English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 303-317 DOI: 10.7536/PC200524 前一篇   后一篇

• 综述 •

木质素:一种有潜力的生物质基催化剂来源

陈祥云1, 袁冰1,*(), 于凤丽1, 解从霞1, 于世涛2   

  1. 1 青岛科技大学化学与分子工程学院 生态化工国家重点实验室培育基地 青岛 266042
    2 青岛科技大学化工学院 青岛 266042
  • 收稿日期:2020-05-12 修回日期:2020-07-30 出版日期:2021-02-24 发布日期:2020-12-28
  • 通讯作者: 袁冰
  • 基金资助:
    国家自然科学基金项目(31870554); 国家自然科学基金项目(31470595); 山东省重点研发计划(公益专项)(2017GGX40105); 山东省泰山学者项目(ts201511033)

Lignin: A Potential Source of Biomass-Based Catalysts

Xiangyun Chen1, Bing Yuan1,*(), Fengli Yu1, Congxia Xie1, Shitao Yu2   

  1. 1 State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology,Qingdao 266042, China
    2 College of Chemical Engineering, Qingdao University of Science and Technology,Qingdao 266042, China
  • Received:2020-05-12 Revised:2020-07-30 Online:2021-02-24 Published:2020-12-28
  • Contact: Bing Yuan
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(31870554); National Natural Science Foundation of China(31470595); Shandong Key R&D Plan(Public Welfare Special Project)(2017GGX40105); Taishan Scholars Projects of Shandong(ts201511033)

木质素是自然界中储量丰富的唯一含芳环生物质可再生资源,但复杂的结构使其难以高效利用,目前大部分被废弃。除通过氧化还原等过程可将其转化为石油化工产品的替代品外,木质素结构中丰富的含氧官能团及制浆过程引入的硫元素等均可提供有效位点,为其作为催化剂基质提供了丰富的可行性。本文从木质素资源的来源和结构分析出发,根据不同催化反应的机理和制备催化剂过程中的结构改性类型,综述了具有不同结构特征的木质素基催化剂分别在生物质平台化合物水解等酸碱催化反应、电催化反应和负载金属纳米粒子催化氧化还原反应等过程中的应用,讨论了木质素类型、制备或活化改性条件对催化材料性能的影响,也指出了当前木质素基催化剂的开发研究难点和未来发展方向。

Lignin is one of the richest natural biomass, and more importantly, it is the only renewable resource containing aromatic structures in nature reserves. However, a large part of this resource are abandoned by far due to the complex structure, which makes the effective utilization of lignin quite difficult. It is well known that lignin can be transformed into a series of substitutes for petrochemical products via some redox processes. Beyond that, not only the oxygen-rich functional groups in lignin structure, but also the sulfur element introduced during the pulping process can provide effective active sites, making lignin resource a promising substrate of various catalysts. In this paper, following a brief summary of the species and structural characteristics of lignin resource, the applications of lignin-based catalysts in acid-base catalytic reactions, such as hydrolysis of biomass platform compounds, electrocatalysis reactions,oxidation-reduction reactions catalyzed by supported metal nanoparticles are summarized according to the catalytic mechanism and modification methods of lignin. The effects of lignin types, preparation or activation conditions on the performance of lignin-based catalytic materials are also discussed in detail. Besides, the current problems and future develop prospects of the development of lignin-based catalysts are also indicated.

Contents

1 Introduction

2 Application of lignin-based catalysts in acid-base catalytic systems

2.1 Lignosulfonic acid and its salts catalysts

2.2 Lignin-based acidic catalysts with hydroxyl groups as active groups

2.3 Lignin-based acidic resin catalysts

2.4 Lignin carbon-based acidic catalysts

2.5 Lignin-based acid-base synergistic catalysts

3 Application of lignin-based catalysts in redox catalytic systems

3.1 Lignin-based redox catalysts with quinone/ hydroquinone(Q/HQ) groups as active groups

3.2 Lignin supporting or stable redox catalysts

3.3 Lignin carbon-based redox catalysts

4 Conclusion and outlook

()
图1 天然木质素的来源及结构单元
Fig. 1 Schematic illustration of source and structural unit of natural lignin
图2 从木质纤维素中分离木质素小结
Fig. 2 A craft summary for separation of lignin from lignocellulose
表1 离子交换法制备的木质素基酸催化剂及应用
Table 1 Application of lignin-based acid catalyst prepared by ion exchange method
图3 木质素磺酸盐型固体催化剂[58]
Fig. 3 Solid catalysts prepared from lignosulfonate by ion exchange[58]
表2 木质素碳基固体酸的催化应用
Table 2 Catalytic applications of lignin carbon-based solid acids
Raw
materials
Synthesis conditions BET surface
area, m2·g-1
Acid density, mmol·g-1 Reactions ref
Total acid —SO3H —COOH —OH
Enzymatic hydrolyzed residues(EHR) Pyrolysis carbonization:
N2, 400 ℃, 2 h
Sulfonation: H2SO4, 150 ℃, 10 h
1.88 4.62 0.62 - - Transformation of cellulose into nanofibers and platform chemicals 66
Residual lignin Sulfonation: N2, H2SO4,
150 ℃, 1 h
4.7 1.71 0.68 - - Esterification of
acidified soybean soapstocks
67
SLS Sulfonation: H2SO4,
150~175 ℃, 0.5 h
(Sulfonation: 20% fuming H2SO4, 150~175 ℃, 12 h)
3.19
(2.18)
4.64
(5.90)
0.96
(1.24)
3.36
(3.66)
0.92
(1.04)
Esterification of
cyclohexanecarboxylic acid with anhydrous ethanol
68
SLS Pyrolysis carbonization:
N2, 250 ℃, 6 h
Sulfonation: H2SO4, 130 ℃, 10 h
Oxidation: H2O2, 50 ℃, 1.5 h
- 4.78 0.68 - - Hydrolysis of
hemicellulose in
corncob
69
AL Pyrolysis carbonization:
Ar, 450 ℃, 1 h
- 0.13 0.08 0.02 0.02 Hydrolysis of cellulose and woody biomass 70
Dealkali lignin(DAL) Hydrothermal carbonization: 265 ℃
Sulfonation: H2SO4, 150 ℃, 1 h
- 1.15 0.74 0.27 0.83 Dehydration of inulin into HMF 71,72
DAL Carbonization:
supercritical ethanol,
260 ℃, 8.4 MPa, 20 h
Sulfonation: H2SO4, 150 ℃, 10 h
113.1 5.05 1.41 - - Esterification of oleic acid, esterification and transesterification of plantoils 73
Kraft lignin Chemical activation: H3PO4, 1 h
Pyrolysis carbonization:
N2, 400 ℃, 1 h
Sulfonation: H2SO4, 200 ℃, 2 h
54.8 1.30 - - - Esterification of oleic acid and conversion of non-pretreated Jatropha oil to biodiesel 74
AL Electrospun: NaOH
Pyrolysis carbonization:
N2, 900 ℃, 0.5 h
Sulfonation: H2SO4, 150 ℃, 20 h
Hydrothermal treated:
150 ℃, 5 atm
475 0.88 0.56 - - Hydrolysis of highly crystalline rice straw cellulose 75
AL Impregnation: KOH
Pyrolysis carbonization:N2, 400 ℃, 1 h; 600 ℃, 2 h
Sulfonation: N2, H2SO4,
150 ℃, 10 h
524.9 - 0.40 - - Hydrolysis of
pretreated rice straw
76
Enzymatic hydrolysis lignin residue Impregnation: FeCl3, 5 h
Pyrolysis carbonization:
N2, 400 ℃, 1 h
Sulfonation: N2, H2SO4,
150 ℃, 10 h
234.61
5.65(without impregnation)
1.95
1.42(without impregnation)
0.77
0.65(without impregnation)
- - Dehydration of fructose into
5-HMF
77
SLS Pretreatment: ice-templating
Pyrolysis carbonization:N2, 450 ℃,
1 hIon exchange: H2SO4
