English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1427-1436 DOI: 10.7536/PC200526 前一篇   

• 综述 •

基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用

张志1, 邹晨涛1, 杨水金1,2,**()   

  1. 1. 湖北师范大学化学化工学院 污染物分析与资源化技术湖北省重点实验室 黄石 435002
    2. 湖北师范大学先进材料研究院 黄石 435002
  • 收稿日期:2020-05-12 修回日期:2020-07-20 出版日期:2020-09-24 发布日期:2020-08-04
  • 通讯作者: 杨水金
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    *国家自然科学基金项目(21171053); 湖北省自然科学基金重点项目(2014CFA131)

Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation

Zhi Zhang1, Chentao Zou1, Shuijin Yang1,2,**()   

  1. 1. College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
    2. Institute for Advanced Materials of Hubei Normal University, Hubei 435002, China
  • Received:2020-05-12 Revised:2020-07-20 Online:2020-09-24 Published:2020-08-04
  • Contact: Shuijin Yang
  • Supported by:
    the National Natural Science Foundation of China(21171053); the Natural Science Foundation of Hubei Province(2014CFA131)

由于全球的工农业的迅速发展,水污染已成为人类所面临的最大危机。基于半导体光催化法是治理水污染的绿色技术之一,能够有效地降解和去除水中的污染物。在众多光催化材料中,金属氧化物半导体由于其具有低毒性、高稳定性和对水溶液中化学腐蚀的较高的抵抗力等优点,而被科学家们广泛地研究和应用。其中,三元组分的金属氧化物因其具有较窄的禁带宽度和可见光响应性质,在光催化降解领域上的能力已经超过其他的金属化合物。本文系统地介绍了两种典型的三元金属氧化物——钨酸铋和钼酸铋,围绕着基于钨酸铋和钼酸铋的复合型催化剂的制备和在光催化降解废水处理领域中的应用以及发展进行了综述,提出了目前关于钨酸铋和钼酸铋的复合材料的设计、机理研究和改性修饰方法中的所存在的主要问题,并对未来的发展趋势进行了展望。

Due to the rapid development of industry and agriculture worldwide, water pollution has become the most important crisis facing humanity. Semiconductor-based photocatalytic method is one of the green technologies for controlling water pollution, which can effectively degrade and remove pollutants in water. The widespread use of metal oxide semiconductors in numerous photocatalytic materials, which stems from their salient features such as low toxicity, high stability, and resistance to chemical corrosion in aqueous solution. Among these, ternary metal oxides have surpassed other metal oxides in terms of photocatalytic activity under visible-light irradiation due to their reduced band gaps. This article systematically describes two typical ternary metal oxides-bismuth tungstate and bismuth molybdate. The preparation as well as the application and development of composite catalysts based on bismuth tungstate and bismuth molybdate in the field of photocatalytic degradation wastewater treatment are reviewed. The main problems in the design, mechanism research and modification methods of the composite materials on bismuth tungstate and bismuth molybdate are proposed, and the future development trend is prospected.

