English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1474-1488 DOI: 10.7536/PC160614 前一篇   后一篇

• 综述与评论 •

TiO2基光解水析氢非贵金属共催化剂的研究

张凌峰1,2, 胡忠攀1, 刘歆颖2, 袁忠勇1*   

  1. 1. 南开大学材料科学与工程学院 国家新材料研究院 天津 300350;
    2. Materials and Process Synthesis, University of South Africa, Florida Campus, Private Bag X6, Johannesburg 1710, South Africa
  • 收稿日期:2016-06-01 修回日期:2016-07-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 袁忠勇 E-mail:zyyuan@nankai.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21573115)和南非研究基金资助

Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting

Zhang Lingfeng1,2, Hu Zhongpan1, Liu Xinying2, Yuan Zhongyong1*   

  1. 1. National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China;
    2. Materials and Process Synthesis, University of South Africa, Florida Campus, Private Bag X6, Johannesburg 1710, South Africa
  • Received:2016-06-01 Revised:2016-07-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21573115) and the National Research Foundation of South Africa.
利用太阳能光催化水解制氢是获得清洁、廉价、无污染的氢气最有前景的一种方式。这个过程主要包括三个步骤:太阳光的捕获,电荷分离与转移,催化质子还原产生氢气。其中,大量的研究工作主要集中在前两步,对于第三步的研究则相对较少。然而,共催化剂的引入可以有效促进光催化活性并提高氢气产生速率。共催化剂主要分为贵金属共催化剂和非贵金属共催化剂,其中,贵金属共催化剂有着较高的活性,但是其价格及来源限制了其实际应用,因此开发廉价高效的非贵金属共催化剂非常重要。本文对TiO2基光解水析氢的非贵金属共催化剂(过渡金属单质及其复合物以及非金属碳基材料)进行了总结,详细讨论了不同共催化剂的作用机理,并对共催化剂的发展方向进行了合理展望。
Photocatalytic water splitting technology based on TiO2 semiconductor is a promising strategy for clean, low-cost, and environmental friendly H2 production by utilizing solar energy. The whole process includes three crucial steps:solar light harvesting to excite electron from VB to CB of TiO2, charge separation and transportation, and the catalytic reduction of H+ to H2 evolution reaction. Many progresses are achieved on the first two steps, while much less researches are concentrated on the third step to improve catalytic activity with the utilization of the cocatalysts. Noble metal Pt as cocatalyst can obviously promote the H2-producing rate in TiO2 photocatalytic system. However, it has been restricted seriously due to its limited sources and high cost. Thus, developing cheap, earth-abundant, and high active noble-metal-free cocatalysts is very significant for high efficient photocatalytic water splitting. This review summarizes the research progress on noble-metal-free cocatalysts for TiO2-based H2-evolution half reaction, including transition metals, transition metal compounds, nanocarbon materials and nanocarbon-based composites. The role of different cocatalysts in catalytic performance improving, such as, content, structure, particle size, surface area, dispersity, synthesis method of the cocatalysts, and so on, was discussed in detail. And the challenges and perspectives of the research directions are also remarked.

Contents
1 Introduction
2 Fundamentals of photocatalytic water splitting and the role of cocatalyst
2.1 Fundamental of TiO2-based photocatalyst
2.2 Process of H2 production from water splitting
2.3 The roles of cocatalysts for H2-evolution
2.4 Factors influencing the performance of cocatalysts
3 Noble-metal-free cocatalyst for H2-evolution half reactions
3.1 Transition metal cocatalysts
3.2 Transition metal compounds
3.3 Nanocarbon-based cocatalysts
3.4 Catalytic mechanism
4 Conclusion and outlook

中图分类号: 