122 3.49 1.21 - - Acetalization of
glycerol to bio-additives
78
AL Polymerization and dispersion(F123 as template agent);Pyrolysis carbonization:N2, 900 ℃, 3 h
Sulfonation: H2SO4, 180 ℃, 12 h
156 - 1.82 - - Hydrolysis of bagasse cellulose 79
Kraft lignin Impregnation: NaOH, F123 Pyrolysis carbonization: N2, 900 ℃, 3 h;Sulfonation: H2SO4, 180 ℃, 12 h 262 - 0.65 - - Fructose dehydration to 5-HMF 80
图4 SLS的dTG-MS光谱[88]
Fig. 4 dTG-MS spectra of SLS[88]
图5 (a)磺化碳固体酸可能的分解途径[90];(b)磺化碳催化剂上醇吸附导致的失活[91]
Fig. 5 (a) Possible schematic diagram of sulfonated carbonaceous solid acids decomposition[90];(b) Deactivation of sulfonated carbonaceous solid acids by adsorbed alcohols[91]
图6 活性碳结构[84]
Fig. 6 Chemical structure of activated carbons[84]
图7 Hf-LigS的合理结构以及Hf-LigS催化的5-HMF还原反应的可能机理[103]
Fig. 7 Reasonable structure of Hf-LigS and possible mechanism of 5-HMF reduction catalyzed by Hf-LigS[103]
表3 木质素修饰电极在电催化反应中的应用
Table 3 Lignin modified electrode for electrocatalytic reaction
图式1 木质素的电化学活性及木质素衍生的醌介导酸性亚硝酸盐的还原[50,107]
Scheme 1 Electrochemical activity of lignin and lignin-derived ruthenium mediated reduction of acidic nitrite[50,107]
图8 木质素通过交联制备有效载体并耦合活性中心[123?~125]
Fig. 8 Lignin cross-links to prepare effective carriers and couple active centers[123?~125]
图式2 木质素制备金属NPs的机制
Scheme 2 Mechanism of preparation of metal NPs by lignin
表4 木质素碳基氧化还原催化剂的制备及应用
Table 4 Preparation and application of lignin carbon-based redox catalyst
Raw
materials
Catalysts Activator/dopant Processing
temperature,℃
BET surface
area, m2·g-1
Reactions ref
AL N-S-C 900 - 900 486 Oxygen reduction reaction(ORR) 151
Lignin Lignin derived multi-doped(N, S, Cl) carbon materials NaCl/ZnCl2 1000 1289 ORR 152
Low-sulfur lignin Sulfur-nitrogen co-doped porous biocarbon catalyst NaCl/ZnCl2 1000 1218.68 Electrochemical CO2 reduction
reaction(ECRR)
153
Lignin Pt/Lg-CDs-800 - 800 - Methanol electro-oxidation reaction(MOR) 154
Kraft lignin Pd-activated carbon catalysts H3PO4 900 1248 Suzuki-Miyaura cross-coupling
reaction and hydrogenation
155
Eucalyptus lignin High-Performance Magnetic Activated Carbon KOH 800 2875 Magnetic activated carbons(MACE) 156
MACE High-Performance Magnetic Activated Carbon-NiMo Supports KOH 800 2875 Hydrodeoxygenation(HDO) 157
SLS Co3S4/C
NiS/C
MoS2/C
Co3Mo6S/C
NiMoS3/C
S/C
Mg(OH)2 700 379
560
630
485
412
571
HDO 158
DAL Mo-DAL - 800 19.7 Hydrogen production from formic acid 159
Lignin A single-atom cobalt over nitrogen-doped carbon(Co SAs/N@C) Zn(OAC)2·2H2O 900 - Transformation of 5-HMF and furfural into the carboxylic acids. 160
AL Co-Mn/N@C Dicyandiamide 800 - Aerobic oxidation of 5-
hydroxymethylfurfural to 2,5-
furandicarboxylic acid
161
AL M SAs-N@C, M=Fe, Co, Ni, Cu Dicyandiamide
Zn(OAC)2·2H2O
1000 - Oxidative esterification of primary alcohols 162
SLS N,S-doped hierarchical porous catalysts(Co-Nx/Sy-C) Thiourea 900 314 Peroxymonosulfate-based oxidative
degradation and borohydride-
mediated reductive amination of
several pollutants
163
图9 金属-木质素配合物的配位导向组装: 自下而上的策略来合成原子分散的Co SAs/N@C催化剂并用于2,5-呋喃二甲酸(FDCA)的转化[160]
Fig. 9 Coordination directed assembly of metal-lignin complexes: Bottom-up strategy to synthesize atom-dispersed Co SAs/N@C catalyst and its use for 2,5-furandicarboxylic acid(FDCA) conversion[160]
[1]
Zimmerman J B, Anastas P T, Erythropel H C, Leitner W. Science, 2020, 367:397.

URL     pmid: 31974246
[2]
Armand M, Tarascon J M. Nature, 2008, 451:652.

URL     pmid: 18256660
[3]
Zhang Z R, Song J L, Han B X. Chem. Rev., 2017, 117:6834.

doi: 10.1021/acs.chemrev.6b00457     URL     pmid: 28535680
[4]
Huber G W, Chheda J N, Barrett C J, Dumesic J A. Science, 2005, 308(5727):1446.
[5]
Achyuthan K E, Achyuthan A M, Adams P D, Dirk S M, Harper J C, Simmons B A, Singh A K. Molecules, 2010, 15:8641.

URL     pmid: 21116223
[6]
Hu L H, Pan H, Zhou Y H, Zhang M. BioResources, 2011, 6:3515.
[7]
Boerjan W, Ralph J, Baucher M. Annu. Rev. Plant Biol., 2003, 54:519.
[8]
Tuck C O, Perez E, Horvath I T, Sheldon R A, Poliakoff M. Science, 2012, 337:695.

URL     pmid: 22879509
[9]
Gosselink R J A, de Jong E, Guran B, Abächerli A. Ind. Crop. Prod., 2004, 20:121.
[10]
Doherty W O S, Mousavioun P, Fellows C M. Ind. Crop. Prod., 2011, 33:259.
[11]
Stewart D. Ind. Crop. Prod., 2008, 27:202.
[12]
Calvo-Flores F G, Dobado J A. ChemSusChem, 2010, 3:1227.

doi: 10.1002/cssc.201000157     URL     pmid: 20839280
[13]
Wang H, Qiu X Q, Liu W F, Fu F B, Yang D J. Ind. Eng. Chem. Res., 2017, 56:11133.
[14]
Liu R, Dai L, Hu L Q, Zhou W Q, Si C L. Mater. Sci. Eng., C, 2017, 80:397.
[15]
Xu F, Zhu T T, Rao Q Q, Shui S W, Li W W, He H B, Yao R S. J. Environ. Sci., 2017, 53:132.
[16]
Luo X G, Liu C, Yuan J, Zhu X R, Liu S L. ACS Sustainable Chem. Eng., 2017, 5:6539.

doi: 10.1021/acssuschemeng.7b00674     URL    
[17]
Hu L Q, Dai L, Liu R, Si C L. J. Mater. Sci., 2017, 52:13689.
[18]
Zhao S, Abu-Omar M M. Biomacromolecules, 2015, 16:2025.
[19]
Sen S, Patil S, Argyropoulos D S. Green Chem., 2015, 17:4862.
[20]
Ten E, Vermerris W. J. Appl. Polym. Sci., 2015, 132:42069.
[21]
Thakur V K, Thakur M K, Raghavan P, Kessler M R. ACS Sustainable Chem. Eng., 2014, 2:1072.
[22]
Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110:3552.

URL     pmid: 20218547
[23]
Upton B M, Kasko A M. Chem. Rev., 2016, 116:2275.

URL     pmid: 26654678
[24]
Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115:11559.
[25]
Chakar F S, Ragauskas A J. Ind. Crop. Prod., 2004, 20:131.
[26]
Holmgren A, Brunow G, Henriksson G, Zhang L M, Ralph J. Org. Biomol. Chem., 2006, 4:3456.
[27]
Akiyama T, Goto H, Nawawi D S, Syafii W, Matsumoto Y, Meshitsuka G. Holzforschung, 2005, 59:276.
[28]
Crestini C, D’Auria M. Tetrahedron, 1997, 53:7877.
[29]
Xie X F, Goodell B, Zhang D J, Nagle D C, Qian Y H, Peterson M L, Jellison J. Bioresour. Technol., 2009, 100:1797.

URL     pmid: 19027291
[30]
Beste A, Buchanan A C. J. Org. Chem., 2009, 74:2837.
[31]
Freudenberg K. Nature, 1959, 183:1152.

URL     pmid: 13657039
[32]
Jiang T D. Lignin. Beijing: Chemical Industry Press, 2009.
( 蒋挺大. 木质素. 北京: 化学工业出版社, 2009.).
[33]
Aro T, Fatehi P. ChemSusChem, 2017, 10:1861.
[34]
Hu J J, Zhang Q G, Lee D J. Bioresour. Technol., 2018, 247:1181.
[35]
Strassberger Z, Tanase S, Rothenberg G. RSC Adv., 2014, 4:25310.
[36]
Galkin M V, Samec J S M. ChemSusChem, 2016, 9:1544.

URL     pmid: 27273230
[37]
Sluiter J B, Ruiz R O, Scarlata C J, Sluiter A D, Templeton D W. J. Agric. Food Chem., 2010, 58:9043.
[38]
Beño E, GÓra R, Hutta M. J. Sep. Sci., 2018, 41:3195.

doi: 10.1002/jssc.201800361     URL     pmid: 29923300
[39]
Björkman A. Nature, 1954, 174:1057.
[40]
Lu Y, Wei X Y, Zong Z M, Lu Y C, Zhao W, Cao J P. Prog. Chem., 2013, 25:838.
路瑶, 魏贤勇, 宗志敏, 陆永超, 赵炜, 曹景沛. 化学进展, 2013, 25:838.
[41]
Jiang B, Cao T Y, Gu F, Wu W J, Jin Y C. ACS Sustainable Chem. Eng., 2017, 5:342.
[42]
Wang H M, Wang B, Wen J L, Yuan T Q, Sun R C. ACS Sustainable Chem. Eng., 2017, 5:11618.
[43]
Wu S B, Argyropoulos D S. Journal of Tianjing University of Science & Technology, 2004, 19(a02):108.
[44]
Yuan T Q, Sun S N, Xu F, Sun R C. J. Agric. Food Chem., 2011, 59:10604.

doi: 10.1021/jf2031549     URL     pmid: 21879769
[45]
Asawaworarit P, Daorattanachai P, Laosiripojana W, Sakdaronnarong C, Shotipruk A, Laosiripojana N. Chem. Eng. J., 2019, 356:461.
[46]
Vishtal A, Kraslawski A. BioRes., 2011, 6(3):3547.
[47]
Clark J H, Deswarte F E I, Farmer T J. Biofuels, Bioprod. Bioref., 2009, 3:72.
[48]
da Costa Lopes A M, Brenner M, FalÉ P, Roseiro L B, Bogel-Łukasik R. ACS Sustainable Chem. Eng., 2016, 4:3357.
[49]
Yu X, Peng L C, Gao X Y, He L, Chen K L. RSC Adv., 2018, 8:15762.
[50]
Milczarek G. Langmuir, 2009, 25:10345.

doi: 10.1021/la9008575     URL     pmid: 19456182
[51]
Zhang X, Glusen A, Garciavalls R. J. Membr. Sci., 2006, 276:301.
[52]
Chen W, Peng X W, Zhong L X, Li Y, Sun R C. ACS Sustainable Chem. Eng., 2015, 3:1366.
[53]
Wu C Y, Chen W, Zhong L X, Peng X W, Sun R C, Fang J J, Zheng S B. J. Agric. Food Chem., 2014, 62:7430.
[54]
Xie H B, Zhao Z K, Wang Q. ChemSusChem, 2012, 5:901.
[55]
Chen Q, Huang W, Chen P, Peng C, Xie H B, Zhao Z K, Sohail M, Bao M. ChemCatChem, 2015, 7:1083.
[56]
Liang F B, Song Y L, Huang C P, Zhang J, Chen B H. Catal. Commun., 2013, 40:93.
[57]
Yao M M, Yang Y Q, Song J L, Yu Y, Jin Y C. Ind. Crop. Prod., 2017, 107:38.
[58]
Sun S H, Bai R X, Gu Y L. Chem. Eur. J., 2014, 20:549.

URL     pmid: 24307475
[59]
Wu Z L, Xie H B, Yu X, Liu E H. ChemCatChem, 2013, 5:1328.

doi: 10.1002/cctc.v5.6     URL    
[60]
Guo L, Dou R, Wu Y Q, Zhang R, Wang L, Wang Y, Gong Z C, Chen J L, Wu X Q. ACS Sustainable Chem. Eng., 2019, 7:16585.
[61]
Xiong X Q, Zhang H, Lai S L, Gao J B, Gao L Z. React. Funct. Polym., 2020, 149:104502.
[62]
Zhang X C, Zhang Z, Wang F, Wang Y H, Song Q, Xu J. J. Mol. Catal. A: Chem., 2013, 377:102.
[63]
Li S S, Li N, Li G Y, Li L, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2015, 17:3644.
[64]
Kumar H, AlÉn R. Energy Fuels, 2016, 30:9451.
[65]
Tang H, Li N, Li G Y, Wang W T, Wang A Q, Cong Y, Wang X D. ACS Sustainable Chem. Eng., 2018, 6:5645.
[66]
Zhu S Y, Xu J, Cheng Z, Kuang Y S, Wu Q Q, Wang B, Gao W H, Zeng J S, Li J, Chen K F. Appl. Catal. B: Environ., 2020, 268:118732.
[67]
Guo F, Xiu Z L, Liang Z X. Appl. Energy, 2012, 98:47.
[68]
Lee D. Molecules, 2013, 18:8168.

URL     pmid: 23846757
[69]
Li X, Shu F Y, He C, Liu S N, Leksawasdi N, Wang Q, Qi W, Alam M A, Yuan Z H, Gao Y. RSC Adv., 2018, 8:10922.
[70]
Kurnia I, Yoshida A, Chaihad N, Bayu A, Kasai Y, Abudula A, Guan G Q. Fuel Process. Technol., 2019, 196:106175.
[71]
Kang S M, Li X L, Fan J, Chang J. Ind. Eng. Chem. Res., 2012, 51:9023.
[72]
Kang S M, Ye J, Zhang Y, Chang J. RSC Adv., 2013, 3:7360.
[73]
Huang M, Luo J, Fang Z, Li H. Appl. Catal. B: Environ., 2016, 190:103.
[74]
Pua F L, Fang Z, Zakaria S, Guo F, Chia C H. Biotechnol. Biofuels, 2011, 4:56.
[75]
Hu S X, Jiang F, Hsieh Y L. ACS Sustainable Chem. Eng., 2015, 3:2566.
[76]
Bai C X, Zhu L F, Shen F, Qi X H. Bioresour. Technol., 2016, 220:656.
[77]
Hu L, Tang X, Wu Z, Lin L, Xu J X, Xu N, Dai B L. Chem. Eng. J., 2015, 263:299.
[78]
Konwar L J, Samikannu A, Mäki-Arvela P, Boström D, Mikkola J P. Appl. Catal. B: Environ., 2018, 220:314.
[79]
Wang S, Zhang L Q, Sima G B, Cui Y, Gan L H. Chem. Phys. Lett., 2019, 736:136808.
[80]
Wang S, Lyu L, Sima G B, Cui Y, Li B X, Zhang X Q, Gan L H. Korean J. Chem. Eng., 2019, 36:1042.
[81]
Hara M, Yoshida T, Takagaki A, Takata T, Kondo J N, Hayashi S, Domen K. Angew. Chem. Int. Ed., 2004, 43:2955.
[82]
Lu E T, Love S G. Nature, 2005, 438:177.

doi: 10.1038/438177a     URL     pmid: 16281025
[83]
Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J. Am. Chem. Soc., 2008, 130:12787.

doi: 10.1021/ja803983h     URL     pmid: 18759399
[84]
Konwar L J, Mäki-Arvela P, Mikkola J P. Chem. Rev., 2019, 119:11576.

