English
新闻公告
More
化学进展 2017, Vol. 29 Issue (4): 450-458 DOI: 10.7536/PC161201 前一篇   

• 综述 •

硬组织植入生物活性聚醚醚酮复合材料

刘吕花1, 郑延延*1, 张丽芳2, 熊成东2   

  1. 1. 川北医学院基础医学院 南充 637000;
    2. 中国科学院成都有机化学研究所 成都 610041
  • 收稿日期:2016-12-01 修回日期:2017-03-08 出版日期:2017-04-15 发布日期:2017-03-31
  • 通讯作者: 郑延延,e-mail:yanyzheng@163.com E-mail:yanyzheng@163.com
  • 基金资助:
    川北医学院博士基金项目(No.CBY16-QD-02)和中国科学院“西部之光”重点项目资助

Bioactive Polyetheretherketone Implant Composites for Hard Tissue

Lvhua Liu1, Yanyan Zheng*1, Lifang Zhang2, Chengdong Xiong2   

  1. 1. School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, China;
    2. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
  • Received:2016-12-01 Revised:2017-03-08 Online:2017-04-15 Published:2017-03-31
  • Supported by:
    The work was supported by the Doctoral Program of North Sichuan Medical College (No. CBY16-QD-02) and the Key Project of "Western Light" Foundation of Chinese Academy of Sciences.
聚醚醚酮(PEEK)具有优良的机械性能、良好的生物相容性和耐腐蚀性等特点,其弹性模量和人体皮质骨较为接近,有可能替代金属材料应用在硬组织修复与替换领域。然而,PEEK本身是生物惰性材料,PEEK植入体与骨组织之间的骨整合能力较差,在一定程度上限制了其在硬组织修复与替换领域的应用。目前研究者主要将磷酸钙(CaP)、生物活性玻璃(BGs)和硅酸钙(CS)等生物活性陶瓷添加到PEEK基体中制备复合材料以改善其生物活性,提高PEEK植入体与骨组织之间的骨整合能力。但这些生物活性陶瓷在改善PEEK生物活性的同时,降低了其优异的力学性能。如何在保持PEEK力学性能的同时提高其生物活性成为目前研究的热点。本文综述了近些年用于硬组织植入的生物活性聚醚醚酮复合材料的制备技术、力学及生物学性能等方面的研究进展及现状,并对其发展提出了展望。
Polyetheretherketone (PEEK) possesses a set of characteristics superior for biomedical applications including excellent mechanical properties, suitable biocompatibility and chemical resistance. More importantly, the elastic modulus of PEEK is analogous to that of human cortical bone. Thus, PEEK material is considered as a prime candidate to replace conventional biomedical metallic materials as hard tissue repair and substitute implants. However, PEEK material is naturally bioinert, and to some extent, poor osteointegration between PEEK implant and surrounding bone tissue hinders its biomedical applications in hard tissue repair and substitute field. Currently, researchers mainly add bioactive ceramics such as calcium phosphate (CaP), bioactive glass (BGs) and calcium silicate (CS) to PEEK matrix to prepare composite for enhancing bioactivity and osteointegration strength between PEEK implant and bone tissue. Unfortunately, the addition of these bioactive ceramics to PEEK have resulted in trade-offs between mechanical properties and bioactivity. How to enhance PEEK bioactivity and retain its mechanical properties at the same time has become a hot area of current research. This paper reviews the research progress and status in the aspects of preparation, mechanical properties and biological performance of these materials for hard tissue implant, and predicts its future development.

