English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1770-1783 DOI: 10.7536/PC171239 前一篇   后一篇

• 综述 •

金属有机框架材料在质子交换膜燃料电池中的潜在应用

梁茜1, 王诚1*, 雷一杰1, 刘亚迪1, 赵波2, 刘锋2   

  1. 1. 清华大学核能与新能源技术研究院 北京 100084;
    2. 全球能源互联网研究院有限公司 北京 102209
  • 收稿日期:2017-02-26 修回日期:2018-03-20 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 王诚,e-mail:wangcheng@tsinghua.edu.cn E-mail:wangcheng@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21773136,21573122,2016YFB0101208)和北京市科技委员会项目(No.Z181100004518004,Z171100002017024)资助

Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells

Xi Liang1, Cheng Wang1*, Yijie Lei1, Yadi Liu1, Bo Zhao2, Feng Liu2   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
  • Received:2017-02-26 Revised:2018-03-20 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21773136, 21573122, 2016YFB0101208), and the Beijing Municipal Science & Technology Commission (No. Z181100004518004, Z171100002017024).
金属有机框架亦称作多孔配位网状结构,是一种多孔晶态材料,具有结构可设计、孔壁可功能化修饰、高度晶态化、比表面积大及优良的导电性等诸多优点,使其在能源转换及储存方面备受关注。本文详细介绍了新型金属有机框架质子导体及电催化剂在燃料电池方面的相关研究;综述了国内外近年来在金属有机框架质子交换膜和氧还原电催化领域所取得的一些重要进展,例如金属有机框架质子交换膜电导率可高达1.82 S·cm-1(70℃,90% RH),金属有机框架电催化剂作为阴极在膜电极测试中可产生0.91 W·cm-2(0.6 V)的峰值功率密度;并指出了金属有机框架在质子交换膜和电催化剂研究中存在的问题,这为今后开发高电导性质子交换膜和高催化活性电催化提供了新思路。
Metal-organic frameworks (MOFs), also called porous coordination networks (PCNs), are new types of porous crystalline materials, which have quite a few advantages, such as the structural design, functional modification of pore walls, high crystallinity, large specific surface area and excellent conductivity. It has attracted great attention in energy conversion and storage. This paper describes in detail the research of the new MOFs-based proton conductors and the electrocatalyst in the field of fuel-cell, and also concludes some important progress in MOFs-based proton exchange membrane and oxygen-reduction electrocatalyst. For example, the conductivity of one kind of MOFs proton exchange membrane can be as high as 1.82 S·cm-1 (70℃, 90% RH). A membrane electrode assembly (MEA) using the electrocatalyst with MOFs at the cathode can produce a peak power density of 0.91 W·cm-2. This paper also points out the deficiencies in this field, which provides new approaches for the development of high conductive proton exchange membrane and high catalytic activity electrocatalys in the future.
Contents
1 Introduction
2 Study of MOFs in proton exchange membranes
2.1 MOFs proton conductivity mechanism
2.2 Proton conductivity of MOFs in water system
2.3 Proton conductivity of MOFs in nonaqueous conditions
3 Study of MOFs on oxygen reduction (ORR) electrocatalysts
3.1 Non-precious metal ORR catalysts based on MOFs
3.2 Non-metallic ORR catalysts based on MOFs
4 Conclusion and outlook

中图分类号: 

