English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1147-1157 DOI: 10.7536/PC150349 前一篇   后一篇

• 综述与评论 •

直接甲醇燃料电池的阳极和阴极催化剂

林玲, 朱青, 徐安武*   

  1. 中国科学技术大学 合肥微尺度物质科学国家实验室 合肥 230026
  • 收稿日期:2015-03-01 修回日期:2015-05-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 徐安武 E-mail:anwuxu@ustc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21271165)和国家重点基础研究发展计划(973)项目(No. 2011CB933702)资助

Anode Catalysts and Cathode Catalysts of Direct Methanol Fuel Cells

Lin Ling, Zhu Qing, Xu Anwu*   

  1. Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
  • Received:2015-03-01 Revised:2015-05-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21271165) and the State Key Basic Science Research Project of China (No. 2011CB933702).
直接甲醇燃料电池(DMFC)由于其结构简单、能量密度高、易携带、无污染等优点,成为燃料电池未来发展的方向。阳极和阴极催化剂的活性和稳定性是决定DMFC性能、寿命和成本的关键。然而,商业催化剂铂(Pt)的低储量和高成本限制了DMFC的广泛应用,同时,非铂类催化剂的活性和稳定性还需要进一步提高,以达到商业化应用的要求。本文综述了近年来国内外DMFC阳极和阴极催化剂的最新研究进展。首先,对于阳极甲醇氧化催化剂,分别对Pt基催化剂的改性和非Pt类催化剂的研究进展进行了详细介绍;其次,概述了Pt基阴极氧还原催化剂的改性和非Pt阴极催化剂的发展现状;此外,对于催化剂与载体的强相互作用产生的协同效应进行了总结论述;最后,对直接甲醇燃料电池阳极和阴极催化剂的发展前景进行了展望。
Direct methanol fuel cell (DMFC) appears to be one of the most promising systems of various fuel cells, due to their simple structure, high energy density, easy transportation and environment friendly. The activity and stability of the anode and cathode catalysts determine the performance and stability of DMFC. Platinum (Pt) has the highest activity toward both anodic and cathodic reactions. However, the low abundance and high cost of commercial platinum catalyst hinder the widespread application of DMFC. Therefore, developing non-platinum catalysts is of great significance to the wide application of DMFC. Although researchers have made great progress in non-platinum catalysts research in recent years, the activity and stability of non-platinum catalysts still need further improvement to meet the requirements of commercial application. In this review article, the research progresses anode and cathode catalysts for direct methanol fuel cell in recent years are summarized. The development of the Pt-based and Pt-free anode and cathode catalysts of DMFC is described in detail, respectively. Besides, the synergistic effect from strong interaction between Pt-based catalyst and catalyst supports is also discussed. Finally, the further development in the anode and cathode catalysts of DMFC is expected.

Contents
1 Introduction
2 Anode catalysts
2.1 Platinum-based anode catalysts
2.2 Non-platinum anode catalysts
3 Cathode catalysts
3.1 Platinum-based cathode catalysts
3.2 Non-platinum cathode catalysts
4 Synergistic effect between Pt-based catalyst and supports
5 Conclusion and outlook

中图分类号: 