Contents

1 Introduction

2 Structure of pure phase bismuth tungstate/molybdate and disadvantages

3 Construction of bismuth tungstate/molybdate based composite materials

3.1 Photocatalytic degradation for purification of wastewater

3.2 Modification strategies

3.3 Key factors affecting catalyst performance

4 Conclusion and outlook

()
图1 钨酸铋和钼酸铋的晶体结构
Fig.1 The crystal structure of Bi2WO6 and Bi2MoO6
图2 TiO2/Bi2WO6 89]、Bi/Bi2MoO6 90]和C/Bi/Bi2WO6 91]的光催化降解机理
Fig.2 The photodegradation mechanism of TiO2/Bi2WO6 89], Bi/Bi2MoO6 90] and C/Bi/Bi2WO6 91]
表1 不同的钨(钼)酸铋基复合型材料光催化降解污染物的性能对比
Table 1 The photocatalytic activity of pollutant degradation over different bismuth tungstate/molybdate based composite materials
图3 Bi2O3/Bi2MoO6102]和Bi2O3/Bi2WO699]异质结不同的电荷转移机理
Fig.3 Different charge transfer mechanism of Bi2O3/Bi2MoO6102] and Bi2O3/Bi2WO699] heterojunction. Copyright 2019, Elsevier; Copyright 2014, Royal Society of Chemistry
图4 Gd/Er/Lu/Bi2MoO6110]复合体系的光催化降解机理
Fig.4 The photodegradation mechanism of Gd/Er/Lu/Bi2MoO6110] composites system. Copyright 2019, Elsevier
图5 Bi@Bi2MoO6120]复合体系光催化降解NaPCP的机理和降解途径
Fig.5 The mechanism and degradation pathway of photocatalytic degradation of NaPCP in Bi@Bi2MoO6120] composite system. Copyright 2020, American Chemical Society
图6 Pt/Bi-Bi2WO6127]复合材料去除气态甲苯的光催化机理
Fig.6 Photocatalytic mechanism of Pt/Bi-Bi2WO6127] composites material for removing gaseous toluene. Copyright 2020, Elsevier
图7 Bi2MoxW1-xO6132]固溶体的制备流程以及光催化降解RhB的效率
Fig.7 Preparation process of Bi2MoxW1-xO6132] solid solution and the efficiency of photocatalytic degradation of RhB. Copyright 2018, Elsevier
[1]
Homem V , Santos L. J. Environ. Manage., 2011, 92: 2304.f854b9dc-3a0b-4828-bd50-636345920686 http://www.sciencedirect.com/science/article/pii/S0301479711001782

doi: 10.1016/j.jenvman.2011.05.023     URL    
[2]
Stelo F , Kublik N , Ullah S , Wender H. J. Alloys Compd., 2020, 829: 154591.https://linkinghub.elsevier.com/retrieve/pii/S0925838820309543

doi: 10.1016/j.jallcom.2020.154591     URL    
[3]
Yagub M T , Sen T K , Afroze S , Ang H M. Adv. Colloid Interface Sci., 2014, 209: 172.https://linkinghub.elsevier.com/retrieve/pii/S0001868614001389

doi: 10.1016/j.cis.2014.04.002     URL    
[4]
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y. Science, 2001, 293: 269.
[5]
Cui W , Li J , Sun Y J , Wang H , Jiang G M , Lee S C , Dong F. Appl. Catal. B: Environ., 2018, 237: 938.
[6]
曹秀军( Cao X J ),张雷(Zhang L),朱元鑫(Zhu Y X),张鑫(Zhang X),吕超南(Lv C N),侯长民(Hou C M). 化学进展(Progress in Chemistry), 2020, 32(2/3): 262.
[7]
Zhao Y F , Zhao B , Liu J J , Chen G B , Gao R , Yao S Y , Li M Z , Zhang Q H , Gu L , Xie J L , Wen X D , Wu L Z , Tung C H , Ma D , Zhang T R. Angew. Chem. Int. Ed., 2016, 55: 4215.
[8]
Zhao Y F , Zhao Y X , Waterhouse G N , Zheng L R , Cao X Z , Teng F , Wu L Z , Tung C H , O’Hare D, Zhang T R. Adv. Mater., 2017, 29: 1703828.
[9]
丁星( Ding X ),杨祥龙(Yang X L),熊中亮(Xiong Z L),陈浩(Chen H),张礼知(Zhang L Z). 化学进展(Progress in Chemistry), 2017, 29(9): 1115.
[10]
Fujishima A , Honda K. Nature, 1972, 238: 37.
[11]
Chong M N , Jin B , Chow C W , Saint C . Water Res., 2010, 44: 2997.
[12]
Henderson M A. Surf. Sci. Rep., 2011, 66: 185.
[13]
Fan X X , Yu T , Zhang L Z , Chen X Y , Zou Z G. Chin. J. Chem. Phys., 2007, 20: 733.
[14]
Tian F , Xiong J Y , Zhao H P , Liu Y L , Xiao S Q , Chen R. CrystEngComm, 2014, 16: 4298.
[15]
Natarajan T S , Thampi K R , Tayade R J. Appl. Catal. B: Environ., 2018, 227: 296.
[16]
Low J X , Yu J G , Jaroniec M , Wageh S , Al-Ghamdi A A, Adv. Mater., 2017, 29: 1601694.
[17]
Navarro R M , Alvarez-Galvan M C, Mano J A, Al-Zahrani S M, Fierro J L. Energy Environ. Sci., 2010, 3: 1865.
[18]
Huang Y F , Xu H , Luo D , Zhao Y Z , Fang Y , Guo Q Y , Wei Y L , Fan L Q , Wu J H. J. Alloys Compd., 2019, 806: 418.
[19]
Zhang G , Hu Z Y , Sun M , Liu Y , Liu L M , Liu H J , Huang C P , Qu J H , Li J H. Adv. Funct. Mater., 2015, 25: 3726.
[20]
Wu D X , Zhu H T , Zhang C Y , Chen L . Chem. Commun., 2010, 46: 7250.
[21]
Zhang N , Ciriminna R , Pagliaro M , Xu Y J. Chem. Soc. Rev., 2014, 43: 5276.
[22]
Huang H W , Cao R R , Yu S X , Xu K , Hao W C , Wang Y G , Dong F , Zhang T R , Zhang Y H. Appl. Catal. B: Environ., 2017, 219: 526.
[23]
Li H D , Li W J , Wang F Z , Liu X T , Ren C J. Appl. Catal. B Environ., 2017, 217: 378.
[24]
Zhang K , Wang J , Jiang W J , Yao W Q , Yang H P , Zhu Y F. Appl. Catal. B: Environ., 2018, 232: 175.
[25]
Lv C D , Sun J X , Chen G , Zhou Y S , Li D Y , Wang Z K , Zhao B R. Appl. Catal. B: Environ., 2017, 208: 14.
[26]
Tang L , Wang J J , Jia C T , Lv G X , Xu G , Li W T , Wang L , Zhang J Y , Wu M H. Appl. Catal. B: Environ., 2017, 205: 587.
[27]
Yu J , Kudo A. Adv. Funct. Mater., 2006, 16: 2163.
[28]
Huang Y K , Kang S F , Yang Y , Qin H F , Ni Z J , Yang S J , Li X . Appl. Catal. B: Environ., 2016, 196: 89.
[29]
Li R G , Zhang F X , Wang D G , Yang J X , Li M R , Zhu J , Zhou X , Han H X , Li C . Nat. Commun., 2013, 4: 1432.
[30]
Zhou L , Wang W Z , Liu S W , Zhang L S , Xu H L , Zhu W. J. Mol. Catal. A: Chem., 2006, 252: 120.
[31]
Xi G C , Ye J H. Chem. Commun., 2010, 46: 1893.
[32]
Walsh A , Yan Y F , Huda M N , Al-Jassim M M, Wei S H. Chem. Mater., 2009, 21: 547.
[33]
Qin F , Li G F , Xiao H , Lu Z , Sun H Z , Chen R . Dalton Trans., 2012, 41: 11263.
[34]
Wei W , Dai Y , Huang B B. J. Phys. Chem. C, 2009, 113: 5658.
[35]
Hou D F , Hu X L , Hu P , Zhang W , Zhang M F , Huang Y H. Nanoscale, 2013, 5: 9764.
[36]
Yao W F , Wang H , Xu X H , Shang S X , Hou Y , Zhang Y , Wang M. Mater. Lett., 2003, 57: 1899.
[37]
Cao T P , Li Y J , Wang C H , Zhang Z Y , Zhang M Y , Shao C L , Liu Y C. J. Mater. Chem., 2011, 21: 6922.
[38]
Yuan X J , Shen D Y , Zhang Q , Zou H B , Liu Z L , Peng F. Chem. Eng. J., 2019, 369: 292.
[39]
Lv H , Liu Y M , Guang J , Ding Z W , Wang J J. RSC Adv., 2016, 6: 80226.
[40]
Li J Q , Liang Z , Guo L , Lei N , Song Q Q. Mater. Lett., 2018, 223: 93.
[41]
Wan J , Du X , Wang R M , Liu E Z , Jia J , Bai X , Hu X Y , Fan J. Chemosphere, 2018, 193: 737.
[42]
Shang Y R , Cui Y P , Shi R X , Yang P. Mater. Sci. Semicond. Process., 2019, 89: 240.
[43]
Sun H G , Tian Z X , Zhou G L , Zhang J M , Li P. Appl. Surf. Sci., 2019, 469: 125.
[44]
Shi Y H , Feng S H , Cao C S. Mater. Lett., 2000, 44: 215.
[45]
Dai W L , Hu X , Wang T Y , Xiong W W , Luo X B , Zou J P. Appl. Surf. Sci., 2018, 434: 481.
[46]
Li S J , Shen X F , Liu J S , Zhang L S. Environ. Sci.: Nano, 2017, 4: 1155.
[47]
Dai Z , Qin F , Zhao H P , Tian F , Liu Y L , Chen R. Nanoscale, 2015, 7: 11991.
[48]
Chen D M , Hao Q , Wang Z H , Ding H , Zhu Y F. CrystEngComm, 2016, 18: 1976.
[49]
He W J , Sun Y J , Jiang G M , Li Y H , Zhang X M , Zhang Y X , Zhou Y , Dong F. Appl. Catal. B: Environ., 2018, 239: 619.
[50]
Jin Y M , Shen X F , Liu Z X , Wang Z J , Zhu B , Xu P F , Luo L , Zhang L S. New J. Chem., 2018, 42: 411.
[51]
Zhang J L , Zhang L S , Yu N , Xu K B , Li S J , Wang H L , Liu J S. RSC Adv., 2015, 5: 75081.
[52]
Liu D , Wang J , Wang Y G , Zhu Y F. Catal. Sci. Technol., 2018, 8: 3278.
[53]
Xu C , Zou D B , Wang L H , Luo H , Ying T K. Ceram. Int., 2009, 35: 2099.
[54]
Ismailzade I H , Aliyev I M , Ismailov R M , Alekberov A I , Rzayev D A. Ferroelectrics, 1978, 22: 853.
[55]
Winger L A , Bradt R C , Hoke J H. J. Am. Ceram. Soc., 1980, 63: 291.
[56]
Murugan R. Phys. B: Condens. Matter, 2004, 352: 227.
[57]
Zhou D , Wang H , Pang L X , Randall C A , Yao X. J. Am. Ceram. Soc., 2009, 92: 2242.
[58]
Pang L X , Wang H , Zhou D , Yao X. J. Alloys Compd., 2010, 493: 626.
[59]
Jonjana S , Phuruangrat A , Thongtem T , Thongtem S . Mater. Lett., 2016, 172: 11.
[60]
Lv N , Li Y Y , Huang Z L , Li T , Ye S Y , Dionysiou D D , Song X L. Appl. Catal. B: Environ., 2019, 246: 303.
[61]
Lv J L , Zhang J F , Liu J , Li Z , Dai K , Liang C H. ACS Sustainable Chem. Eng., 2018, 6: 696.
[62]
Fu Y , Chang C , Chen P , Chu X L , Zhu L Y. J. Hazard. Mater., 2013, 254-255: 185.
[63]
Zhang Q , Dai Z , Cheng G , Liu Y L , Chen R . Ceram. Int., 2017, 43: 11296.
[64]
Huang J , Tan G Q , Ren H J , Yang W , Xu C , Zhao C C , Xia A. ACS Appl. Mater. Interfaces, 2014, 6: 21041.
[65]
Chen Y J , Tian G H , Shi Y H , Xiao Y T , Fu H G. Appl. Catal. B: Environ., 2015, 164: 40.
[66]
Geng B , Wei B , Gao H , Xu L L. J. Alloys Compd., 2017, 699: 783.
[67]
Huang H W , Liu L Y , Zhang Y H , Tian N. J. Alloys Compd., 2015, 619: 807.
[68]
Zhang J , Niu C G , Ke J , Zhou L F , Zeng G M. Catal. Commun., 2015, 59: 30.
[69]
Li B S , Lai C , Zeng G M , Qin L , Yi H , Huang D L , Zhou C Y , Liu X G , Cheng M , Xu P , Zhang C , Huang F L , Liu S Y. ACS Appl. Mater. Interfaces, 2018, 10: 18824.
[70]
Sun Y Y , Wu J , Ma T J , Wang P C , Cui C Y , Ma D. Appl. Surf. Sci., 2017, 403: 141.
[71]
Chen S G , Li Y H , Wu Z X , Wu B X , Li H B , Li F J. J. Solid State Chem., 2017, 249: 124.
[72]
Yu H G , Zhu Z F , Zhou J H , Wang J , Li J Q , Zhang Y L. Appl. Surf. Sci., 2013, 265: 424.
[73]
Song J , Zhang L , Yang J , Huang X H , Hu J S. Ceram. Int., 2017, 43: 9214.
[74]
Lai K R , Zhu Y T , Lu J B , Dai Y , Huang B B. Comput. Mater. Sci., 2013, 67: 88.
[75]
Wang Z N , Bai F Y , Wang X , Shang D , Xing Y H. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2016, 163: 73.
[76]
Low J X , Yu J G , Li Q , Cheng B. Phys. Chem. Chem. Phys., 2014, 16: 1111.
[77]
Zhao Q , Gong M , Liu W P , Mao Y L , Le S K , Ju S , Long F , Liu X F , Liu K , Jiang T S. Appl. Surf. Sci., 2015, 332: 138.
[78]
Li J Q , Guo Z Y , Zhu Z F. Ceram. Int., 2014, 40: 6495.
[79]
Dumrongrojthanath P , Phuruangrat A , Junploy P , Thongtem S , Thongtem T. Res. Chem. Intermed., 2016, 42: 1651.
[80]
Li M M , Li D G , Zhou Z R , Wang P F , Mi X Y , Xia Y G , Wang H T , Zhan S H , Li Y , Li L M. Chem. Eng. J., 2020, 382: 122762.
[81]
Zhang B , Li J , Gao Y Y , Chong R F , Wang Z L , Guo L , Zhang X W , Li C. J. Catal., 2017, 345: 96.
[82]
Chen Y , Yang W Y , Gao S , Sun C X , Li Q. ACS Appl. Nano Mater., 2018, 1: 3565.
[83]
Xu X , Ding X , Yang X L , Wang P , Li S , Lu Z X , Chen H. J. Hazard. Mater., 2019, 364: 691.
[84]
Wang J G , Liang H , Zhang C , Jin B , Men Y. Appl. Catal.B: Environ., 2019, 256: 117874.
[85]
Qiu G H , Wang R S , Han F , Tao X Q , Xiao Y , Li B X. Ind. Eng. Chem. Res., 2019, 58: 17389.
[86]
荆涛( Jing T ),戴瑛(Dai Y). 物理化学学报(Acta Physico-Chimica Sinica), 2017, 33(2): 295.
[87]
Song J M , Hu H Q , Wang X Z , Zhao S J , Shi Y L , Ren M S. J. Inorg. Mater., 2013, 28: 1275.
[88]
Castro A , Bégué P , Jiménez B , Ricote J , Jiménez R , Galy J. Chem. Mater., 2003, 15: 3395.
[89]
Yang Z Y , Chen L , Yang Y , Wang J J , Huang Y K , Liu X X , Yang S J. Semicond. Sci. Technol., 2017, 32: 065008.
