English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1997-2006 DOI: 10.7536/PC140815 前一篇   后一篇

• 综述与评论 •

木质素基酚类化合物加氢脱氧制取碳氢燃料

张兴华, 陈伦刚, 张琦, 龙金星, 王铁军, 马隆龙*   

  1. 中国科学院广州能源研究所 中国科学院可再生能源重点实验室 广州 510640
  • 收稿日期:2014-08-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 马隆龙 E-mail:mall@ms.giec.ac.cn
  • 基金资助:

    国家高技术研究发展计划(863)项目(No. 2012AA101808)和国家自然科学基金项目(No. 51106166, 51106167)资助

Production of Hydrocarbons via Hydrodeoxygenation of Lignin-Derived Phenolic Compounds

Zhang Xinghua, Chen Lungang, Zhang Qi, Long Jinxing, Wang Tiejun, Ma Longlong*   

  1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received:2014-08-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the National High Technology Research and Development Program (No. 2012AA101808) and the National Natural Science Foundation of China (No. 51106166, 51106167)

木质素是生物质中碳资源密度最高的组分.木质素到高品质液体燃料的转化主要通过其解聚的单环酚类化合物经加氢脱氧工艺来实现.来源于木质素的酚类化合物的加氢脱氧产物一般为C6~C10之间的碳氢化合物,与现有的商品汽油组分碳数分布一致,是理想的交通替代燃料.酚类化合物的加氢脱氧研究近年来发展迅速,文献报道数量激增.本文对硫化态Mo基催化剂、贵金属催化剂及非硫化非贵金属催化剂作用下单环酚类化合物的加氢脱氧反应特性分别进行了回顾,对典型酚类模型化合物在催化反应机理进行了简述,并对载体材料在加氢脱氧过程中的作用进行了介绍.随后,在此基础上总结了当前酚类化合物加氢脱氧过程中的难点,并对下一步的技术发展方向进行展望.

Lignin is the component with the highest carbon content in biomass. The transformation of lignin to high-grade liquid fuels can be achieved via hydrodeoxygenation(HDO) of phenolic intermediates derived from the products of lignin depolymerization. The octane numbers of the hydrodeoxygenation products of phenolic intermediates are quite high. They have vapor pressures and carbon atom number (C6~C10) within the range of gasoline. Thus, these hydrodeoxygenation products would be the most desirable components for a fungible liquid transportation fuel. This is very meaningful to application of lignin. Recently, researches about the hydrodeoxygenation of phenolic compounds develop rapidly. In this paper, the HDO reactions of phenolic compounds using sulfided Mo-based catalyst, noble metal catalyst and inexpensive non-sulfided catalyst are reviewed in detail. It is found that most of the investigated catalysts are bifunctional catalysts, combining the hydrogenation function of active metal with hydrolysis and dehydration of support. The catalytic mechanism for the HDO of phenolic compounds is sketched, and the effects of catalyst supporter on the catalytic activity are also discussed. Furthermore, the current technique challenges are summarized, and future technologic explorations for the efficient hydrodeoxygenation of lignin-derived phenolic compounds are proposed.

Contents
1 Introduction
2 Sulfided Mo-based catalysts
3 Noble catalysts
4 Inexpensive non-sulfided catalysts
5 Effects of supports
6 Conclusions and outlook

中图分类号: 

()