()
[1] 衣宝廉(Yi B L). 燃料电池:原理技术应用(Fuel Cell: Principle, technology and application).北京:化学工业出版社(Beijing: Chemical Industry Press),2003.
[2] US. D. o. Energy, 2013 Fuel Cell Technologies Market Report. 2014, http://energy.gov/sites/prod/files/2014/11/f19/fcto_2013_market_report.pdf.
[3] US. D. o. Energy, Multi-Year Research, Development and Demonstration Plan, 3.4: Technical Plan Fuel Cells. 2012, http://energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_fuel_cells.pdf
[4] Kakati N, Maiti J, Lee S H, Jee S H, Viswanathan B, Yoon Y S. Chem. Rev., 2014, 114: 12397.
[5] Tiwari J N, Tiwari R N, Singh G, Kim K S. Nano Energy, 2013, 2: 553.
[6] Thomas S C, Ren X, Gottesfeld S, Zelenay P. Electrochim. Acta, 2002, 47: 3741.
[7] Li X, Faghri A. J. Power Sources, 2013, 226: 223.
[8] Wen Z H, Juan L, Li J H. Adv. Mater., 2008, 20: 743.
[9] Wu J B, Yang H. Acc. Chem. Res., 2013, 46: 1848.
[10] Kakati N, Maiti J, Lee S H, Jee S H, Viswanathan B, Yoon Y S. Chem. Rev., 2014, 114: 12397.
[11] Lamy C, Léger J M, Srinivasan S. Modern Aspects of Electrochemistry, NY: Plenum Publisher, 2001. 34.
[12] Zhu J, Cheng F Y, Tao Z L, Chen J. J. Phys. Chem. C, 2008, 112: 6337.
[13] Hamel C, Garbarino S B, Irissou E R, Bichat M P, Guay D. J. Phys. Chem. C, 2010, 114: 18931.
[14] Lee E P, Peng Z, Chen W, Chen S, Yang H, Xia Y. ACS Nano, 2008, 2: 2167.
[15] Song Y, Garcia R M, Dorin R M, Wang H, Qiu Y, Coker E N, Steen W A, Miller J E, Shelnutt J A. Nano Lett., 2007, 7: 3650.
[16] Górzny M ?, Walton A S, Evans S D. Adv. Funct. Mater., 2010, 20: 1295.
[17] Shin T Y, Yoo S H, Park S. Chem. Mater., 2008, 20: 5682.
[18] Ghosh S, Raj C R. J. Phys. Chem. C, 2010, 114: 10843.
[19] Zhang H, Zhou W, Du Y, Yang P, Wang C. Electrochem. Commun., 2010, 12: 882.
[20] Yoo S J, Jeon T Y, Kim K S, Lim T H, Sung Y E. Phys. Chem. Chem. Phys., 2010, 12: 15240.
[21] Peng Z, You H, Wu J, Yang H. Nano Lett., 2010, 10: 1492.
[22] Yin A X, Min X Q, Zhu W, Liu W C, Zhang Y W, Yan C H. Chem. Eur. J., 2012, 18: 777.
[23] Wu G, Swaidan R, Li D, Li N. Electrochim. Acta, 2008, 53: 7622.
[24] Wei Z, Guo H, Tang Z. J. Power Sources, 1996, 58: 239.
[25] Chiou Y J, Hsu H J, Lin H M, Liou W J, Liou H W, Wu S H, Chien S H. Particuology, 2011, 9: 522.
[26] Abe H, Matsumoto F, Alden L R, Warren S C, Abrun H D, DiSalvo F J. J. Am. Chem. Soc., 2008, 130: 5452.
[27] Li X, Chen G, Xie J, Zhang L, Xia D, Wu Z. J. Electrochem. Soc., 2010, 157: B580.
[28] Wang Z B, Yin G P, Lin Y G. J. Power Sources, 2007, 170: 242.
[29] Jeon M K, Won J Y, Lee K R, Woo S I. Electrochem. Commun., 2007, 9: 2163.
[30] Xu J B, Hua K F, Sun G Z, Wang C, Lv X Y, Wang Y. J. Electrochem. Commun., 2006, 8: 982.
[31] Chen Z, Waje M, Li W, Yan Y. Angew. Chem. Int. Ed., 2007, 46: 4060.
[32] Choi S M, Kim J H, Jung J Y, Yoon E Y, Kim W B. Electrochim. Acta, 2008, 53: 5804.
[33] Watanabe M, Motoo S. J. Electroanal. Chem., 1975, 60: 267.
[34] Koper M T, Shubina T E, Santen R A. J. Phys. Chem. B, 2002, 106: 691.
[35] Alayoglu S, Zavalij P, Eichhorn B, Wang Q, Frenkel A I, Chupas P. ACS Nano, 2009, 3: 3127.
[36] Mpourmpakis G, Andriotis A N, Vlachos D G. Nano Lett., 2010, 10: 1041.
[37] Wang D, Zhuang L, Lu J T. J. Phys. Chem. C, 2007, 111: 16416.
[38] Watanabe M, Zhu Y M, Uchida H. J. Phys. Chem. B, 2000, 104: 1762.
[39] Wang D Y, Chou H L, Lin Y C, Lai F J. J. Am. Chem. Soc., 2012, 134: 10011.
[40] Liang Y M, Zhang H M, Zhong H X, Zhu X B, Tian Z Q, Xu D Y, Yi B L. J. Catal., 2006, 238: 468.
[41] Zeng J H, Lee J Y. Int. J. Hydrogen Energy, 2007, 32: 4389.
