English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 210-215 DOI: 10.7536/PC161008 前一篇   后一篇

所属专题: 电化学有机合成

• 综述 •

非线性谱学分析的基本原理及其在电化学研究中的应用

毛庆*, 景维云, 石越   

  1. 大连理工大学化工学院 大连 116023
  • 收稿日期:2016-10-09 修回日期:2016-12-30 出版日期:2017-02-15 发布日期:2017-02-27
  • 通讯作者: 毛庆 E-mail:maoqing@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21403029)、辽宁省教育厅科学研究一般项目(No.L2014022)和辽宁省自然科学基金项目(No.201602162)资助

Basic Principles and Applications of Nonlinear Spectroscopy Analysis in Electrochemistry

Qing Mao*, Weiyun Jing, Yue Shi   

  1. School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
  • Received:2016-10-09 Revised:2016-12-30 Online:2017-02-15 Published:2017-02-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21403029), the Scientific Research General Project of Liaoning Provincial Department of Education (No. L2014022), and the Natural Science Foundation of Liaoning Province (No. 201602162).
暂态电化学分析技术由于可以提供与时间相关的电极过程动力学信息,在电化学研究中应用广泛。本文着重介绍了在正弦电流/电压激励下电化学系统的时频响应特性,其非线性频响行为的谱学表达、数值模拟方法以及实验表征方法,综述了非线性谱学分析技术在电化学研究中的应用。文中指出基于反应机理的谱学模拟与实验表征结果的对比是当前开展电化学非线性谱学研究的主要模式,总结出其在实验测量中交流振幅的选取原则,并在最后提出电化学系统的非线性主要源于反应动力学,非线性谱学分析因此在电化学反应的机理研究以及电化学系统诊断的许多方面独具优势。
Transient electrochemical technologies have been widely applied in electrochemistry for providing time dependent information of the electrode kinetics. This review aims to show the time-frequency response behavior of an electrochemical system under periodical sine current/voltage excitations. Manifestations, numerical simulation scheme and experimental characterization methods of the nonlinear frequency response spectroscopy as well as its application in electrochemistry are addressed as the key issues. It is suggested that comparative studies between simulation and experimental data is the main way to utilize the nonlinear spectroscopy. Regulations to select current/voltage amplitude are concluded from its experimental characterization. Furthermore, it is indicated that nonlinearity of the electrochemical system arises from the electrode kinetics, which enables the nonlinear spectroscopy to own its advantages in the mechanism study and some aspects of the electrochemical system diagnosis.

Contents
1 Introduction
2 Linearity and nonlinearity of an electrochemical system
3 Manifestations of the frequency response behaviors of an electrochemical system
4 Numerical simulation and experimental characterization of the frequency response spectroscopy
5 Application of the nonlinear spectroscopy analysis in electrochemistry
6 Conclusion

中图分类号: 

()
[1] Macdonald D. Transient Techniques in Electrochemistry. 1st ed. NY:Springer, 1977. 244.
[2] Wagner N, Schulze M. Electrochim. Acta, 2003, 48:3899.
[3] Le Canut J M, Abouatallah R M, Harrington D A. J. Electrochem. Soc., 2006, 153:A857.
[4] Piela P, Fields R, Zelenay P. J.Electrochem.Soc., 2006, 153:A1902.
[5] Krewer U, Christov M, Vidakovi? T, Sundmacher K. J. Electroanal. Chem., 2006, 589:148.
[6] Krewer U, Kamat A, Sundmacher K.J.Electroanal.Chem., 2007, 609:105.
[7] Krewer U, Vidakovi?-Koch T, Rihko-Struckmann L. ChemPhys Chem, 2011, 12:2518.
[8] 曹楚南(Cao C N), 张鉴清(Zhang J Q). 电化学阻抗谱导论(An Introduction to Electrochemical Impedance Spectroscopy). 北京:科学出版社(Beijing:Science Press), 2002.1.
[9] McDonald T J, Adler S. ECS Transactions, 2012, 45(1):429.
[10] Vidakovi?-Koch T R, Pani? V V, Andri? M, Petkovska M, Sundmacher K. J. Phys. Chem. C, 2011, 115:17341.
[11] Bensmann B, Petkovska M, Vidakovic-Koch T, Hanke-Rauschenbach R, Sundmacher K. J. Electrochem. Soc., 2010, 157:B1279.
[12] Kadyk T,Hanke-Rauschenbach R,Sundmacher K.J. Electroanal. Chem., 2009, 630:19.
[13] Kadyk T,Hanke-Rauschenbach R, Sundmacher K.Int. J. Hydrogen Energy, 2012, 37:7689.
[14] Kadyk T, Hanke-Rauschenbach R, Sundmacher K. J. Appl. Electrochem., 2011, 41:1021.
[15] Philippow E. Grundlagen der Elektrotechnik. Berlin:Verlag Technik GmbH, 1992. 573.
[16] Kories R. Taschenbuch der Elektrotechnik. 3rd ed. Frankfurt-am Main:Verlag Harry Deutsch, 1998. 265.
[17] Shmilovitz D. IEEE Transactions on Power Delivery, 2005, 20(1):526.
[18] Ramschak E, Peinecke V, Prenninger P, Schaffer T, Hacker V. J. Power Sources, 2006, 157:837.
[19] Mao Q, Krewer U, Hanke-Rauschenbach R. Electrochem. Commun., 2010, 12:c1517.
[20] Mao Q, Krewer U. Electrochim. Acta, 2012, 68:60.
[21] Mao Q, Krewer U. Electrochim. Acta, 2013, 103:188.
[22] Bard A J,Faulkner L R.Electrochemical Methods:Fundamentals and Applications. 1st ed. NY:John Wiley & Sons, 1944. 354.
[23] Pani? V V, Vidakovi?-Koch T R, Andri? M, Petkovska M, Sundmacher K. J. Phys. Chem. C, 2011, 115:17352.
[24] Wilson J R, Sase M, Kawada T, Adler S B. Electrochem. Solid-State Lett., 2007, 10:B81.
[25] Ramschak E. US 2006/0078788 A1, 2006.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[5] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[6] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[7] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[8] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[9] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[10] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[11] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[12] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[13] 张文锐, 张智慧, 高立国, 马廷丽. 双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用[J]. 化学进展, 2016, 28(6): 961-974.
[14] 林玲, 朱青, 徐安武. 直接甲醇燃料电池的阳极和阴极催化剂[J]. 化学进展, 2015, 27(9): 1147-1157.
[15] 王诚, 王树博, 张剑波, 李建秋, 王建龙, 欧阳明高. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435.