskelainen A S, Matousek P, Towrie M, Parker A W, Vuorinen T. Holzforschung, 2004, 58: 82-90
[89] Saariaho A M, Argyropoulos D S, Jaaskelainen A S, Vuorinen T. Vib. Spectrosc., 2005, 37: 111-121
[90] Barsberg S, Matousek P, Towrie M. Macromol. Biosci., 2005, 5: 743-752

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[8] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[9] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[10] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[11] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[12] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[13] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[14] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[15] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
阅读次数
全文


摘要

木质素的结构研究与应用