()
[1] Rachuri Y, Bisht K K, Parmar B, Suresh E. Solid State Chem., 2015, 223:23.
[2] Zhang X, Wang Z J, Chen S G, Shi Z Z, Chen J X, Zheng H G. Dalton Trans., 2017, 46:2332.
[3] Lian X, Yan B A. Dalton Trans., 2016, 45:18668.
[4] Kumar P, Kim K H, Bansal V, Paul A K, Deep A. Microchem. J., 2016, 128:10.
[5] Daniel D S, Jarad A, Mason B D, James C H, Jeffrey R, Long M V. Energy & Fuel, 2017, 31:2024.
[6] Jiang J C, Furukawa H, Zhang Y B, Yaghi O M. J. Am. Chem. Soc., 2016, 138:10244.
[7] Sun L, Park S S, Sheberla D, Dincǎ M. J. Am. Chem. Soc., 2016, 138:14772.
[8] Mitra R, Saha A. ACS Sustainable Chem. Eng., 2017, 5:604.
[9] Wang C, Xie Z G, Dekrafft K E, Lin W L. J. Am. Chem. Soc., 2011, 133:13445.
[10] Rimoldi M, Howarth A J, DeStefano M R, Lin L, Goswami S, Li P, Hupp J T, Farha O K. ACS Catal., 2017, 7:997.
[11] Zen J M, Kumar A S. Acc. Chem. Res., 2001, 34:772.
[12] Gayen P, Chaplin B P. ACS Appl. Mater. Inter., 2016, 8:1615.
[13] Jiang B, Yu L H, Wu L T, MuD, Liu L, Xi J Y, Qiu S P. ACS Appl. Mater. Inter., 2016, 8:12228.
[14] Kim Y, Ketpang K, Jaritphun S, Parkb J S, Shanmugam S. J. Mater. Chem. A, 2015, 3:8148.
[15] Dong X Y, Li J J, Han Z, Duan P G, Li L K, Zang S Q. J. Mater. Chem. A, 2017, 5:3464.
[16] Meng X, Wang H N, Song S Y, Zhang H J. Chem. Soc. Rev., 2017, 46:464.
[17] Wang R, Dong X Y, Xu H, Pei R B, Ma Ming L, Zang S Q, Hou H W, Thomas C W M. Chem. Commun., 2014, 50:9153.
[18] Liang X, Li B, Wang M H, Wang J, Liu R L, Li G. ACS Appl. Mater. Inter., 2017, 9:25082.
[19] Dong X Y, Hu X P, Yao H C, Zang S Q, Hou H W, Mak T C W. Inorg. Chem., 2014, 53:12050.
[20] Thomas M, Illathvalappi R, Kurungot S, Nair B N, Mohamed A A P, Anilkumar G M, Yamaguchi T, Hareesh U S. ACS Appl. Mater. Inter., 2016, 8:29373.
[21] 罗琼(Luo Q). 大连理工大学硕士论文(Master's dissertation of Dalian Institute of Technology), 2016.
[22] Ni B, Ouyang C, Xu X B, Zhuang J, Wang X. J. Adv. Mater., 2017, 29:1701354.
[23] Zhao X, Mao C M, Bu X H, Feng P Y. Chem. Mater., 2014, 26:2492.
[24] Nagarkar S S, Unni S M, Sharma A, Sreekumar K, Ghosh S K. Angew. Chem. Int. Ed., 2014, 53:2638.
[25] Dybtsev D N, Ponomareva V G, Aliev S B, Chupakhin A P, Gallyamov M R, Moroz N K, Kolesov B A, Kovalenko K A, Shutova E S, Fedin V P. ACS Appl. Mater. Inter., 2014, 6, 5161.
[26] Li X M, Dong L Z, Li S L, Xu G, Liu J, Zhang F M, Lu L S, Qian Y L. ACS Energy Lett., 2017, 2:2313.
[27] Phang W J, Jo H, Lee W R, Song J H, Yoo K, Kim B S, Hong C S. Angew. Chem. Int. Ed., 2015, 54:5142.
[28] Wu B, Ge L, Lin X C, Wu L, Luo J Y, Xu T W. Mem. Sci., 2014, 458:86.
[29] Rao Z, Feng K, Tang B B, Wu P Y. Mem. Sci., 2017, 533:160.
[30] Umeyama D, Horike S, Inukai M, Kitagawa S. J. Am. Chem. Soc., 2013, 135:11345.
[31] Umeyama D, Horike S, Inukai M, Hijikata Y, Kitagawa S. Angew. Chem. Int. Ed., 2011, 50:11706.
[32] Ye Y X, Wu X Z, Yao Z Z, Wu L, Zhang Z J, Xiang S C. J. Mater. Chem. A, 2016, 4:4062.
[33] Jeong N C, Samanta B, Lee C Y, Farha O K, Hupp J T. J. Am. Chem. Soc., 2012, 134:51.
[34] Kim S, Dawson K W, Gelfand B S, Taylor J M, Shimizu G K H. Am. Chem. Soc., 2013, 135:963.
[35] Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L, Shimizu G K. Nat. Chem., 2009, 1:705.
[36] Joarder B, Lin J B, Romero Z, Shimizu G K H. Am. Chem. Soc., 2017, 139:7176.
[37] Ye Y X, Zhang L Q, Peng Q F, Wang G E, Shen Y C, Li Z Y, Wang L H, Ma X L, Chen Q H, Zhang Z J, Xiang S C. Am. Chem. Soc., 2015, 137:193.
[38] Sun H Z, Tang B B, Wu P Y. ACS Appl. Mater. Inter., 2017, 9:35075.
[39] Kreuer K D, Rabenau A, Weppner W. Angew. Chem. Int. Ed., 1982, 21:208.
[40] Agmon N. "The Grotthuss Mechanism" Chem. Phys. Lett., 1995, 244:456.
[41] 孙延俊(Sun Y J). 吉林大学硕士论文(Master's dissertation of Jilin University), 2016.
[42] Bao S S, Liao Y, Su Y H, Liang X, Hu F C, Sun Z H, Zheng L M, Wei S Q, Alberto R, Li Y Z, Ma J. Angew. Chem., 2011, 123:5618.
[43] Rao Z, Feng K, Tang B B, Wu P Y. Membrane Sci., 2017, 533:160.
[44] Dong X Y, Wang R, Wang J Z, Zang S Q, Thomas C W M. J. Mater. Chem. A, 2015, 3:641.
[45] Bao S S, Otsubo K, Taylor J M, Jiang Z, Zheng L M, Kitagawa H. J. Am. Chem. Soc., 2014, 136:9292.
[46] Umeyama D, Horike S, Inukai M, Itakura T, Kitagawa S. J. Am. Chem. Soc., 2012, 134, 12780.
[47] Wei Y S, Hu X P, Han Z, Dong X Y, Zang S Q, Thomas C W M. J. Am. Chem. Soc., 2017, 139:3505.
[48] Borges D D, Devautour V S, Jobic H, Ollivier J, Nouar F, Semino R, Devic T, Serre C, Paesani F, Maurin G. Angew. Chem., Int. Ed., 2016, 55:3919.
[49] Liu M, Chen L, Lewis S, Chong S Y, Little M A, Hasell T, Aldous I M, Brown C M, Smith M W, Morrison C A, Hardwick L J, Cooper A I. Nat. Commun., 2016, 7:12750
[50] Dong X Y, Wang R, Li J B, Zang S Q, Hou H W, Thomas C W M. Chem. Commun., 2013, 49:10590.
[51] Sadakiyo M, Yamada T, Honda K, Matsui H, Kitagawa H. J. Am. Chem. Soc., 2014, 136:7701.
[52] Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2014, 136:13166.
[53] Bao S S, Li N Z, Taylor J M, Shen Y, Kitagawa H, Zheng L M. Chem. Mater., 2015, 27:8116.
[54] Zhoua H C J, Kitagawa S. Chem. Soc. Rev., 2014, 43:5415.
[55] Taylor J M, Dawson K W, Shimizu G K H. Am. Chem. Soc., 2013, 135:1193.
[56] Cai K, Sun F X, Liang X Q, Liu C, Zhao N, Zou X Q, Zhu G S. J. Mater. Chem. A, 2017, 5:12943.
[57] Xiang S C, Zhang Z J, Ye Y X, Yao Z Z. Crystal Engineering (Eds. Chinese Chemical Society). China:Chinese Meeting, 2016. 30.
[58] Li X M, Dong L Z, Li S L, Xu G, Liu J, Zhang F M, Lu L S, Lan Y Q. ACS Energy Lett., 2017, 2:2313.
[59] Ye Y X, Zhang L Q, Peng Q F, Wang G E, Shen Y C, Zhang Z J, Xiang S C. Am. Chem. Soc., 2015, 137:913.
[60] 王晓湘(Wang X X). 河南师范大学硕士论文(Master's Dissertation of Henan Normal University)
[61] Zhang F M, Dong L Z, Qin J S, Guan W, Liu J, Li S L, Lu M, Lan Y Q, Su Z M, Zhou H C. J. Am. Chem. Soc., 2017, 139:6183.
[62] Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L, Shimizu G K H. Nat. Chem., 2009, 2755.
[63] Li S W, Zhou Z, Liu M L, Li W, Ukai J, Hase K, Nakanishi M. Electrochim. Acta, 2006, 51:1351.
[64] Wang J T, Savinell R F, Wainright J, Litt M, Yu H. Electrochim. Acta, 1996, 41:193.
[65] Liu S C, Yue Z F, Liu Y. Dalton Trans., 2015, 44:12976.
[66] Zomoza B, Martinez J K, Serra C P, Coronas J, Kapteijn F. Chem. Commun., 2011, 47:9522.
[67] Kreuer K D, Paddison S J, Spohr E, Schuster M. Chem. Rev., 2004, 104:4637.
[68] Wu B, Ge L, Lin X C, Wu L, Luo J Y, Xu T W. J. Membrane Sci., 2014, 86:458.
[69] Rao C N R, Natarajan S, Vaidhyanathan R. Angew. Chem. Int. Ed., 2004, 43:1466.
[70] Wu B, Pan J F, Ge L, Wu L, Wang H T, Xu T W. Sci. Rep., 2014, 4:4334.
[71] Hu M, Reboul J, Furukawa S, Torad N L,Ji Q M, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y. J. Am. Chem. Soc., 2012, 134:2864.
[72] Liu B, Shioyama H, Akita N T, Xu Q. Am. Chem. Soc., 2008, 130:5390.
[73] Sun Y H, Zhao J C, Zhou H H, B H J, Gu Y Q, Tang A M, Liao C M, Xu J L. Adv. Mat. Res., 2011, 1010:239.
[74] Yan X L, Li X J, Yan Z F, Komarneni S. Appl. Sur. Sci., 2014, 308:306.
[75] Kenneth I O, Chen S W. Nanomaterials for Fuel Cell Catalysis. 1st ed. GER:Springer, 2016. 367.
[76] Patel H A, Mansor N, Gadipell Si, Brett D J L, Guo Z X. ACS Appl. Mater. Inter., 2016,8:30687.
[77] Jasinski R. Nat., 1964, 201:1212.
[78] Guan B Y, Yu L, Lou X W. Adv. Sci., 2017, 4:1700247.
[79] Zhang P, Guan B Y, Yu L, Lou X W. Chem., 2018, 4:162.
[80] Guan B Y, Yu L, Lou X W. Energy Environ. Sci., 2016, 9:3092.
[81] Ma S Q, Goenaga G A, Call A V, Liu D J. Chem. Eur., 2011, 17:2063.
[82] Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J,Herranz J, Dodelet J P. Nat. Comm., 2011, 2.
[83] Zheng R P, Liao S J, Hou S Y, Qiao X C, Wang G H, Liu L N, Shu T, Du L. J. Mater. Chem. A, 2016, 4:7859.
[84] Morozan A, Sougrati M T, Goellner V, Jones D, Stievano L, Jaouen F. Electrochimica Acta, 2014, 119:192.
[85] Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z. ACS Nano, 2014, 8:12660.
[86] Shimbori Y, Shiroishi H, Ono R, Kosaka, S, Saito M, Yoshida T, Katagiri H, Miyazawa K, Tanaka Y. Mat. Sci. Eng. B, 2018, 228:190.
[87] Wang H, Yin F X, Chen B H, He X B, Lv P L, Ye C Y, Liu D J. Appl. Catal. B-Enviro., 2016, 205:55.
[88] Chen Y Z, Wang C M, Wu Z Y, Xiong Y J, Xu Q, Yu S H, Jiang H L. Adv. Mater., 2015, 27:5010.
[89] Palaniselvam T, Biswal B P, Banerjee R, Kurungot S, Chem. Eur. J., 2013, 19:9335.
[90] Ma S, Goenaga G A, Call A V, Liu D J, Chem. Eur. J., 2011, 17:2063.
[91] Zhang L J, Su Z X, Jiang F L, Yang L L, Qian J J, Zhou Y F, Lia W M, Hong M C. Nano., 2014, 6:6590.
[92] Zhang W, Wu Z Y, Jiang H L, Yu S H. J. Am. Chem. Soc., 2014, 136:14385.
[93] Luo Q, Chen L Y, Duan B H, Gu Z Z, Liu J, Xu M L, Duan C Y. RSC Adv., 2016, 6:12467.
[94] Zhang E H, Xie Y, Ci S Q, Jia J C, Cai P W, Yia L C, Wen Z H. J. Mater. Chem. A, 2016, 4:17288.
[95] Yang L J, Larouche N, Chenitz R, Zhang G X, Lefevre M, Dodelet J P. Electrochimica Acta, 2015, 159:184.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[3] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[4] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[8] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[12] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[13] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[14] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[15] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.