()
[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] Tran P D, Xi L, Batabyal S K, Wong L H, Barber J, Loo J S C. Phys. Chem. Chem. Phys., 2012, 14:11596.
[3] Wang W, Liu S, Nie L, Cheng B, Yu J. Phys. Chem. Chem. Phys., 2013, 15:12033.
[4] Li L, Yan J, Wang T, Zhao Z, Zhang J, Gong J, Guan N. Nat. Commun., 2015, 6:5881.
[5] Lin H Y, Yang H C, Wang W L. Catal. Today, 2001,174:106.
[6] Wender H, Gonçalves R V, Dias C S B, Zapata M J, Zagonel L F, Mendonça E C, Teixeirab S R, Garcia F. Nanoscale, 2013, 5:9310.
[7] Kim J, Hwang D W, Kim H G, Bae S W, Ji S M, Lee J S. Chem. Commun., 2002:2488.
[8] Husin H, Su W N, Chen H M, Pan C J, Chang S H, Rick J, Chuang W, Sheuc H, Hwang B J. Green Chem., 2011, 13:1745.
[9] Zhang J, Yu J, Zhang Y, Li Q, Gong J R. Nano Lett., 2011, 11:4774.
[10] Nguyen M, Tran P D, Pramana S S, Lee R L, Batabyal S K, Mathews N, Wong L H, Graetzel M. Nanoscale, 2013, 5:1479.
[11] Zhou J, Tian G, Chen Y, Meng X, Shi Y, Cao X, Pan K, Fu H. Chem. Commun., 2013, 49:2237.
[12] Ran J, Yu J, Jaroniec M. Green Chem., 2011, 13:2708.
[13] Hara M, Nunoshige J, Takata T, Kondo J N, Domen K. Chem. Commun., 2003:3000.
[14] Yuan Y P, Cao S W, Yin L S, Xu L, Xue C. Int. J. Hydrogen Energy, 2013, 38:7218.
[15] Frame F A, Osterloh F E. J. Phys. Chem. C, 2010, 114:10628.
[16] Hong J, Wang Y, Wang Y, Zhang W, Xu R. ChemSusChem, 2013, 6:2263.
[17] Hou Y, Laursen A B, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2013, 52:3621.
[18] Khan Z, Chetia T R, Vardhaman A K, Barpuzary D, Sastri C V, Qureshi M. RSC Adv., 2012, 2:12122.
[19] Ou Y, Lin J, Fang S, Liao D. Chem. Phys. Lett., 2006, 429:199.
[20] Fujishima A, Zhang X, Tryk D A. Surf. Sci. Rep., 2008, 63:515.
[21] Chen X, Mao S S. Chem. Rev., 2007, 107:2891.
[22] Liu C, Han X, Xie S, Kuang Q, Wang X, Jin M, Xie Z, Zheng L. Chem. Asian J., 2013, 8:282.
[23] Yan J, Zhang Y, Liu S, Wu G, Li L, Guan N. J. Mater. Chem. A, 2015, 3:21434.
[24] Wang F, Ho J H, Jiang Y, Amal R. ACS Appl. Mater. Inter., 2015, 7:23941.
[25] Fu G, Zhou P, Zhao M, Zhu W, Yan S, Yu T, Zou Z. Dalton Trans., 2015, 44:12812.
[26] Zhou X, Häublein V, Liu N, Nguyen N T, Zolnhofer E M, Tsuchiya H, Killian M S, Meyer K, Frey L, Schmuki P. Angew. Chem. Int. Ed., 2016, 55:3763.
[27] Tiwari A, Mondal I, Pal U. RSC Adv., 2015, 5:31415.
[28] Min S, Lu G. J. Phys. Chem. C, 2011, 115:13938.
[29] Pany S, Naik B, Martha S, Parida K. ACS Appl. Mater. Inter., 2014, 6:839.
[30] Long J, Chang H, Gu Q, Xu J, Fan L, Wang S, Zhou Y, Wei W, Huang L, Wang X, Liu P, Huang W. Energy Environ. Sci., 2014, 7:973.
[31] Gomes Silva C, Juárez R, Marino T, Molinari R, García H. J. Am. Chem. Soc., 2010, 133:595.
[32] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. J. Am. Chem. Soc., 2008, 130:4007.
[33] Chen Y, Guo L. J. Mater. Chem., 2012, 22:7507.
[34] Lee S, Lee K, Kim W D, Lee S, Shin D J, Lee D C. J. Phys. Chem. C, 2014, 118:23627.
[35] Zhou W, Li W, Wang J Q, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D. J. Am. Chem. Soc., 2014, 136:9280.
[36] Wu H B, Hng H H, Lou X W D. Adv. Mater., 2012, 24:2567.
[37] Wu N, Wang J, Tafen D N, Wang H, Zheng J G, Lewis J P, Liu X G, Leonard S S, Manivannan A. J. Am. Chem. Soc., 2010, 132:6679.
[38] Kumar D P, Shankar M V, Kumari M M, Sadanandam G, Srinivas B, Durgakumari V. Chem. Commun., 2013, 49:9443.
[39] Chen X, Shen S, Guo L, Mao S S. Chem. Rev., 2010, 110:6503.
[40] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112:1555.
[41] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Adv. Mater., 2012, 24:229.
[42] Li H, Yu H, Sun L, Zhai J, Han X. Nanoscale, 2015, 7:1610.
[43] Serrano D P, Calleja G, Pizarro P, Gálvez P. Int. J. Hydrogen Energy, 2014, 39:4812.
[44] Sayed F N, Jayakumar O D, Sasikala R, Kadam R M, Bharadwaj S R, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal J P, Tyagi A K. J. Phys. Chem. C, 2012, 116:12462.
[45] Zhang G, Zhao Z, Tan H, Zhao H, Qu D, Zheng M, Yu W, Sun Z. RSC Adv., 2015, 5:21237.
[46] Méndez J O, López C R, Melián E P, Díaz O G, Rodríguez J D, Hevia D F, Macías M. Appl. Catal. B Environ., 2014, 147:439.
[47] Ortiz A L, Zaragoza M M, Gutiérrez J S, da Silva Paula M M, Collins-Martínez V. Int. J. Hydrogen Energy, 2015, 40:17308.
[48] Pan T C, Wang S H, Lai Y S, Jehng J M, Huang S J. Appl. Surf. Sci., 2014, 296:189.
[49] Kum J M, Yoo S H, Ali G, Cho S O. Int. J. Hydrogen Energy, 2013, 38:13541.
[50] Chen W T, Jovic V, Sun-Waterhouse D, Idriss H, Waterhouse G I. Int. J. Hydrogen Energy, 2013, 38:15036.
[51] Hu Q, Huang J, Li G, Jiang Y, Lan H, Guo W, Cao Y. Appl. Surf. Sci., 2016, 382:170.
[52] Bala S, Mondal I, Goswami A, Pal U, Mondal R. J. Mater. Chem. A, 2015, 3:20288.
[53] Sadanandam G, Lalitha K, Kumari V D, Shankar M V, Subrahmanyam M. Int. J. Hydrogen Energy, 2013, 38:9655.
[54] Fujita S I, Kawamori H, Honda D, Yoshida H, Arai M. Appl. Catal. B:Environ., 2016, 181:818.
[55] Liu R, Yoshida H, Fujita S I, Arai M. Appl. Catal. B:Environ., 2014, 144:41.
[56] Zang Y, Li L, Xu Y, Zuo Y, Li G. J. Mater. Chem. A, 2014, 2:15774.
[57] Xiang Q, Yu J, Jaroniec M. Nanoscale, 2011, 3:3670.
[58] Wei X, Shao C, Li X, Lu N, Wang K, Zhang Z, Liu Y. Nanoscale, 2016, 8:11034.
[59] Kuang L, Zhang W. RSC Adv., 2016, 6:2479.
[60] Maeda, K. ACS Catal., 2013, 3:1486.
[61] Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2014, 43:7787.
[62] Fan L, Long J, Gu Q, Huang H, Lin H, Wang X. J. Catal., 2014, 320:147.
[63] Korzhak A V, Ermokhina N I, Stroyuk A L, Bukhtiyarov V K, Raevskaya A E, Litvin V I, Kuchmiy S Y, Ilyin V G, Manorik P A. J. Photoch. Photobio. A, 2008, 198:126.
[64] Zhang S, Peng B, Yang S, Wang H, Yu H, Fang Y, Peng F. Int. J. Hydrogen Energy, 2015, 40:303.
[65] Tian H, Zhang X L, Scott J, Ng C, Amal R. J. Mater. Chem. A, 2014, 2:6432.
[66] Zou Y, Kang S Z, Li X, Qin L, Mu J. Int. J. Hydrogen Energy, 2014, 39:15403.
[67] Kum J M, Park Y J, Kim H J, Cho S O. Nanotechnology, 2015, 26:125402.
[68] Wu N L, Lee M S. Int. J. Hydrogen Energy, 2004, 29:1601.
[69] Clarizia L, Vitiello G, Luciani G, Di Somma I, Andreozzi R, Marotta R. Appl. Catal. A, 2016, 518:142.
[70] Foo W J, Zhang C, Ho G W. Nanoscale, 2013, 5:759.
[71] Xu S, Sun D D. Int. J. Hydrogen Energy, 2009, 34:6096.
[72] Xu S, Du A J, Liu J, Ng J, Sun D D. Int. J. Hydrogen Energy, 2011, 36:6560.
[73] Yu Y H, Chen Y P, Cheng Z. Int. J. Hydrogen Energy, 2015, 40:15994.
[74] Jung M, Scott J, Ng Y H, Jiang Y, Amal R. Int. J. Hydrogen Energy, 2014, 39:12499.
[75] Khemthong P, Photai P, Grisdanurak N. Int. J. Hydrogen Energy, 2013, 38:15992.
[76] Yu J, Hai Y, Jaroniec M. J. Colloid Interface Sci., 2011, 357:223.
[77] Li Z, Liu J, Wang D, Gao Y, Shen J. Int. J. Hydrogen Energy, 2012, 37:6431.
[78] Zhang S, Peng B, Yang S, Fang Y, Peng F. Int. J. Hydrogen Energy, 2013, 38:13866.
[79] Bandara J, Udawatta C P K, Rajapakse C S K. Photochem. Photobiol. Sci., 2005, 4:857.
[80] Sreethawong T, Yoshikawa S. Catal. Commun., 2005, 6:661.
[81] Xu S, Ng J, Zhang X, Bai H, Sun D D. Int. J. Hydrogen Energy, 2010, 35:5254.
[82] Moon G D, Joo J B, Lee I, Yin Y. Nanoscale, 2014, 6:12002.
[83] Hu Q, Huang J, Li G, Chen J, Zhang Z, Deng Z, Jiang Y, Guo W, Cao Y. Appl. Surf. Sci., 2016, 369:201.
[84] Wang Y F, Hsieh M C, Lee J F, Yang C M. Appl. Catal. B Environ., 2013, 142:626.
[85] Sreethawong T, Suzuki Y, Yoshikawa S. Int. J. Hydrogen Energy, 2005, 30:1053.
[86] Iwaszuk A, Nolan M, Jin Q, Fujishima M, Tada H. J. Phys. Chem. C, 2013, 117:2709.
[87] Yu J, Ran J. Energy Environ. Sci., 2011, 4:1364.
[88] Dang H, Dong X, Dong Y, Zhang Y, Hampshire S. Int. J. Hydrogen Energy, 2013, 38:2126.
[89] Zhang S, Wang H, Yeung M, Fang Y, Yu H, Peng F. Int. J. Hydrogen Energy, 2013, 38:7241.
[90] Yu J, Hai Y, Cheng B. J. Phys. Chem. C, 2011, 115:4953.
[91] Jang J S, Choi S H, Kim D H, Jang J W, Lee K S, Lee J S. J. Phys. Chem. C, 2009, 113:8990.
[92] Zhang L, Tian B, Chen F, Zhang J. Int. J. Hydrogen Energy, 2012, 37:17060.
[93] Wang Q, Yun G, Bai Y, An N, Chen Y, Wang R, Lei Z, Shangguan W. Int. J. Hydrogen Energy, 2014, 39:13421.
[94] Yu Z, Meng J, Xiao J, Li Y, Li Y. Int. J. Hydrogen Energy, 2014, 39:15387.
[95] Zhang P, Tachikawa T, Fujitsuka M, Majima T. Chem. Commun., 2015, 51:7187.
[96] Liu C, Wang L, Tang Y, Luo S, Liu Y, Zhang S, Zeng Y, Xu Y. Appl. Catal. B, 2015, 164:1.
[97] Zhu Y, Ling Q, Liu Y, Wang H, Zhu Y. Phys. Chem. Chem. Phys., 2015, 17:933.
[98] Wang Q, An N, Bai Y, Hang H, Li J, Lu X, Liu Y, Wang F, Li Z, Lei Z. Int. J. Hydrogen Energy, 2013, 38:10739.
[99] Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M. Chem. Phys. Lett., 2001, 336:424.
[100] Zhang W, Wang Y, Wang Z, Zhong Z, Xu R. Chem. Commun., 2010, 46:7631.
[101] Wang J, Li B, Chen J, Li N, Zheng J, Zhao J, Zhu Z. Appl. Surf. Sci., 2012, 259:118.
[102] Kibsgaard J, Chen Z, Reinecke B N, Jaramillo T F. Nat. Mater., 2012, 11:963.
[103] Liu L, Zhu Y P, Su M, Yuan Z Y. Chem.Cat.Chem., 2015, 7:2765.
[104] Zhang L, Hu Z, Gao Z, Liu Y, Yuan Z Y. Prog. Chem., 2015, 27:1042.
[105] Li H, Kang Z, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[106] Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y, Wu L, Tung C, Zhang T. J. Mater. Chem. A, 2014, 2:3344.
[107] Zhang X, Wang F, Huang H, Li H, Han X, Liu Y, Kang Z. Nanoscale, 2013, 5:2274.
[108] Ma L L, Sun H Z, Zhang Y G, Lin Y L, Li J L, Wang E K, Yu Y, Wang J B. Nanotechnology, 2008, 19:115709.
[109] Liu X, