English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 412-425 DOI: 10.7536/PC161227 前一篇   后一篇

• 综述 •

N-杂环卡宾铂配合物的合成及其在有机反应中的应用

张凤香, 白赢*, 杨晓玲, 厉嘉云, 彭家建*   

  1. 杭州师范大学有机硅化学及材料技术教育部重点实验室 杭州 311121
  • 收稿日期:2016-12-16 修回日期:2017-01-17 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 白赢,e-mail:baiying0912@163.com;彭家建,e-mail:jjpeng@hznu.edu.cn E-mail:baiying0912@163.com;jjpeng@hznu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21303034)和浙江省自然科学基金项目(No.LY14B030032)资助

Synthesis of N-Heterocyclic Carbene Platinum Complexes and Application in the Organic Reaction

Fengxiang Zhang, Ying Bai*, Xiaoling Yang, Jiayun Li, Jiajian Peng*   

  1. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
  • Received:2016-12-16 Revised:2017-01-17 Online:2017-04-15 Published:2017-03-31
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21303034) and the Zhejiang Provincial Natural Science Foundation of China (No. LY14B030032).
N-杂环卡宾铂配合物作为催化剂广泛应用于诸多有机催化反应,表现出优良的催化性能及稳定的物理、化学性质,在一定程度上解决了传统催化剂使用过程中遇到的稳定性难题,是有机金属催化化学的研究热点之一。本文介绍了近年来N-杂环卡宾铂配合物的合成及其作为催化剂在不饱和化合物(烯烃、炔烃和酮等)硅氢加成反应、烯炔环异构化反应、烯烃氢胺化、烯烃硼化反应和炔烃水化反应等有机反应中的应用研究新成果和进展,分析了N-杂环卡宾铂配合物作为催化剂的催化机理和存在的不足,并对N-杂环卡宾铂配合物作为催化剂的应用前景进行了展望。
N-heterocyclic carbenes(NHC) have long been recognized as important ligands in organometallic chemistry, and NHC can form stable metal-carbon bonds with metals because of their stong σ-donating ability that provides the possibility to develop platinum NHC complexes as catalysts. N-heterocyclic carbene-platinum (Pt-NHC) complexes have been widely applied as catalysts in numerous catalytic organic reactions, in which the Pt-NHC system shows excellent catalytic performance and features with stable physical and chemical properties. On the other hand, the Pt-NHC complexes could be easily modified with different functional groups by modification of the stereo-effect and the corresponding electronic properties. In past years, it provides an effective method to solve the problem encountered in the process of using the traditional catalyst, and has become one of the hot topics in the organometallic chemistry and catalytic chemistry. In this manuscript, we summarize the recent progress in the synthesis of Pt-NHC complexes and their application in the catalytic organic transformations, including hydrosilylation of olefins/alkynes and ketones, isomerization reaction, hydroamination of unactivated olefins, borylation reactions of olefins, and hydration reaction of alkynes. Furthermore, the catalytic mechanism of all these reactions has been discussed. At last, the deficiencies as well as the perspective of Pt-NHC complexes have been also highlighted.

Contents
1 Introduction
2 Application of Pt-NHC complexes for hydrosilylation
2.1 Preparation of Pt(0)-NHC complexes and catalysis hydrosilylation
2.2 Preparation of Pt(Ⅱ)-NHC complexes and catalysis hydrosilylation
3 Application of Pt(Ⅱ)-NHC complexes in the cyclic-isomerization
4 Application of Pt(Ⅱ)-NHC complexes in the hydroamination of unactivated alkenes
5 Application of Pt(Ⅱ)-NHC complexes in the hydration of alkynes
6 Application of Pt(Ⅱ)-NHC complexes in the boride reaction of cycloolefin
7 Conclusion

中图分类号: 