Contents
1 Introduction
2 PEEK/calcium phosphate composites
2.1 PEEK/hydroxyapatite composite
2.2 PEEK/β-tricalciumphosphate composite
3 Other PEEK composites
3.1 PEEK/carbon nanotubes/bioactive glass composite
3.2 PEEK/calcium silicate composite
3.3 PEEK/nano-titanium oxide composite
4 Conclusion

中图分类号: 

()
[1] Kurtz S M, Devine J N. Biomaterials, 2007, 28: 4845.
[2] Abdullah M R, Goharian A, Abdul Kadir M R, Wahit M U. J. Biomed. Mater. Res., Part A, 2015, 103: 3689.
[3] Geetha M, Singh A K, Asokamani R, Gogia A K. Prog. Mater. Sci., 2009, 54: 397.
[4] Roeder R, Converse G, Kane R, Yue W. JOM, 2008, 60: 38.
[5] Chen Q, Thouas G A. Mater. Sci. Eng., R, 2015, 87: 1.
[6] Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, Jamshidi A. Acta Biomater., 2013, 9: 7591.
[7] Abu Bakar M S, Cheang P, Khor K A. Mater. Sci. Eng., A, 2003, 345: 55.
[8] Abu Bakar M S, Cheang P, Khor K A. Compos. Sci. Technol., 2003, 63: 421.
[9] Abu Bakar M S, Cheng M H W, Tang S M, Yu S C, Liao K, Tan C T, Khor K A, Cheang P. Biomaterials, 2003, 24: 2245.
[10] Tang S M, Cheang P, Abu Bakar M S, Khor K A, Liao K. Int. J. Fatigue, 2004, 26: 49.
[11] Yu S C, Hariram K P, Kumar R, Cheang P, Aik K K. Biomaterials, 2005, 26: 2343.
[12] Invibio Biomaterial Solutions Announces Global Launch of “PEEK-OPTIMA HA Enhanced Polymer”-A New PEEK-Based Biomaterial Designed for Superior Bone Apposition, (2013-09-09). http://www.prweb.com/releases/2013/2019/prweb11099082.htm.
[13] Converse G L, Yue W, Roeder R K. Biomaterials, 2007, 28: 927.
[14] 冯惺(Feng X), 隋国鑫(Sui G X), 杨锐(Yang R). 材料研究学报(Chinese Journal of Materials Research), 2008, 22: 18.
[15] 刘学勇(Liu X Y), 邓纯博(Deng C B), 刘吉泉(Liu J Q), 李建军(Li J J), 隋国鑫(Sui G X). 生物医学工程学杂志(Journal of Biomedical Engineering), 2011, 28: 1159.
[16] 廖建国(Liao J G), 李艳群(Li Y Q), 段星泽(Duan X Z), 朱伶俐(Zhu L L). 化学进展(Progress in Chemistry), 2015, 27: 220.
[17] Wang L, Weng L, Song S, Sun Q. Mater. Lett., 2010, 64: 2201.
[18] Wang L, Weng L, Song S, Zhang Z, Tian S, Ma R. Mater. Sci. Eng., A, 2011, 528: 3689.
[19] Ma R, Tang S, Tan H, Lin W, Wang Y, Wei J, Zhao L, Tang T. Int. J. Nanomed., 2014, 9: 3949.
[20] Ma R, Weng L, Bao X, Ni Z, Song S, Cai W. Mater. Lett., 2012, 71: 117.
[21] Ma R, Weng L, Fang L, Luo Z, Song S. J. Sol-Gel Sci. Technol., 2012, 62: 52.
[22] Ma R, Weng L, Bao X, Song S, Zhang Y. J. Appl. Polym. Sci., 2013, 127: 2581.
[23] Ma R, Fang L, Luo Z, Weng L, Song S, Zheng R, Sun H, Fu H. J. Sol-Gel Sci. Technol., 2014, 70: 339.
[24] Li K, Yeung C Y, Yeung K W K, Tjong S C. Adv. Eng. Mater., 2012, 14: B155.
[25] Chan K W, Liao C Z, Wong H M, Kwok Yeung K W, Tjong S C. RSC Adv., 2016, 6: 19417.
[26] Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z, Wei J, Wei S. Colloids Surf., B, 2015, 136: 64.
[27] Tan K H, Chua C K, Leong K F, Cheah C M, Cheang P, Abu Bakar M S, Cha S W. Biomaterials, 2003, 24: 3115.
[28] Tan K H, Chua C K, Leong K F, Naing M W, Cheah C M. Proc. Inst. Mech. Eng. H: J. Eng. Med., 2005, 219: 183.
[29] Converse G L, Conrad T L, Merrill C H, Roeder R K. Acta Biomater., 2010, 6: 856.
[30] Converse G L, Conrad T L, Roeder R K. J. Mech. Behav. Biomed. Mater., 2009, 2: 627.
[31] Tang C Y, Tsui C P, Lin W, Uskokovic P S, Wang Z W. Compos. Part B: Eng., 2013, 55: 22.
[32] Pors Nielsen S. Bone, 2004, 35: 583.
[33] Wong K L, Wong C T, Liu W C, Pan H B, Fong M K, Lam W M, Cheung W L, Tang W M, Chiu K Y, Luk K D K, Lu W W. Biomaterials, 2009, 30: 3810.
[34] Campoccia D, Arciola C R, Cervellati M, Maltarello M C, Montanaro L. Biomaterials, 2003, 24: 587.
[35] Broggini N, McManus L M, Hermann J S, Medina R, Schenk R K, Buser D, Conchran D L. J. Dent. Res., 2006, 85: 473.
[36] Mouhyi J, Dohan Ehrenfest D M, Albrektsson T. Clin. Implant Dent. Relat. Res., 2012, 14: 170.
[37] Wiegand A, Buchalla W, Attin T. Dent. Mater., 2007, 23: 343.
[38] Stani D? V, Dimitrijevi D? S, Antonovi D? D G, Joki D? B M, Zec S P, Tanaskovi D? S T, Rai D? evi D? , S. Appl. Surf. Sci., 2014, 290: 346.
[39] Wang L, He S, Wu X, Liang S, Mu Z, Wei J, Deng F, Deng Y, Wei S. Biomaterials, 2014, 35: 6758.
[40] Metsger D S, Driskell T D, Paulsrud J R. J. Am. Dent. Assoc., 1982, 105: 1035.
[41] McAndrew M P, Gorman P W, Lange T A. J. Orthop. Trauma, 1988, 2: 333.
[42] LeGeros R Z. Chem. Rev., 2008, 108: 4742.
[43] Petrovic L, Pohle D, Münstedt H, Rechtenwald T, Schlegel K A, Rupprecht S. J. Biomed. Sci., 2006, 13: 41.
[44] Pohle D, Ponader S, Rechtenwald T, Schmidt M, Schlegel K A, Münstedt H, Neukam F W, Nkenke E, von Wilmowsky C. Macromol. Symp., 2007, 253: 65.
[45] von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T, Lutz R, Muenstedt H, Koller G, Schmidt M, Neukam F W, Schlegel K A, Nkenke E. J. Biomed. Mater. Res. Part A, 2008, 87: 896.
[46] von Wilmowsky C, Lutz R, Meisel U, Srour S, Rupprecht S, Toyoshima T, Rechtenwald T. J. Bioact. Comp. Polym., 2009, 24: 169.
[47] Popov V N. Mater. Sci. Eng., R, 2004, 43: 61.
[48] Han C T, Chi M, Zheng Y Y, Jiang L X, Xiong C D, Zhang L F. J. Polym. Res., 2013, 20: 203.
[49] Fei L, Wang C, Xue Y, Lin K, Chang J, Sun J. J. Biomed. Mater. Res. Part B, 2012, 100: 1237.
[50] Wang C, Lin K, Chang J, Sun J. J. Biomed. Mater. Res., Part A, 2014, 102: 2096.
[51] Chengtie W, Jiang C. Biomed. Mater., 2013, 8: 032001.
[52] Kim I Y, Sugino A, Kikuta K, Ohtsuki C. J. Biomater. Appl., 2009, 24: 105.
[53] Ma R, Tang S, Tan H, Qian J, Lin W, Wang Y, Liu C, Wei J, Tang T. ACS Appl. Mater. Interfaces, 2014, 6: 12214.
[54] Uchida M, Kim H M, Kokubo T, Fujibayashi S, Nakamura T. J. Biomed. Mater. Res., Part A, 2003, 64: 164.
[55] Gutwein L, Webster T. J. Nanopart. Res., 2002, 4: 231.
[56] Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Int. J. Nanomed., 2012, 7: 1215.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[9] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[13] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[14] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[15] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.