[42] Jeon M K, Zhang Y, McGinn P. J. Electrochim. Acta, 2009, 59: 2837.
[43] Zhang L F, Zhong S L, Xu A W. Angew. Chem. Int. Ed., 2013, 52: 645.
[44] Liu Z L, Zhang X H, Hong L. Electrochem. Commun., 2009, 11: 925.
[45] Zhang J, Liu P, Ma H, Ding Y. J. Phys. Chem. C, 2007, 111: 10382.
[46] Yin Z, Zhang Y, Chen K, Li J, Li W, Tang P, Zhao H, Zhu Q, Bao X, Ma D. Sci. Rep., 2014, 4: 4288.
[47] Abdel Hameed R M, El-Khatib K M. Int. J. Hydrogen Energy, 2010, 35: 2517.
[48] Hays C C, Manoharan R, Goodenough J B. J. Power Sources, 1993, 45: 291.
[49] Tharamani C N, Mayanna S M. Electrochem. Solid-State Lett., 2006, 9: A412.
[50] Hoor F S, Tharamani C N, Ahmed M F, Mayanna S M. J. Power Sources, 2007, 167: 18.
[51] Yu H C, Fung K Z, Guo T C, Chang W L. Electrochim. Acta, 2004, 50: 811.
[52] Deshpandea, Mukasyanb A, Varma A. J. Power Sources, 2006, 158: 60.
[53] Singh R N, Sharma T, Singh A, Anindita, Mishra D, Tiwari S K. Electrochim. Acta, 2008, 53: 2322.
[54] Hosseini M G, Momeni M M, Faraji M. Electroanalysis, 2010, 22: 2620.
[55] Zhao Y C, Nie S L, Wang H W, Tian J N, Ning Z, Li X X. J. Power Sources, 2012, 218: 320.
[56] Samant P V, Fernandes J B. J. Power Sources, 1999, 79: 114.
[57] Zhao Y C, Nie S L, Wang H W, Tian J N, Ning Z, Li X X. J. Power Sources, 2012, 218: 320.
[58] Kudo T, Kawamura G, Okamoto H. J. Electrochem. Soc., 1983, 130: 1491.
[59] Jones S H, Walker D K. J. Electrochem. Soc., 1987, 137: 1653.
[60] Barnett C J, Burstein G T, Kucernak A R J, Williams K R. Electrochim. Acta, 1997, 42: 2381.
[61] Joo J B, Kim J S, Kim P, Yi J. Mater. Lett., 2008, 62: 3497.
[62] Guil-López R, Martinez-Huerta M V, Guillen-Villafuerte O, Pena M A, Fierro J L G, Pastor E. Int. J. Hydrogen Energy, 2010, 35: 7881.
[63] Zhang X F, Shen P K. Int. J. Hydrogen Energy, 2013, 38: 2257.
[64] Leevy R B, Boudart M. Science, 1973, 181: 547.
[65] Zellner M B, Chen J G. Catal. Today, 2005, 99: 299.
[66] Mellinger Z J, Kelly T G, Chen J G. ACS Catal., 2012, 2: 751.
[67] Yaldagard M, Jahanshahi M, Seghatoleslami N. Appl. Surf. Sci., 2014, 317: 496.
[68] Xu C, Shi M, Kang L, Ma C. Mater. Lett., 2013, 15: 183.
[69] Wu J, Zhang J, Peng Z, Yang S, Wagner F T, Yang H. J. Am. Chem. Soc., 2010, 132: 4984.
[70] Lim B, Jiang M, Camargo P H C, Cho E C, Tao Z, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302.
[71] Xiong L, Kreidler E, He T. ECS Trans., 2006, 1: 69.
[72] Shao M, Shoemaker K, Peles A, Kaneko K, Protsailo L. J. Am. Chem. Soc., 2010, 132: 9253.
[73] Oezaslan M, Hasché F, Strasser P. J. Electrochem. Soc., 2012, 159: B444.
[74] Holt-Hindle P, Yi Q, Wu G, Koczkur K, Chen A. J. Electrochem. Soc., 2008, 155: K5.
[75] Jeon M K, Zhang Y, McGinn P J. Electrochim Acta, 2010, 55: 5318.
[76] Salgado J R C, Antolini E, Gonzalez E R. Appl. Catal. B-Environ., 2005, 57: 283.
[77] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovi D? 1 N M. Science, 2007, 315: 493.
[78] Yang C C, Hsu S T, Chien W C, Shih M C, Chiu S J, Lee K T, Wang C L. Int. J. Hydrogen Energy, 2006, 31: 2076.
[79] Liu L, Pippel E. Angew. Chem. Int. Ed., 2011, 50: 2729.
[80] Dai Y, Ou L, Liang W, Yang F, Liu Yu, Chen S. J. Phys. Chem. C, 2011, 115: 2162.
[81] Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. J. Am. Chem. Soc., 2006, 128: 8813.
[82] Scott K, Yuan W, Cheng H. J. Appl. Electrochem., 2007, 37: 21.
[83] Guo S, Li, Zhu H, Zhang S, Markovic N M, Stamenkovic V R, Sun S. Angew. Chem. Int. Ed., 2013, 52: 3465.