()
[1] Arduengo A J, Harlow R L, Kline M. J. Am. Chem. Soc., 1991, 113(1): 361.
[2] Herrmann W A. Angew. Chem., 2002, 114(8): 1342.
[3] Bourissou D, Guerret O, Gabbaï F P, Bertrand G. Chem. Rev., 2000, 100(1): 39.
[4] 钱延龙(Qian Y L), 陈新滋(Chen X Z). 金属有机化学与催化(Organometallic Chemistry and Catalysis). 北京:化学工业出版社(Beijing:Chemical Industry Press), 1997. 537.
[5] Peris E, Crabtree R H. Coord. Chem. Rev., 2004, 248 (21/24): 2239.
[6] Sommer W J, Weck M. Coord. Chem. Rev., 2007, 251(5/6): 860.
[7] Baker M V, Brown D H, Simpson P V, Skelton B W, White A H, Williams C C. J. Organomet. Chem., 2006, 691(26): 5485.
[8] Fortman G C, Nolan S P. Chem. Soc. Rev., 2011, 40: 5151.
[9] Velazquez H D, Verpoort F. Chem. Soc. Rev., 2012, 41: 7032.
[10] Corberan R, Mas-Marza E, Peris E. Eur. J. Inorg. Chem., 2009, (13): 1700.
[11] Poyatos M, Mata J A, Peris E. Chem. Rev., 2009, 109(8): 3677.
[12] Geier M, Gagne M R. J. Am. Chem. Soc., 2014, 136(8): 3032.
[13] Lersch M, Tilset M. Chem. Rev., 2005, 105(6): 2471.
[14] Field L D, Ward A. J. Organomet. Chem., 2003, 681(1/2): 91.
[15] Marciniec B, Guliński J. J. Organomet. Chem., 1983, 253(3): 349.
[16] Sommer L H, Pietrusza E W, Whitmore F C. J. Am. Chem. Soc., 1947, 69(1): 188.
[17] 白赢(Bai Y), 彭家建(Peng J J), 胡应乾(Hu Y Q), 厉嘉云(Li J Y), 来国桥(Lai G Q), 蒋剑雄(Jiang J X). 化学进展(Progress in Chemistry), 2009, (12): 2613.
[18] 厉嘉云(Li J Y), 彭家建(Peng J J), 李小年(Li X N), 马磊(Ma L), 白赢(Bai Y), 张国栋(Zhang G D), 来国桥(Lai G Q). 有机化学(Chinese Journal of Organic Chemistry), 2010, (10): 1468.
[19] Markó I E, Stérin S, Buisine O, Mignani G, Branlard P, Tinant B, Declercq J P. Science, 2002, 298: 204.
[20] Markó I E, Stérin S, Buisine O, Berthon G, Michaud G, Tinant B, Declercq J P. Adv. Synth. Catal., 2004, 346(12): 1429.
[21] Berthon-Gelloz G, Buisine O, Brière J F, Michaud G, Stérin S, Mignani G, Tinant B, Declercq J P, Chapon D, Markó I E. J. Organomet. Chem., 2005, 690(24/25): 6156.
[22] De Bo G, Berthon-Gelloz G, Tinant B, Markó I E. Organometallics, 2006, 25(10): 1881.
[23] Berthon-Gelloz G, Schumers J M, De Bo G, Markó I E. J. Org. Chem., 2008, 73(11): 4190.
[24] Sprengers J W, Mars M J, Duin M A, Cavel K J, Elsevier C J. J. Organomet. Chem., 2003, 679(2): 149.
[25] Dunsford J J, Cavell K J, Kariuki B. J. Organomet. Chem., 2011, 696(1): 188.
[26] Silbestri G F, Flores J C, Jesús E de. Organometallics, 2012, 31(17): 3355.
[27] Ruiz-Varilla A M, Baquero E A, Silbestri G F, Gonzalez-Arellano C, Jesús E de, Flores J C. Dalton Trans., 2015, (44): 18360.
[28] Dierick S, Markó I E. In eEROS Encyclopedia of Reagents for Organic Synthesis. Eds.: Paquette L A, Crich D, Fuchs P L, Molander G. Wiley. New York. 2013.
[29] Dierick S, Vercruysse E, Berthon-Gelloz G, Markó I E. Chem.-Eur. J., 2015, 21(1): 1.
[30] Meister T K, Kück J W, Riener K, Pöthig A, Herrmann W A, Kühn F E. J. Catal., 2016, 337(1): 157.
[31] Zhang Y, Zhao L, Patra P K, Ying J Y. Adv. Synth. Catal., 2008, 350: 662.
[32] Gribble G W. Chem. Soc. Rev., 1998, 27: 395.
[33] Pisiewicz S, Junge K, Beller M. Eur. J. Inorg. Chem., 2014, (14): 2345.
[34] Das S, Addis D, Zhou S, Junge K, Beller M. J. Am. Chem. Soc., 2010, 132(6): 1770.