[1] Singh A, Pant D, Korres N E, Nizami A S, Prasad S, Murphy J D. Bioresour. Technol., 2010, 101: 5003.
[2] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106: 4044.
[3] Zakzeski J, Bruijinincx P C, Jongerius A L, Weckhuysen. Chem. Rev., 2010, 110: 3552.
[4] Zhang X, Zhang Q, Wang T, Ma L, Yu Y, Chen L. Bioresour. Technol., 2013, 134: 73.
[5] Zhao C, Lercher J A. Angew. Chem. Int. Ed., 2012, 124: 6037.
[6] Elliott D C. Energy Fuels, 2007, 21: 1792.
[7] Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates B C, Rahimpour M R. Energy Environ. Sci., 2014,7: 103.
[8] 王威燕(Wang W Y),张小哲(Zhang X Z),杨运泉(Yang Y Q),杨彦松(Yang Y S),彭会左(Peng H Z),刘文英(Liu W Y). 催化学报(Chinese Journal of Catalysis), 2012, 33: 215.
[9] Laurent E, Delmon B. J. Catal., 1994, 146: 281.
[10] Topsoe H,Clausen B S,Candia R,Wivel C, Mørup S. Bulletin des Societes Chimiques Belges, 1981, 90: 1189.
[11] Kallury R K M R, Restivo W M, Tidwell T T, Boocock D G B, Crimi A, Douglas J. J. Catal., 1985, 96: 535.
[12] Laurent E, Delmon B. Appl. Catal. A, 1994, 109: 77.
[13] Bui V N, Laurenti D, Afanasiev P, Geanter C. Appl. Catal. B, 2011, 101: 239.
[14] Bui V N, Laurenti D, Delichère P. Appl. Catal. B, 2011, 101: 246.
[15] Prins R. Adv. Catal., 2001, 46: 399.
[16] Massoth F E, Politzer P, Concha M C, Murray J S, Jakowshi J, Simons J. J. Phys. Chem. B, 2006,110: 14283.
[17] Mills P, Korlann S, Bussell M E, Reynolds M V, Ovchinnikov M V, Angelici R J, Stinner C, Weber T, Prins R. J. Phys.Chem. A, 2001, 105: 4418.
[18] Lauritsen J V, Bollinger M V, Lægsgaard E, Jacobsen K W, Nørskov J K, Clausen B S, Topsøe H, Besenbacher F. J. Catal., 2004, 221: 510.
[19] Bunch A Y, Ozkan U S. Catal., 2002, 206: 177.
[20] Bunch A Y, Wang X, Ozkan U S. Appl. Catal. A, 2008, 346: 96.
[21] Shabtai J, Nag N K, Massoth F E. J Catal., 1987, 104: 413.
[22] 王威燕(Wang W Y). 湘潭大学博士论文(Doctoral Dissertation of Xiangtan University), 2011.
[23] Bejblová M, Zámostny P, Cerveny L, ? ejka J. Appl.Catal. A, 2005, 296: 169.
[24] Pham T T, Lobban L L, Resasco D E, Mallinson R G. J. Catal., 2009, 266: 9.
[25] Fisk C A, Margan T, Ji Y, Crocker M, Crofcheck C, Lewis S A. Appl. Catal. A, 2009, 358: 150.
[26] Zhao C, Kou Y, Angeliki A L, Li X, Lercher J A. Angew.Chem.Int.Ed., 2009, 48: 3987.
[27] Procházková D, Zámostn Dý P, Bejblová M, ? erven Dý L, ? ejka J. Appl. Catal. A, 2007, 332: 56.
[28] Runnebaum R C, Nimmanwudipong T, Block D E, Gates B C. Catal. Sci. Technol., 2012, 2: 113.
[29] Park H W, Hong U G, Lee Y J, Choi J H, Song I K. Appl. Catal. A, 2012, 437/438: 112.
[30] Gutierrez A, Kaila R K, Honkela M L, Slioor R, Krause A O I. Catal. Today, 2009, 147: 239.
[31] Hong D Y, Miller S J, Agrawal P K, Jones C W. Chem. Commun., 2010, 46: 1038.
[32] Lin Y C, Li C L, Wan H P, Lee H T, Liu C F. Energy Fuels, 2011, 25: 890.
[33] Zhang H, Cheng Y T, Vispute T P, Xiao R, Huber G W. Energy Environ. Sci., 2011, 4: 2297.
[34] Vispute T P, Zhang H, Sanna A, Xiao R, Huber G W. Science, 2010, 330: 1222.
[35] Yan N, Zhao C, Dyson P J. Chemsuschem, 2008, 1: 626.
[36] Liu H, Jiang T, Han B, Liang S, Zhou Y. Science, 2009, 326: 1250.
[37] Zhao C, Wang H Z, Yan N, Xiao C X, Mu X D, Dyson P J, Kou Y. J. Catal., 2007, 250: 33.
[38] Zhao C, Lercher J A. ChemCatChem, 2012, 4: 64.
[39] Ohta H, Kobayashi H, Hara K, Fukuoka A. Chem. Commun, 2011, 47: 12209.
[40] Li K, Wang R, Chen J. Energy Fuels, 2011, 25: 854.
[41] Fan Y, Lu J, Shi G, Liu H, Bao X. Catal. Today, 2007, 125: 220.
[42] Whiffen V M L, Smith K J. Energy Fuels, 2010, 24: 4728.
[43] Whiffen V M L, Smith K J, Straus S K. Appl. Catal. A, 2012, 419/420: 111.
[44] Romero Y, Richard F, Reneme Y, Brunet S. Appl. Catal. A, 2009, 353: 46.
[45] Zhao H Y, Li D, Bui P, Oyama S T. Appl. Catal. A, 2011, 391: 305.
[46] Jongerius A L, Gosselink R W, Dijkstra J, Bitter J H, Bruijnincx P C A, Weckhuysen B M. ChemCatChem, 2013, 5: 2964.
[47] Ghampson I T, Sep Dú lveda C, Garcia R, Radovic L R, García Fierro J L, DeSisto W J, Escalona N. Appl. Catal. A, 2012, 439/440: 111.
[48] 杨运泉(Yang Y Q),周恩深(Zhou E S),贺丹(He D),王威燕(Wang W Y), 刘文英(Liu W Y). 湘潭大学自然科学学报(Natural Science Journal of Xiangtan University),2009, 31(2): 90.
[49] Zhang W,Zhang Y,Zhao L F,Wei W. Energy Fuels, 2010, 24: 2052.
[50] Wang W, Yang Y, Bao J, Luo H. Catal. Commun., 2009, 11: 100.
[51] Wang W, Yang Y, Luo H, Liu W. Catal. Commun., 2010, 11: 803.
[52] 王威燕(Wang W Y),杨运泉(Yang Y Q),罗和安(Luo H A),王锋(Wang F),胡韬(Hu T),刘文英(Liu W Y). 燃料化学学报(Journal of Fuel Chemistry and Technology),2011, 39(5): 367.
[53] Wang W Y,Yang Y Q, Luo H A, Peng H Z, Wang F. Ind. Eng.Chem. Res., 2011, 50: 10936.
[54] 于玉肖(Yu Y X),张兴华(Zhang X H),王铁军(Wang T J),徐莹(Xu Y),马隆龙(Ma L L),张琦(Zhang Q),张丽敏(Zhang L M). 高等学校化学学报(Chemical Journal of Chinese Universities),2013, 34(9): 2178.
[55] Zhao C, Kou Y, Lemonidou A A, Li X, Lercher J A. Chem. Commun., 2010, 46: 412.
[56] Zhang X, Wang T, Ma L, Zhang Q, Jiang T. Bioresour. Technol., 2013, 127: 306.
[57] Zhang X, Zhang Q, Chen L, Xu Y, Wang T, Ma L. Chin. J. Catal. 2014, 35: 302.
[58] Zhang X, Wang T, Ma L, Zhang Q, Huang X, Yu Y. Applied Energy, 2013, 112: 533.
[59] Yakovlev V A, Khromova S A, Sherstyuk O V, Dundich V O, Ermakov D Y, Novopashina V M, Lebedev M Y, Bulavchenko O, Parmon V N. Catal. Today, 2009, 144: 362.
[60] Ardiyanti A R, Khromova S A, Venderbosch R H, Yakovlev V A, Heeres H J. Appl. Catal. B, 2012, 117/118: 105.
[61] Ardiyanti A R, Khromova S A, Venderbosch R H, Yakovlev V A, Melián-Cabrera I V, Heeres H J. Appl. Catal. A, 2012, 449: 121.
