English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 617-626 DOI: 10.7536/PC190901 前一篇   后一篇

• 综述 •

木质素基生物质聚氨酯

马晓振1,2, 罗清1, 秦冬冬1,3, 陈景1,**(), 朱锦1, 颜宁4,**()   

  1. 1.中国科学院宁波材料技术与工程研究所 宁波 315201
    2.中国科学院大学 北京 100049
    3.天津大学化工学院 天津 300350
    4.多伦多大学化学工程和应用化学系 多伦多 M5S 3B3
  • 收稿日期:2019-09-02 修回日期:2019-11-29 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 陈景, 颜宁
  • 基金资助:
    国家重点研发计划(2017YFE0102300); 多伦多大学(加拿大)OCE计划(29983); 国家自然科学基金项目(51503218)

Lignin-Based Polyurethane

Xiaozhen Ma1,2, Qing Luo1, Dongdong Qin1,3, Jing Chen1,**(), Jin Zhu1, Ning Yan4,**()   

  1. 1.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Chemical Engineering Institute, Tianjin University, Tianjin 300350, China
    4.Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3B3, Canada
  • Received:2019-09-02 Revised:2019-11-29 Online:2020-05-15 Published:2020-02-20
  • Contact: Jing Chen, Ning Yan
  • About author:
    ** e-mail: (Jing Chen);
  • Supported by:
    National Key Research and Development Program of China(2017YFE0102300); OCE Project #29983 from University of Toronto(Canada)(29983); National Natural Science Foundation of China(51503218)

聚氨酯材料是由多元醇与异氰酸酯经过聚加成反应得到的一种多功能性的高分子材料,在涂料、弹性体、胶黏剂、泡沫等领域具有非常广泛的应用。但是多元醇与异氰酸酯都来源于石油,随着石油资源的消耗以及环境问题的加剧,寻求可再生原料成为研究热点。目前对于生物基聚氨酯的报道,大多都是针对多元醇的生物质替代,其中利用最多的是植物油和木质素。木质素作为储量丰富的天然有机碳资源,当前利用效率极低,大多被作为燃料而浪费。与植物油相比,在合成聚氨酯方面木质素不存在“与人争粮”问题并且相关产品性能优越,但是木质素的利用仍存在一定缺陷,如分离困难、均一性差、易聚集、位阻大和活性低等,这让木质素的直接利用或改性利用成为关键。本文主要介绍了木质素在生物基聚氨酯合成中的发展现状和最新研究进展。最后,在此基础上展望了木质素基聚氨酯材料在不同领域的发展前景。

Polyurethane(PU), one of the most multifunctional polymers, is produced by polyaddition reaction of polyols and isocyanates. It has found wild applications in coatings, elastomers, adhesives, foams. However, one of the problems related to the production of PU is its dependence on petroleum-based resources. With the consumption of petroleum resources and the destruction of environment, the searching for renewable raw materials has become a research hotspot. At present, most reports are based on biobased polyols replacing petroleum-based polyols to prepare polyurethane, among which vegetable oil and lignin are the most used. Lignin, a natural organic carbon resource with abundant reserves, is low value-added and wasted as fuel at present. Compared with vegetable oil, lignin does not compete with human for food and the performance of related products is superior. However, the utilization of lignin has some problems, such as isolation, heterogeneity, aggregation, steric hindrance and low activity. These disadvantages make the unmodified utilization and modified utilization of lignin become the key problem. This paper introduces the development status and latest research progress of lignin in bio-based polyurethane synthesis. Finally, the development prospects of lignin-based polyurethane materials in different fields are prospected.