URL     pmid: 31589024
[85]
Tenhaeff W E, Rios O, More K, McGuire M A. Adv. Funct. Mater., 2014, 24:86.
[86]
Lee H W, Lee H, Kim Y M, Park R S, Park Y K. Chin. Chem. Lett., 2019, 30:2147.
[87]
Yu X, Peng L C, Pu Q Y, Tao R L, Gao X Y, He L, Zhang J H. Res. Chem. Intermed., 2020, 46:1469.
[88]
Deng T S, Li J G, Yang Q Q, Yang Y X, Lv G, Yao Y, Qin L M, Zhao X L, Cui X J, Hou X L. RSC Adv., 2016, 6:30160.
[89]
Mo X, Lopez D, Suwannakarn K, Liu Y, Lotero E, Goodwinjr J, Lu C. J. Catal., 2008, 254:332.
[90]
Chen G Z, Wang X C, Jiang Y J, Mu X D, Liu H C. Catal. Today, 2019, 319:25.
[91]
Fraile J M, García-BordejÉ E, Roldán L. J. Catal., 2012, 289:73.
[92]
Anderson J M, Johnson R L, Schmidt-Rohr K, Shanks B H. Carbon, 2014, 74:333.
[93]
Li R Q, Li J F, Zhou Z Y, Guo Y, Zhang T T, Tao F F, Hu X F, Liu W H. J. Biobased Mater. Bioenergy, 2018, 12:184.
[94]
Zhu J D, Gan L H, Li B X, Yang X. Korean J. Chem. Eng., 2017, 34:110.
[95]
Xie J K, Han Q N, Feng B, Liu Z G. BioResoures, 2019, 14(2):4284.
[96]
Li M F, Zhang Q T, Luo B, Chen C Z, Wang S F, Min D Y. Ind. Crop. Prod., 2020, 145:111920.
[97]
Zhang X F, Yan Q G, Hassan E B, Li J H, Cai Z Y, Zhang J L. Mater. Lett., 2017, 203:42.
[98]
Tamborini L H, Casco M E, Militello M P, Silvestre-Albero J, Barbero C A, Acevedo D F. Fuel Process. Technol., 2016, 149:209.
[99]
Hu L, Wu Z, Xu J X, Zhou S Y, Tang G D. Korean J. Chem. Eng., 2016, 33:1232.
[100]
Cha J S, Choi J C, Ko J H, Park Y K, Park S H, Jeong K E, Kim S S, Jeon J K. Chem. Eng. J., 2010, 156:321.
[101]
Yu J T, Dehkhoda A M, Ellis N. Energy Fuels, 2011, 25:337.
[102]
Liu W J, Jiang H, Yu H Q. Green Chem., 2015, 17:4888.
[103]
Zhou S H, Dai F L, Chen Y A, Dang C, Zhang C Z, Liu D T, Qi H S. Green Chem., 2019, 21:1421.
[104]
Zhou S H, Dai F L, Xiang Z Y, Song T, Liu D T, Lu F C, Qi H S. Appl. Catal. B: Environ., 2019, 248:31.
[105]
Chen D W, Liang F B, Feng D X, Du F L, Zhao G, Liu H Z, Xian M. Catal. Commun., 2016, 84:159.
[106]
Milczarek G. Electroanalysis, 2007, 19:1411.
[107]
Milczarek G. Electroanalysis, 2008, 20:211.
[108]
Milczarek G. Electrochimica Acta, 2009, 54:3199.
[109]
Buoro R M, Bacil R P, da Silva R P, da Silva L C C, Lima A W O, Cosentino I C, Serrano S H P. Electrochimica Acta, 2013, 96:191.
[110]
Degefu H, Amare M, Tessema M, Admassie S. Electrochimica Acta, 2014, 121:307.

doi: 10.1016/j.electacta.2013.12.133     URL    
[111]
Rębiś T, Sobkowiak M, Milczarek G. J. Electroanal. Chem., 2016, 780:257.
[112]
Ciszewski A, Sron K, Stepniak I, Milczarek G. Electrochimica Acta, 2014, 134:355.

doi: 10.1016/j.electacta.2014.04.152     URL    
[113]
Gawluk K, Modrzejwska-Sikorska A, Rębiś T, Milczarek G. Catalysts, 2017, 7:392.
[114]
Wei Y X, Song M, Yu L, Tang X H. Catalysts, 2017, 7:180.
[115]
Amare M, Aklog S. J. Anal. Methods Chem., 2017, 2017:1.
[116]
Ohsaka T, Tanaka K, Tokuda K. J. Chem. Soc., Chem. Commun., 1993,222.
[117]
Fukui M, Kitani A, Degrand C, Miller L L. J. Am. Chem. Soc., 1982, 104:28.
[118]
Ciszewski A, Milczarek G. Anal. Chem., 2000, 72:3203.

doi: 10.1021/ac991182m     URL     pmid: 10939388
[119]
Zhang X, Benavente J, Garcia-Valls R. J. Power Sources, 2005, 145:292.
[120]
Yang C, Liu P. Ind. Eng. Chem. Res., 2009, 48:9498.
[121]
Milczarek G, Inganas O. Science, 2012, 335:1468.

doi: 10.1126/science.1215159     URL     pmid: 22442478
[122]
Rębiś T, Milczarek G. Electrochimica Acta, 2016, 204:108.
[123]
Lai B B, Bai R X, Gu Y L. ACS Sustainable Chem. Eng., 2018, 6:17076.
[124]
Faeghi F, Javanshir S, Molaei S. ChemistrySelect, 2018, 3:11427.
[125]
Yang Z J, Zhang X, Yao X D, Fang Y X, Chen H Y, Ji H B. Tetrahedron, 2016, 72:1773.
[126]
Song K P, Tang C, Zou Z J, Wu Y D. Transition Met. Chem., 2020, 45:111.

doi: 10.1007/s11243-019-00363-x     URL    
[127]
Benaissi K, Johnson L, Walsh D A, Thielemans W. Green Chem., 2010, 12:220.
[128]
Milczarek G, Ciszewski A. Colloids Surfaces B: Biointerfaces, 2012, 90:53.

doi: 10.1016/j.colsurfb.2011.09.047     URL     pmid: 22019258
[129]
Lin X B, Wu M, Wu D Y, Kuga S, Endo T, Huang Y. Green Chem., 2011, 13:283.

doi: 10.1039/C0GC00513D     URL    
[130]
Coccia F, Tonucci L, Bosco D, Bressan M, D’Alessandro N. Green Chem., 2012, 14:1073. 8aaa5684-653b-4fd6-8731-3384b155bfde

doi: 10.1039/c2gc16524d     URL    
[131]
Coccia F, Tonucci L, D’Alessandro N, D’Ambrosio P, Bressan M. Inorganica Chimica Acta, 2013, 399:12. 7ae6a08a-dccb-413a-9fbe-c3f813e6e3e1

doi: 10.1016/j.ica.2012.12.035     URL    
[132]
Marulasiddeshwara M B, Kumar P R. Int. J. Biol. Macromol., 2016, 83:326.

doi: 10.1016/j.ijbiomac.2015.11.034     URL     pmid: 26601763
[133]
Marulasiddeshwara M B, Raghavendra Kumar P. Mater. Today: Proc., 2018, 5:20811.
[134]
Hu S X, Hsieh Y L. Carbohydr. Polym., 2015, 131:134.

doi: 10.1016/j.carbpol.2015.05.060     URL     pmid: 26256169
[135]
Chen X Y, Yuan B, Yu F L, Liu Y X, Xie C X, Yu S T. ACS Omega, 2020, 5:8902.

doi: 10.1021/acsomega.0c00533     URL     pmid: 32337453
[136]
Marulasiddeshwara M B, Dakshayani S S, Sharath Kumar M N, Chethana R, Raghavendra Kumar P, Devaraja S. Mater. Sci. Eng.: C, 2017, 81:182.
[137]
Milczarek G, Rebis T, Fabianska J. Colloids Surfaces B: Biointerfaces, 2013, 105:335.

doi: 10.1016/j.colsurfb.2013.01.010     URL     pmid: 23399431
[138]
Modrzejewska-Sikorska A, Konował E, Klapiszewski Ł, Nowaczyk G, Jurga S, Jesionowski T, Milczarek G. Int. J. Biol. Macromol., 2017, 103:403.

doi: 10.1016/j.ijbiomac.2017.05.083     URL     pmid: 28527991
[139]
Konował E, Modrzejewska-Sikorska A, Milczarek G. Mater. Lett., 2015, 159:451.
[140]
Hu S X, Hsieh Y L. Int. J. Biol. Macromol., 2016, 82:856.

doi: 10.1016/j.ijbiomac.2015.09.066     URL     pmid: 26434523
[141]
Modrzejewska-Sikorska A, Konował E, Cichy A, Nowicki M, Jesionowski T, Milczarek G. J. Mol. Liq., 2017, 240:80.
[142]
Mohazzab B F, Jaleh B, Nasrollahzadeh M, Khazalpour S, Sajjadi M, Varma R S. ACS Omega, 2020, 5:5888.

doi: 10.1021/acsomega.9b04149     URL     pmid: 32226869
[143]
Chen S L, Wang G H, Sui W J, Parvez A M, Dai L, Si C L. Ind. Crop. Prod., 2020, 145:112164.
[144]
Rak M J, Friščić T, Moores A. Faraday Discuss., 2014, 170:155.

doi: 10.1039/c4fd00053f     URL     pmid: 25408257
[145]
Xue M, Zhang S Z, Wu Y F, Liu J, Cui Y C. Chin. J. Appl. Chem., 2010, 27(7):787. a7da8806-19a0-4c09-8e08-0aa1ab949a45

doi: 10.3724/SP.J.1095.2010.90577     URL    
薛蔓, 张士真, 吴玉锋, 刘剑, 崔元臣. 应用化学, 2010, 27(7):787. a7da8806-19a0-4c09-8e08-0aa1ab949a45

doi: 10.3724/SP.J.1095.2010.90577     URL    
[146]
Chen X Y, Zhu B Q, Yuan B, Yu F L, Xie C X, Yu S T. Chem. J. Chin. Univ., 2020, 41:1826.
陈祥云, 朱本强, 袁冰, 于凤丽, 解从霞, 于世涛. 高等学校化学学报, 2020, 41:1826.
[147]
Gao C, Wang X L, Wang H S, Zhou J H, Zhai S R, An Q D. Int. J. Biol. Macromol., 2020, 144:947.

doi: 10.1016/j.ijbiomac.2019.09.172     URL     pmid: 31669463
[148]
Gao C, Wang X L, Zhai S R, An Q D. Int. J. Biol. Macromol., 2019, 134:202.

doi: 10.1016/j.ijbiomac.2019.05.017     URL     pmid: 31075332
[149]
Nasrollahzadeh M, Bidgoli N S S, Issaabadi Z, Ghavamifar Z, Baran T, Luque R. Int. J. Biol. Macromol., 2020, 148:265.

doi: 10.1016/j.ijbiomac.2020.01.107     URL     pmid: 31935407
[150]
Nasrollahzadeh M, Issaabadi Z, Varma R S. ACS Omega, 2019, 4:14234.

doi: 10.1021/acsomega.9b01640     URL     pmid: 31508546
[151]
Zhang X L, Yu D L, Zhang Y Q, Guo W H, Ma X X, He X Q. RSC Adv., 2016, 6:104183.
[152]
Shen Y X, Li Y H, Yang G X, Zhang Q, Liang H, Peng F. J. Energy Chem., 2020, 44:106.
[153]
Cai X S, Qin B H, Li Y H, Zhang Q, Yang G X, Wang H J, Cao Y H, Yu H, Peng F. ChemElectroChem, 2020, 7:320.

doi: 10.1002/celc.v7.1     URL    
[154]
Li X W, Lv Y, Pan D. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 569:110.
[155]
GuillÉn E, Rico R, LÓpez-Romero J M, Bedia J, Rosas J M, Rodríguez-Mirasol J, Cordero T. Appl. Catal. A: Gen., 2009, 368:113.
[156]
Hao W M, Björnerbäck F, Trushkina Y, Oregui Bengoechea M, Salazar-Alvarez G, Barth T, Hedin N. ACS Sustainable Chem. Eng., 2017, 5:3087.
[157]
Oregui-Bengoechea M, Miletić N, Hao W M, Björnerbäck F, Rosnes M H, Garitaonandia J S, Hedin N, Arias P L, Barth T. ACS Sustainable Chem. Eng., 2017, 5:11226.
[158]
Liu S J, Van Muyden A P, Bai L C, Cui X J, Fei Z F, Li X H, Hu X L, Dyson P J. ChemSusChem, 2019, 12:3271.

doi: 10.1002/cssc.201900677     URL     pmid: 31038822
[159]
Kurnia I, Yoshida A, Situmorang Y A, Kasai Y, Abudula A, Guan G Q. ACS Sustainable Chem. Eng., 2019, 7:8670.
[160]
Zhou H, Xu H H, Wang X K, Liu Y. Green Chem., 2019, 21:2923.
[161]
Zhou H, Xu H H, Liu Y. Appl. Catal. B: Environ., 2019, 244:965.
[162]
Zhou H, Hong S, Zhang H, Chen Y T, Xu H H, Wang X K, Jiang Z, Chen S L, Liu Y. Appl. Catal. B: Environ., 2019, 256:117767.
[163]
Minh T D, Ncibi M C, Certenais M, Viitala M, Sillanpää M. J. Clean. Prod., 2020, 253:120013.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.