[35] Das S, Join B, Junge K, Beller M. Chem. Commun., 2012, 48: 2683.
[36] Zhou S, Junge K, Addis D, Das S, Beller M. Angew. Chem., Int. Ed., 2009, 48(50): 9507
[37] Hanada S, Tsutsumi E, Motoyama Y, Nagashima H. J. Am. Chem. Soc., 2009, 131(41): 15032.
[38] Poyatos M, Maisse-Franois A, Bellemin-Laponnaz S, Gade L H. Organometallics, 2006, 25(10): 2634.
[39] Hu J J, Li F, Hor T S A. Organomeallics, 2009, 28(4): 1212.
[40] Lu C X, Gu S J, Chen W Z, Qiu H Y. Dalton Trans., 2010, (39): 4198.
[41] Taige M A, Ahrens S, Strassner T. J. Organomet. Chem., 2011, 696(17): 2918.
[42] Munz D, Allolio C, Meyer D, Micksch M, Roessner L, Strassner T. J. Organomet. Chem., 2015, 794: 330.
[43] Bolbat E, Suarez-Alcantara K, Canton S E, Wendt O F. Inorg. Chim. Acta, 2016, 445: 129.
[44] Fürstner A. Chem. Soc. Rev., 2009, 38: 3208.
[45] Fürstner A, Szillat H, Stelzer F. J. Am. Chem. Soc., 2000, 122(28): 6785.
[46] Ferrer C, Raducan M, Nevado C, Claverie C K, Echavarren A M. Tetrahedron, 2007, 63(27): 6306.
[47] Blum J, Beer-Kraft H, Badrieh Y. J. Org. Chem., 1995, 60(17): 5567.
[48] Nieto-Oberhuber C, Munoz M P, Bunuel E, Nevado C, Cardenas D J, Echavarren A M. Angew. Chem., Int. Ed., 2004, 43(18): 2402.
[49] Kim S M, Park J H, Choi S Y, Chung Y K. Angew. Chem., Int. Ed., 2007, 46(32): 6172.
[50] Shibata T, Kobayash Y, Maekawa S, Toshida N, Takagi K. Tetrahedron, 2005, 61(38): 9018.
[51] Brissy D, Skander M, Retailleau P, Frison G, Marinetti A. Organometallics, 2009, 28(1): 140.
[52] Brissy D, Skander M, Retailleau P, Marinetti A. Organometallics, 2007, 26(24): 5782.
[53] Brissy D, Skander M, Retailleau P, Marinetti A. Org. Lett., 2009, 11(10): 2137.
[54] Jullien H, Brissy D, Sylvain R, Retailleau P, Naubron J V, Gladiali S, Marinetti A. Adv. Synth. Catal., 2011, 353(7): 1109.
[55] Zhang Y, Jullien H, Brissy D, Retailleau P, Voituriez A, Marinetti A. ChemCatChem, 2013, 5: 2051.
[56] Jung I G, Seo J, Lee S I, Choi S Y, Chung Y K. Organometallic, 2006, 25: 4240.
[57] Zhang Z, Lee S D. Widenhoefer R A. J. Am. Chem. Soc., 2009, 131(15): 5372.
[58] Cao P, Cabrera J, Padilla R, Serra D, Rominger F, Limbach M. Organometallics, 2012, 31(3): 921.
[59] Alonso F, Beletskaya I P, Yus M. Chem. Rev., 2004, 104(6): 3079.
[60] Hintermann L, Labonne A. Synthesis, 2007, 2007: 1121.
[61] Chatt J, Guy R G, Duncanson L A. J. Chem. Soc., 1961, 827.
[62] Hiscox W C, Jennings P W. Organometallics, 1990, 9(7): 1997.
[63] Hartman J W, Hiscox W C, Jennings P W. J. Org. Chem., 1993, 58(26): 7613.
[64] Jennings P W, Hartman J W, Hiscox W C. Inorg. Chim. Acta., 1994, 222(1/2): 317.
[65] Tokunaga M, Wakatsuki Y. Angew. Chem. Int. Ed., 1998, 37(20): 2867.
[66] Almássy A, Nagy C E, Bényei A C, Joó F. Organometallics, 2010, 29(11): 2484.
[67] Czégéni C E, Papp G, Kathó Á, Joó F. J. Mol. Catal. A: Chem., 2011, 340(1): 1.
[68] Baquero E A, Silbestri G F, Gómez-Sal P, Flores J C, Jesús de. Organometallics, 2013, 32(9): 2814.
[69] Miura T, Murakami M. Chem. Commun., 2007, 217.
[70] Pubill-Ulldemolins C, Bo C, Mata J A, Fernández E. Chem. Asian J., 2010, 5(1): 261.
[71] Lillo V, Mata J A, Segarra A M, Peris E, Fernandez E. Chem. Commun., 2007: 2184.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.