[62] Rogatis L D, Montini T, Cognigni A, Olivi L, Fornasiero P. Catal. Today, 2009, 145: 176.
[63] Zhang X, Wang T, Ma L, Zhang Q, Yu Y, Liu Q. Catal. Commun., 2013, 33: 15.
[64] Bykova M V, Ermakov D Y, Khromova S A, Smirnov A A, Lebedev M Y, Yakovlev V A. Catal. Today, 2014, 220: 21.
[65] Deutsch K L, Shanks B H. Appl. Catal. A, 2012, 447/448: 144.
[66] Portjanskaja E, Stepanova K, Klauson D, Preis S. Catal. Today, 2009, 144: 26.
[67] Ruiz P E, Frederick B G, De Sisto W J, Austin R N, Radovic L R, Leiva K, Garcia R, Escalona N, Wheeler M C. Catal. Commun., 2012, 27: 44.
[68] De la Puente G, Gil A, Pis J J, Grange P. Langmuir, 1999, 15: 5800.
[69] Ferrari M, Delmon B, Grange P. Carbon, 2002, 40: 497.
[70] Chen A, Li Y, Chen J, Zhao G, Ma L, Yu Y. ChemPlusChem, 2013, 78: 1370.
[71] Chen J, Zhang W, Chen L, Ma L, Gao H, Wang T. ChemPlusChem, 2013, 78: 142.
[72] Fogassy G, Thegarid N, Schuurman Y, Mirodatos C. Energy Environ. Sci., 2011, 4: 5068.
[73] Zhu X L,Lobban L L,Mallinson R G,Resasco D E. J. Catal., 2011, 281: 21.
[74] Popov A, Kondratieva E, Goupil J M, Mariey L, Bazin P, Gilson J P, Travert A, Maugé F. J. Phys. Chem. C, 2010, 114: 15661.
[75] Popov A, Kondratieva E, Mariey L, Goupil J M, El Fallah J, Gilson J P, Travert A, Maugé F. J. Catal., 2013, 297: 176.
[76] Murali Dhar G, Srinivas B N, Rana M S, Kumar M, Maity S K. Catal. Today, 2003, 86: 45.
[77] Maity S K, Rana M S, Bej S K, Ancheyta-Juarez J, Dhar G M, Rao T P. Catal. Lett., 2001, 72: 115.
[78] 包建国(Bao J G),杨运泉(Yang Y Q),王威燕(Wang W Y),蒋新民(Jiang X M),李娅(Li Y). 燃料化学学报(Journal of Fuel Chemistry and Technology),2011, 39(1): 59.
[79] Zhang X, Long J, Kong W, Zhang Q, Chen L, Wang T, Ma L,Li Y. Energy Fuels, 2014, 28: 2562.
[80] Valle B, Castaño P, Olazar M, Bilbao J, Gayubo A G. J. Catal., 2012, 285: 304.
[81] Laurent E, Delmon B. Appl. Catal. A, 1994, 109: 97.
[82] De Miguel Mercader F, Koehorst P J J, Heeres H J, Kersten S R A, Hogendoorn J A. AIChE J., 2011, 57: 3160.
[83] Klicpera T, Zdrazil M. J.Catal., 2002, 206: 314.
[84] Yang Y, Gilbert A, Xu C C. Appl. Catal. A, 2009, 360: 242.

[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[6] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[7] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[8] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[9] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.
[10] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[11] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[12] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[13] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[14] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[15] 刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体[J]. 化学进展, 2020, 32(1): 133-144.