Contents

1 Introduction

2 Lignin

3 Lignin bio-based polyurethane elastomer

3.1 Preparation of bio-based polyurethane elastomers from unmodified lignin

3.2 Preparation of bio-based polyurethane elastomers with modified lignin

4 Lignin bio-based polyurethane foam

4.1 Preparation of bio-based polyurethane foams from unmodified lignin

4.2 Preparation of bio-based polyurethane foams from modified lignin

5 Conclusion and outlook

()
图1 酶解木质素以及其结构
Fig. 1 Enzymatic lignin and structure
图式1 木质素单体结构:1香豆醇;2松柏醇;3芥子醇
Scheme 1 Structures of monolignols;1. Coumarol alcohol; 2. Coniferyl alcohol; 3. Sinapyl alcohol
图式2 木质素单体共振式
Scheme 2 Lignin unit resonant type
图2 聚乙二醇/甘油液化木质素多元醇
Fig. 2 Polyethylene glycol/glycerol liquefied lignin polyol
图3 未改性木质素制备高性能聚氨酯弹性体[70]
Fig. 3 Preparation of high performance polyurethane elastomers from unmodified lignin[70]
图式3 木质素羟基改性的四种方式
Scheme 3 Four methods of lignin hydroxyl modification
图4 季铵盐改性木质素-二氧化硅复合材料[18]
Fig. 4 Quaternary ammonium salt modified lignin-silica composite[18]
图式4 RAFT-点击化学制备自修复木质素基聚合物[78]
Scheme 4 Preparation of self-healing lignin-based polymers in RAFT-click chemistry[78]
图式5 木质素基热塑性聚氨酯[80]
Scheme 5 Lignin-based thermoplastic polyurethane[80]
图式6 环碳酸酯代替环氧乙烷改性木质素[102]
Scheme 6 Cyclocarbonate replaces ethylene oxide to modify lignin[102]
[1]
刘厚钧(Liu H J) . 聚氨酯弹性体手册. 第二版 (Handbook of Polyurethane Elastomer, 2nd Edition). 北京: 化学工业出版社( Beijing: Chemcal Industry Press), 2012.
[2]
朱锦(Zhu J), 刘小青(Liu X Q) . 生物基高分子材料 (Biobased Polymers). 北京: 科学出版社( Beijing Science Press), 2018.
[3]
MaisonneuveL, Lamarzelle O , Rix E , Grau E , Cramail H . Chemical Reviews, 2015,115(22):12407.
[4]
Ma Z , Li C , Fan H , Wan J , Luo Y , Li BG . Industrial & Engineering Chemistry Research, 2017,56(47):14089.
[5]
Gang H , Lee D , Choi K Y , Kim H N , Ryu H , Lee D S , Kim B G . ACS Sustainable Chemistry & Engineering, 2017,5(6):4582.
[6]
Gandini A , Lacerda T M , Carvalho A J , Trovatti E . Chemical Reviews, 2016,116(3):1637.
[7]
Kalita H , Karak N . Journal of Applied Polymer Science, 2014,131(1):39579.
[8]
Feng Y , Liang H , Yang Z , Yuan T , Luo Y , Li P , Yang Z , Zhang C . ACS Sustainable Chemistry & Engineering, 2017,5(8):7365.
[9]
Pantone V , Laurenza A G , Annese C , Fracassi F , Fusco C , Nacci A , Russo A , D’Accolti L . Industrial Crops and Products, 2017,109:1.
[10]
Kurańska M , Prociak A , Kirpluks M , Cabulis U . Industrial Crops and Products, 2015,74:849.
[11]
Zhang C , Madbouly S A , Kessler M R . ACS Applied Materials & Interfaces, 2015,7(2):1226.
[12]
Jayavani S , Sunanda S , Varghese T O , Nayak S K . Journal of Cleaner Production, 2017,162:795.
[13]
Zheng F , Zhao Y , Dong J , Ning Z , Xin L , Li W , Kai Z , Kai G . RSC Advances, 2016,6:90771.
[14]
Li C , Zhao X , Wang A , Huber G W , Zhang T . Chem. Rev., 2015,115(21):11559.
[15]
Upton B M , Kasko A M . Chem. Rev., 2015,116(4):2275.
[16]
Wang H , Lin W , Qiu X , Fu F , Zhong R , Liu W , Yang D . ACS Sustainable Chemistry & Engineering, 2018,6(3):3696.
[17]
Ma Y , Dai J , Wu L , Fang G , Guo Z . Polymer, 2017,114:113.
[18]
Xiong W , Qiu X , Yang D , Zhong R , Qian Y , Li Y , Wang H . Chemical Engineering Journal, 2017,326:803.
[19]
Xiong W L , Yang D J , Zhong R S , Li Y , Zhou H F , Qiu X Q . Industrial Crops and Products, 2015,74:285.
[20]
LuW M , Li Q , Zhang Y , YuH W , Hirose Sh , Hatakeyama H , Matsumoto YJ , Jin Z F . Journal of Wood Science, 2018,64:287.
[21]
Pan Y , Zhan J , Pan H , Wang W , Tang G , Song L , Hu Y . ACS Sustainable Chemistry & Engineering, 2016,4(3):1431.
[22]
Wicklein B , Kocjan A , Salazar-Alvarez G , Carosio F , Camino G , Antonietti M , Bergstrom L . Nature Nanotechnology, 2015,10(3):277.
[23]
Chetali G , Newell R W . Langmuir, 2014,30:9303.
[24]
Oribayo O , Feng X , Rempel G L , Pan Q . Chemical Engineering Journal, 2017,323:191.
[25]
Lee A , Deng Y . European Polymer Journal, 2015,63:67.
[26]
路瑶(Lu Y), 魏贤勇(Wei X Y), 宗志敏(Zong Z M), 陆永超(Lu Y C), 赵炜(Zhao W), 曹景沛(Cao J P) . 化学进展 (Progress in Chemistry), 2013,25(5):838.
[27]
Mahmood N , Yuan Z , Schmidt J , Xu C . Renewable and Sustainable Energy Reviews, 2016,60:317.
[28]
Mucci V L , Ivdre A , Buffa J M , Cabulis U , Stefani P M , Aranguren M I . Polymer Engineering & Science, 2017,58(2):125.
[29]
Laurichesse S , Avérous L . Progress in Polymer Science, 2014,39(7):1266. http://dx.doi.org/10.1016/j.progpolymsci.2013.11.004