[84] Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W P, Sutter E, Wong S S, Adzic R R. J. Am. Chem. Soc., 2011, 133: 9783.
[85] Kuttiyiel K A, Sasaki K, Choi Y M, Su D, Liu, P, Adzic R R. Nano Lett., 2012, 12: 6266.
[86] Kuttiyiel K A, Sasaki K, Choi Y M, Su D, Liu, P, Adzic R R. Energy Environ. Sci., 2012, 5: 5297.
[87] Yang H. Angew. Chem. Int. Ed., 2011, 50: 2674.
[88] Han L, Liu H, Cui P, Peng Z, Zhang S, Yang J. Sci. Rep., 2014, 4: 6414.
[89] Lee C L, Huang K L, Tsai Y L, Chao Y J. Electrochem. Commun., 2013, 34: 282.
[90] Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R. Science, 2014, 343: 1339.
[91] Wang H, Liang J, Zhu L, Peng F, Yu H, Yang J. Fuel Cells, 2010, 10:99.
[92] Song W, Chen Z, Yang C, Yang Z, Tai J, NanY, Lu H. J. Mater. Chem. A, 2015,3: 1049.
[93] Han X, Cheng F, Zhang T, Yang J, Hu Y, Chen J. Adv Mater., 2014, 26, 2047.
[94] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760.
[95] Liu R, Wu D, Feng X, Müllen K. Angew. Chem. Int. Ed., 2010, 49: 2565.
[96] Shanmugam S, Osaka T. Chem. Commun., 2011, 47: 4463.
[97] Wang Z, Jia R, Zheng J, Zhao J, Li L, Song J, Zhu Z, ACS Nano, 2011, 5: 1677.
[98] Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao S Z. Small, 2012, 8: 3550.
[99] Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Angew. Chem. Int. Ed., 2011, 50: 7132.
[100] Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Angew. Chem. Int. Ed., 2011, 50: 3257.
[101] Byeon A, Lee J W. J. Phys. Chem. C, 2013, 117: 24167.
[102] Jasinski R. Nature, 1964, 201: 1212.
[103] Jahnke H, Schijnbron M, Zimmerman G. Top. Curr. Chem., 1976, 61: 133.
[104] Ramaswamy N, Tylus U, Jia Q, Mukerjee S. J. Am. Chem. Soc., 2010, 135: 15443.
[105] Li Z, Li G, Jiang L, Li J, Sun G, Xia C, Li F. Angew. Chem. Int. Ed., 2015, 54: 1494.
[106] Lefevre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324: 71.
[107] Wu G, Chen Z, Artyushkova K, Garzon F H, Zelenay P. ECS Trans. 2008, 16: 159.
[108] Zhao Y, Watanabe K, Hashimoto K. J. Am. Chem. Soc., 2012, 134: 19528.
[109] Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332: 443.
[110] Lin L, Zhu Q, Xu A W. J. Am. Chem. Soc., 2014, 136: 11027.
[111] Alonso-Vante N, Malakhov I V, Nikitenko S G, Savinova E R, Kochubey D I. Electrochim. Atca, 2002, 47: 3807.
[112] Alonso-Vante N, Tributsch H. Nature, 1986, 323: 431.
[113] Alonso-Vante N, Jaegermann W, Tributsch H, Hoenle W, Yvon K. J. Am. Chem. Soc., 1987, 109: 3251.
[114] Solorza-Feria O, Ellmer K, Gierstig M, Alonso-Vante N. Electrochim. Atca, 1994, 39: 1647.
[115] Lee J W, Popov B N. J. Solid State Electrochem., 2007, 11: 1355.
[116] Ozenler S S, Kadrgan F. J. Power Sources, 2006, 154: 364.
[117] Susac D, Sode A, Zhu L A. Wong P C, Teo M, Bizzotto D, Mitchell K A R, Parsons R R, Campbell S A. J. Phys. Chem., 2006, 110: 10762.
[118] Lee K, Zhang L, Zhang J. Electrochem. Commun., 2007, 9: 707.
[119] Feng Y, He T, Alonso-Vante N. Electrochim. Atca., 2009, 54: 5252.
[120] Chen Y, Wang J, Liu H, Banis M N, Li R, Sun X, Sham T K, Ye S, and Knights S. J. Phys. Chem. C, 2011, 115: 3769.
[121] Liu Y, Mustain W E. J. Am. Chem. Soc., 2013, 135: 530.
[122] Zhang K, Yang W, Ma C, Wang Y, Sun C, Chen Y, Duchesne P, Zhou J, Wang J, Hu Y, Banis M N, Zhang P, Li F, Li J, Chen L. NPG Asia Mater., 2015, 7: e153.
[123] Strike D J, De Rooij N F, Koudelka-Hep M, Ulmann M, Augustynski J. J. Appl. Electrochem., 1992, 22: 922.
[124] Laborde H, Leger J M, Lamy C. J. Appl. Electrochem., 1994, 24: 219.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[4] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.