[90]
Zou C T , Yang Z Y , Liang M J , He Y P , Yang Y , Yang S J. NANO, 2018, 13: 1850127.
[91]
Liang M J , Yang Z Y , Yang Y , Mei Y , Zhou H R , Yang S J. J. Mater. Sci.-Mater. Electron., 2019, 30: 1310.
[92]
Mahlambi M M , Ngila C J , Mamba B B. J. Nanomater., 2015, 2015: 1.
[93]
Peng Y , Wang K K , Liu T , Xu J , Xu B G. Appl. Catal. B: Environ., 2017, 203: 946.
[94]
Liu C , Zou L D , Wang L , Zhang H B , Zhang Z Y. J. Mater. Sci., 2020, 55: 6915.
[95]
Xu F , Xu C Y , Chen H M , Wu D P , Gao Z Y , Ma X M , Zhang Q , Jiang K. J. Alloys Compd., 2019, 780: 634.
[96]
Chen J F , Hu C , Deng Z , Gong X P , Su Y , Yang Q , Zhong J B , Li J Z , Duan R. Chem. Phys. Lett., 2019, 716: 134.
[97]
Jia J , Du X , Zhang Q Q , Liu E Z , Fan J. Appl. Surf. Sci., 2019, 492: 527.
[98]
Li S J , Hu S W , Jiang W , Zhang J L , Xu K B , Wang Z H. J. Colloid Interface Sci., 2019, 556: 335.
[99]
Peng Y , Yan M , Chen Q G , Fan C M , Zhou H Y , Xu A W. J. Mater. Chem. A, 2014, 2: 8517.
[100]
Li S J , Hu S W , Jiang W , Liu Y , Liu J S , Wang Z H. J. Colloid Interface Sci., 2017, 501: 156.
[101]
Zhao C C , Shao C L , Li X H , Li X W , Tao R , Zhou X J , Liu Y C. J. Alloys Compd., 2018, 747: 916.
[102]
Fu F , Shen H D , Xue W W , Zhen Y Z , Soomro R A , Yang X X , Wang D J , Xu B , Chi R. J. Catal. 2019, 375: 399.
[103]
Erwin S C , Zu L J , Haftel M I , Efros A L , Kennedy T A , Norris D J. Nature, 2005, 436: 91.
[104]
Norris D J , Efros A L , Erwin S C. Science, 2008, 319: 1776.
[105]
Jo W J , Jang J W , Kong K J , Kang H J , Kim J Y , Jun H , Parmar K P , Lee J S. Angew. Chem. Int. Ed., 2012, 51: 3147.
[106]
Lei F C , Zhang L , Sun Y F , Liang L , Liu K T , Xu J Q , Zhang Q , Pan B C , Luo Y , Xie Y. Angew. Chem. Int. Ed., 2015, 54: 9266.
[107]
Shim M , Guyot-Sionnest P. Nature, 2000, 407: 981.
[108]
Hoang L H , Phu N D , Peng H , Chen X B. J. Alloys Compd., 2018, 744: 228.
[109]
Zhu F Y , Lv Y Z , Li J J , Ding J , Xia X H , Wei L L , Jiang J Q , Zhang G S , Zhao Q L. Chemosphere, 2020, 252: 126577.
[110]
Li H D , Li W J , Liu X T , Ren C J , Miao X , Li X Y. Appl. Surf. Sci., 2019, 463: 556.
[111]
Teoh W Y , Mädler L , Beydoun D , Pratsinis S E , Amal R. Chem. Eng. Sci., 2005, 60: 5852.
[112]
Chen X , Zhu H Y , Zhao J C , Zheng Z F , Gao X P. Angew. Chem. Int. Ed., 2008, 47: 5353.
[113]
Wang Y H , Liu M , Chen W , Mao L Q , Shangguan W F. J. Alloys Compd., 2019, 786: 149.
[114]
Height M J , Pratsinis S E , Mekasuwandumrong O , Praserthdam P. Appl.Catal. B: Environ., 2006, 63: 305.
[115]
Wu Q S , Cui Y , Yang L M , Zhang G Y , Gao D Z. Sep. Purif. Technol., 2015, 142: 168.
[116]
Phuruangrat A , Putdum S , Dumrongrojthanath P , Ekthammathat N , Thongtemd S , Thongtemb T. Mater. Sci. Semicond. Process., 2015, 34: 175.
[117]
Dong F , Xiong T , Sun Y J , Zhao Z W , Zhou Y , Feng X , Wu Z B. Chem. Commun., 2014, 50: 10386.
[118]
Zhang L L , Wang Z Q , Hu C , Shi B Y. Appl. Catal. B: Environ., 2019, 257: 117785.
[119]
Yu S X , Zhang Y H , Li M , Du X , Huang H W. Appl. Surf. Sci., 2017, 391: 491.
[120]
Xu X , Yang N , Wang P , Wang S Y , Xiang Y G , Zhang X H , Ding X , Chen H. ACS Appl. Mater. Interfaces, 2020, 12: 1867.
[121]
Yan D F , Li Y X , Huo J , Chen R , Dai L M , Wang S Y. Adv. Mater. 2017, 29, 1606459.
[122]
Jiao X C , Chen Z W , Li X D , Sun Y F , Gao S , Yan W S , Wang C M , Zhang Q , Lin Y , Luo Y , Xie Y. J. Am. Chem. Soc., 2017, 13: 7586.
[123]
Wang H , Sun X S , Li D D , Zhang X D , Chen S C , Shao W , Tian Y P , Xie Y. J. Am. Chem. Soc., 2017,139: 2468.
[124]
Xing M Y , Zhou Y , Dong C Y , Cai L J , Zeng L X , Shen B , Pan L H , Dong C C , Chai Y , Zhang J L , Yin Y D. Nano Lett., 2018, 18: 3384.
[125]
Jing K Q , Ma W , Ren Y H , Xiong J H , Guo B B , Song Y J , Liang S J , Wu L. Appl.Catal. B: Environ., 2019, 243: 10.
[126]
Bai J W , Li X M , Hao Z W , Liu L. J. Colloid Interface Sci., 2020, 560: 510.
[127]
Zhang S S , Pu W H , Chen A Y , Xu Y K , Wang Y Y , Yang C Z , Gong J Y. J. Hazard. Mater., 2020, 384: 121478.
[128]
Li X Z , Li F H , Lu X W , Zuo S X , Yao C , Ni C Y. J. Alloys Compd., 2017, 709: 285.
[129]
Song X C , Zheng Y F , Ma R , Zhang Y Y , Yin H Y. J. Hazard. Mater., 2011, 192: 186.
[130]
Zhou L , Yu M M , Yang J , Wang Y H , Yu C Z. J. Phys. Chem. C, 2010, 114: 18812.
[131]
Morales-Cruz D , Paraguay-Delgado F , Borja-Urby R , Basurto-Cereceda S , Herrera-Pérez G , Longod P , Malac M. Mater. Sci. Semicond. Process., 2017, 63: 184.
[132]
Li W Q , Ding X G , Wu H T , Yang H. Appl. Surf. Sci., 2018, 447: 636.
[133]
韩锐暄( Han R X ),赵彬侠(Zhao B X),贺贝贝(He B B),骆海东(Luo H D),李志亮(Li Z L),邱爽(Qiu S),张小里(Zhang X L). 人工晶体学报(Journal of Synthetic Crystals), 2018, 47(10): 2148.
[134]
Yang L M , Zhang G Y , Wang H R , Bai X , Shen X Q , Liu J W , Gao D Z. CrystEngComm, 2016, 18: 3683.
[135]
Jiang J , Zhao K , Xiao X Y , Zhang L Z. J. Am. Chem. Soc., 2012, 134: 4473.
[136]
Sun H G , Tian Z X , Zhou G L , Zhang J M , Li P. Appl. Surf. Sci., 2019, 469: 125.
[137]
Fang G L , Liu J , Yan X H , Wang D Y , Israr J , Xue T. Adv. Mater. Interfaces, 2018, 5: 1800844.
[138]
Wang D J , Shen H D , Guo J , Wang C , Fu F , Liang Y C. Appl. Surf. Sci., 2018, 436: 536.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[6] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[9] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[10] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[11] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[12] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[15] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.