doi: 10.1016/j.progpolymsci.2013.11.004     URL    
[30]
Song Y , Zong X , Wang N , Yan N , Shan X , Li J . Materials, 2018,11:1505. http://www.mdpi.com/1996-1944/11/9/1505

doi: 10.3390/ma11091505     URL    
[31]
Ma Z , Li S , Fang G , Patil N , Yan N . International Journal Biological Macromolecules, 2016,93:1279. https://linkinghub.elsevier.com/retrieve/pii/S014181301631385X

doi: 10.1016/j.ijbiomac.2016.09.095     URL    
[32]
D’Souza J , Camargo R , Yan N . Polymer Reviews, 2017,57(4):668. https://www.tandfonline.com/doi/full/10.1080/15583724.2017.1283328

doi: 10.1080/15583724.2017.1283328     URL    
[33]
Song Y , Wang Z , Yan N , Zhang R , Li J . Polymers, 2016,8:209. http://www.mdpi.com/2073-4360/8/6/209

doi: 10.3390/polym8060209     URL    
[34]
Abdulkhani A , Karimi A , Mirshokraie A , Hamzeh Y , Marlin N , Morth G . Journal of Applied Polymer Science, 2013,130(1):710. http://dx.doi.org/10.1002/app.39506

doi: 10.1002/app.39506     URL    
[35]
Chung H , Washburn N R . ACS Applied Materials & Interfaces, 2012,4(6):2840. https://pubs.acs.org/doi/10.1021/am300425x

doi: 10.1021/am300425x     URL    
[36]
Stephanie E K , Jessica R , Peter K , Rolf A , Matthias R , Steffen W , Margit S . RSC Advances, 2018,8:40765. http://xlink.rsc.org/?DOI=C8RA08579J

doi: 10.1039/C8RA08579J     URL    
[37]
Yona A M C , Budija F , Kričej B , Kutnar A , Pavlič M , Pori P , Tavzes Č , Petrič M . Industrial Crops and Products, 2014,54:296. http://dx.doi.org/10.1016/j.indcrop.2014.01.027

doi: 10.1016/j.indcrop.2014.01.027     URL    
[38]
Xue B L , HuangP L , SunY C , Li X P , Sun R C . RSC Advances, 2017,7:6123. http://xlink.rsc.org/?DOI=C6RA26318F

doi: 10.1039/C6RA26318F     URL    
[39]
D’Souza J , George B , Camargo R , Yan N . Industrial Crops and Products, 2015,76:1. https://linkinghub.elsevier.com/retrieve/pii/S0926669015302028

doi: 10.1016/j.indcrop.2015.06.037     URL    
[40]
Lu J , Li X , Yang R , Zhao J , Liu Y , Qu Y . Chemical Engineering Journal, 2014,247:142. http://dx.doi.org/10.1016/j.cej.2014.02.094

doi: 10.1016/j.cej.2014.02.094     URL    
[41]
Van d B , Schutyser W , Vanholme R , Driessen T , Koelewijn S F , Renders T , De Meester B , Huijgen W J J , Dehaen W , Courtin C M , Lagrain B , Boerjan W , Sels B F . Energy & Environmental Science, 2015,8(6):1748.
[42]
Yan N , Zhao C , Dyson P J , Wang C , Liu L T , Kou Y . ChemSusChem, 2008,1(7):626. http://doi.wiley.com/10.1002/cssc.v1%3A7

doi: 10.1002/cssc.v1:7     URL    
[43]
Huang X Y , Cornelis F D H , Xie J L , Wu Q L , Dorin B , Qi J Q . Materials and Design, 2018,138:11. https://linkinghub.elsevier.com/retrieve/pii/S0264127517309875

doi: 10.1016/j.matdes.2017.10.058     URL    
[44]
沈晓骏(Shen X J), 黄攀丽(Huang P L), 文甲龙(Wen J L), 孙润仓(Sun R C) . 化学进展 (Progress in Chemistry), 2017,29(1):162.
[45]
Mark Ahmad , Charles R. Taylor , David Pink , Kerry Burton , Daniel Eastwood , Gary D. Bending , Timothy D. H . Bugg. Molecularbiosystems, 2010,6:815.
[46]
Sergeev A G , Webb J D , Hartwig J F . Journal of the American Chemical Society, 2012,134:20226. http://dx.doi.org/10.1021/ja3085912

doi: 10.1021/ja3085912     URL    
[47]
Wang X , Rinaldi R . ChemSusChem, 2012,5:1455. http://doi.wiley.com/10.1002/cssc.v5.8

doi: 10.1002/cssc.v5.8     URL    
[48]
Lange H , Decina S , Crestini C . European Polymer Journal. 2013,49:1151. http://dx.doi.org/10.1016/j.eurpolymj.2013.03.002

doi: 10.1016/j.eurpolymj.2013.03.002     URL    
[49]
Xue B L , Wen J L , Sun R C . Materials, 2015,8(2):586. http://www.mdpi.com/1996-1944/8/2/586

doi: 10.3390/ma8020586     URL    
[50]
Mateus M M , Acero N F , Bordado J C , Santos R G . Industrial Crops and Products, 2015,74:9. https://linkinghub.elsevier.com/retrieve/pii/S0926669015300741

doi: 10.1016/j.indcrop.2015.04.063     URL    
[51]
Soares B , Gama N , Freire C , BarrosTimmonsA, Brandão I , Silva R , Pascoal Neto C , Ferreira A . ACS Sustainable Chemistry & Engineering, 2014,2(4):846.
[52]
Jia Z , Lu C , Zhou P , Wang L . RSC Advances, 2015,5(66):53949. http://xlink.rsc.org/?DOI=C5RA09477A

doi: 10.1039/C5RA09477A     URL    
[53]
Kim K H , Yu J H , Lee E Y . Journal of Industrial and Engineering Chemistry, 2016,38:175. https://linkinghub.elsevier.com/retrieve/pii/S1226086X16300909

doi: 10.1016/j.jiec.2016.05.002     URL    
[54]
Lee J H , Lee J H , Kim D K , Park C H , Yu J H , Lee E Y . Journal of Industrial and Engineering Chemistry, 2016,34:157. https://linkinghub.elsevier.com/retrieve/pii/S1226086X1500516X

doi: 10.1016/j.jiec.2015.11.007     URL    
[55]
Lee J H , Lee E Y . Bioresource Technology, 2016,208:24. https://linkinghub.elsevier.com/retrieve/pii/S096085241630181X

doi: 10.1016/j.biortech.2016.02.048     URL    
[56]
Gianmarco G , Valeria P , Raffaella S , Marinella L , Stefano T . ACS Sustainable Chemistry & Engineering, 2015,3:1145.
[57]
Zhang X , Liu W , Yang D , Qiu X . Advanced Functional Materials, 2019,29:1806912. http://doi.wiley.com/10.1002/adfm.v29.4

doi: 10.1002/adfm.v29.4     URL    
[58]
Chen C , Li F , Zhang Y , Wang B , Fan Y , Wang X , Sun R . Chemical Engineering Journal, 2018,350:173. https://linkinghub.elsevier.com/retrieve/pii/S1385894718310143

doi: 10.1016/j.cej.2018.05.189     URL    
[59]
Liu W , ZhouR, Zhou D , Ding G , Soah J M , Yue C Y , Lu X . Carbon, 2015,83:188. https://linkinghub.elsevier.com/retrieve/pii/S0008622314011087

doi: 10.1016/j.carbon.2014.11.036     URL    
[60]
Seyed S , Kong J , Lu X . ACS Sustainable Chemistry & Engineering, 2017,5(4):3148.
[61]
Xue B , Yang Y , Sun Y , Fan J , Li X , Zhang Z . International Journal Biological Macromolecules, 2019,122:954. https://linkinghub.elsevier.com/retrieve/pii/S0141813018340455

doi: 10.1016/j.ijbiomac.2018.11.018     URL    
[62]
Culebras M , Beaucamp A , Wang Y , Clauss M M , Frank E , Collins M N . ACS Sustainable Chemistry & Engineering, 2018,6(7):8816.
[63]
Yan N , Yuan Y , Dykeman R , Kou Y , Dyson P J . Angewandte Chemie International Edition in English, 2010,49(32):5549.
[64]
张兴华(Zhang X H), 陈伦刚(Zhang L G), 张琦(Zhang Q), 龙金星(Long J X), 王铁军(Wang T J), 马隆龙(Ma L L) . 化学进展 (Progress in Chemistry), 2014,26(12):1997. http://www.progchem.ac.cn//CN/abstract/abstract11479.shtml

doi: 10.7536/PC140815     URL    
[65]
Sahoo S , Seydibeyoğlu M Ö , Mohanty A K , Misra M . Biomass and Bioenergy, 2011,35(10):4230. https://linkinghub.elsevier.com/retrieve/pii/S0961953411004041

doi: 10.1016/j.biombioe.2011.07.009     URL    
[66]
Guilherme P O , Murilo PM , Gizilene C , Andrelson W R , Juliana C G , Eduardo R , Silvia L F . Composites Part B, 2017,110:459. https://linkinghub.elsevier.com/retrieve/pii/S1359836816313889

doi: 10.1016/j.compositesb.2016.11.035     URL    
[67]
Kurimoto Y , Takeda M , Doi S , Tamura Y , Ono H . Bioresource Technology, 2001,77:33. https://linkinghub.elsevier.com/retrieve/pii/S096085240000136X

doi: 10.1016/S0960-8524(00)00136-X     URL    
[68]
Miikka V , Juho A S , Petteri P , Henrikki L , Mirja I . Cellulose, 2017,24:2531. http://link.springer.com/10.1007/s10570-017-1286-x

doi: 10.1007/s10570-017-1286-x     URL    
[69]
Tavares L B , Schleder G R , Nacas A M , Rosa D S , Santos D J . EXPRESS Polymer Letters, 2016,10(11):927. http://www.expresspolymlett.com/letolt.php?file=EPL-0007327&mi=c

doi: 10.3144/expresspolymlett.2016.86     URL    
[70]
Li H , Wang C , Liu S L , Yuan D , Zhou X , Tan J , Stubbs L , He C B . ACS Sustainable Chemistry & Engineering, 2017,5:7942
[71]
Zhang Y , Liao J , Fang X , Bai F , Qiao K , Wang L . ACS Sustainable Chemistry & Engineering, 2017,5(5):4276.
[72]
Tomak E D , Yazici O A , Sam P , Gonultas O . Polymer Degradation and Stability, 2018,152:289. https://linkinghub.elsevier.com/retrieve/pii/S0141391018300843

doi: 10.1016/j.polymdegradstab.2018.03.012     URL    
[73]
Duval A , Averous L . ChemSusChem, 2017,10(8):1813. http://doi.wiley.com/10.1002/cssc.201700066

doi: 10.1002/cssc.201700066     URL    
[74]
Hajirahimkhan S , Xu C C , Ragogna P J . ACS Sustainable Chemistry & Engineering, 2018,6(11):14685.
[75]
Laurichesse S , Huillet C , Avérous L . Green Chemistry, 2014,16(8):3958. http://dx.doi.org/10.1039/c4gc00596a

doi: 10.1039/c4gc00596a     URL    
[76]
Buono P , Duval A , Averous L , Habibi Y . ChemSusChem, 2018,11(15):2472. https://onlinelibrary.wiley.com/toc/1864564x/11/15

doi: 10.1002/cssc.v11.15     URL    
[77]
Yu J , Wang J , Wang C , Liu Y , XuY, Tang C , Chu F . Macromol Rapid Commun, 2015,36(4):398. http://doi.wiley.com/10.1002/marc.v36.4

doi: 10.1002/marc.v36.4     URL    
[78]
Liu H , Chung H . Macromolecules, 2016,49(19):7246. https://pubs.acs.org/doi/10.1021/acs.macromol.6b01028

doi: 10.1021/acs.macromol.6b01028     URL    
[79]
Tomonori S , Rebecca H B , Marcus A H , Deanna L P , Joseph M P , Jamie M M , Frederick S B , Martin K , Amit K N . Green Chemistry, 2012,14:3295. http://dx.doi.org/10.1039/c2gc35933b

doi: 10.1039/c2gc35933b     URL    
[80]
Saito T , Perkins J H , Jackson D C , Trammel N E , Hunt M A , Naskar A K . RSC Advances, 2013,3(44):21832. http://dx.doi.org/10.1039/c3ra44794d

doi: 10.1039/c3ra44794d     URL    
[81]
Ugarte L , Gómez-Fernández S , Peña-Rodríuez C , Prociak A , Corcuera M A , Eceiza A . ACS Sustainable Chemistry & Engineering, 2015,3(12):3382.
[82]
Arbenz A , Frache A , Cuttica F , Avérous L . Polymer Degradation and Stability, 2016,132:62. https://linkinghub.elsevier.com/retrieve/pii/S0141391016300945

doi: 10.1016/j.polymdegradstab.2016.03.035     URL    
[83]
Sung G , Kim J W , Kim J H . Journal of Industrial and Engineering Chemistry, 2016,44:99. https://linkinghub.elsevier.com/retrieve/pii/S1226086X16302787

doi: 10.1016/j.jiec.2016.08.014     URL    
[84]
Zhu H , Peng Z , Chen Y , Li G , Wang L , Tang Y , Pang R , Khan Z U H , Wan P . RSC Advances, 2014,4(98):55271. http://dx.doi.org/10.1039/c4ra08429b

doi: 10.1039/c4ra08429b     URL    
[85]
Merle J , Trinsoutrot P , Charrier-El B F . European Polymer Journal, 2016,84:577. https://linkinghub.elsevier.com/retrieve/pii/S0014305716308692

doi: 10.1016/j.eurpolymj.2016.09.044     URL    
[86]
D’Souza J , Camargo R , Yan, N . Journal of Applied Polymer Science, 2014,131(16):40599.
[87]
Carriço C S , Fraga T , Pasa V M D . European Polymer Journal, 2016,85:53. https://linkinghub.elsevier.com/retrieve/pii/S0014305716304116

doi: 10.1016/j.eurpolymj.2016.10.012     URL    
[88]
Hayati A N , Evans D A C , Laycock B , Martin D J , Annamalai P K . Industrial Crops and Products, 2018,117:149. https://linkinghub.elsevier.com/retrieve/pii/S0926669018302152

doi: 10.1016/j.indcrop.2018.03.006     URL    
[89]
Hu S , Li Y . Industrial Crops and Products, 2014,57:188. http://dx.doi.org/10.1016/j.indcrop.2014.03.032

doi: 10.1016/j.indcrop.2014.03.032     URL    
[90]
Hu S , Luo X , Li Y . ChemSusChem, 2014,7(1):66. http://doi.wiley.com/10.1002/cssc.v7.1

doi: 10.1002/cssc.v7.1     URL    
[91]
Gama N V , Soares B , Freire C S R , Silva R , Neto C P , Barros-Timmons A , Ferreira A . Materials & Design, 2015,76:77.
[92]
Xue B L , Wen J L , Sun R C . ACS Sustainable Chemistry & Engineering, 2014,2(6):1474.
[93]
Santos O S , Coelho S M , Silva V R , Mussel W N , Yoshida M I . Journal of Hazardous Materials, 2017,324:406. https://linkinghub.elsevier.com/retrieve/pii/S030438941631007X

doi: 10.1016/j.jhazmat.2016.11.004     URL    
[94]
Zhang X , Jeremic D , Kim Y , Street J , Shmulsky R . Polymers, 2018,10:706. http://www.mdpi.com/2073-4360/10/7/706

doi: 10.3390/polym10070706     URL    
[95]
Gómez-Fernández S , Ugarte L , Calvo-Correas T , Peña-Rodríguez C , Corcuera M A , Eceiza A . Industrial Crops and Products, 2017,100:51. https://linkinghub.elsevier.com/retrieve/pii/S092666901730095X

doi: 10.1016/j.indcrop.2017.02.005     URL    
[96]
Wang S Y , Yang D J , Qiu X Q . Industry & Engineering Chemistry Research, 2019,58:496.
[97]
Bernardini J , Cinelli P , Anguillesi I , Coltelli MB , Lazzeri A . European Polymer Journal, 2015,64:147. https://linkinghub.elsevier.com/retrieve/pii/S0014305714004248

doi: 10.1016/j.eurpolymj.2014.11.039     URL    
[98]
Mahmood N , Yuan Z , Schmidt J , Xu C . European Polymer Journal, 2015,68:1. https://linkinghub.elsevier.com/retrieve/pii/S0014305715002463

doi: 10.1016/j.eurpolymj.2015.04.030     URL    
[99]
Cinelli P , Anguillesi I , Lazzeri A . European Polymer Journal, 2013,49(6):1174. http://dx.doi.org/10.1016/j.eurpolymj.2013.04.005

doi: 10.1016/j.eurpolymj.2013.04.005     URL    
[100]
Mahmood N , Yuan Z , Schmidt J , Tymchyshyn M , Xu C . Green Chemistry, 2016,18(8):2385. http://xlink.rsc.org/?DOI=C5GC02876K

doi: 10.1039/C5GC02876K     URL    
[101]
Duval A , Avérous L . ACS Sustainable Chemistry & Engineering, 2016,4(6):3103.
[102]
Kühnel I , Saake B , Lehnen R . Industrial Crops and Products, 2017,101:75. https://linkinghub.elsevier.com/retrieve/pii/S0926669017301462

doi: 10.1016/j.indcrop.2017.03.002     URL    
[103]
Lin Gu , Wu QY , Yu H B . RSC Advances, 2016,6:17888. http://xlink.rsc.org/?DOI=C5RA26308E

doi: 10.1039/C5RA26308E     URL    
[104]
Ghosh T , Karak N . ACS Omega, 2018,3(6):6849. https://pubs.acs.org/doi/10.1021/acsomega.8b00734

doi: 10.1021/acsomega.8b00734     URL    
[105]
Huang J H , Liu W F , Qiu X Q . ACS Sustainable Chemistry & Engineering, 2019,7(7):6550.
[106]
Zhao Q , Qi H J , Xie T . Progress in Polymer Science, 2015,49:79.
[107]
Liu J , Cao J , Zhou Z , Liu R , Yuan Y , Liu X . ACS Omega, 2018,3(9):11128. https://pubs.acs.org/doi/10.1021/acsomega.8b00925

doi: 10.1021/acsomega.8b00925     URL    
[108]
Antonio M B L , Alba B , Concepción V , Manuel H , María E A , María E. E , Ursula F , José M F . ACS Sustainable Chemistry & Engineering, 2018,6:5198.
[109]
Singhal P , Small W , Cosgriff-Hernandez E , Maitland D J , Wilson T S . Acta Biomaterialia, 2014,10(1):67. http://dx.doi.org/10.1016/j.actbio.2013.09.027

doi: 10.1016/j.actbio.2013.09.027     URL    
[110]
Hardy J G , Palma M , Wind S J , Biggs M J . Advanced Materials, 2016,28(27):5717. http://doi.wiley.com/10.1002/adma.v28.27

doi: 10.1002/adma.v28.27     URL    
[111]
Chen H , Nair S S , Chauhan P , Yan N . Chemical Engineering Journal, 2019,360:393. https://linkinghub.elsevier.com/retrieve/pii/S1385894718324586

doi: 10.1016/j.cej.2018.11.222     URL    
[112]
Yang Q , Shi J , Lin L , Peng L , Zhuang J . Bioresource Technology, 2012,123:49. http://dx.doi.org/10.1016/j.biortech.2012.07.070

doi: 10.1016/j.biortech.2012.07.070     URL    
[113]
Pan X J , Saddler JN . Biotechnology for Biofuels, 2013,6:12. http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-6-12

doi: 10.1186/1754-6834-6-12     URL    
[114]
Kumar A , Tumu V R , Subhendu R C , Ray Chowdhury S , RamanaReddy S V S . International Journal of Biological Macromolecules, 2019,121:588. https://linkinghub.elsevier.com/retrieve/pii/S0141813018329982

doi: 10.1016/j.ijbiomac.2018.10.057     URL    
[115]
Thébault M , Pizzi A , Dumarçay S , Gerardin P , Fredon E , Delmotte L . Industrial Crops and Products, 2014,59:329. http://dx.doi.org/10.1016/j.indcrop.2014.05.036

doi: 10.1016/j.indcrop.2014.05.036     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[5] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[6] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[9] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[10] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[13] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[14] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.
[15] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
阅读次数
全文


摘要

木质素基生物质聚氨酯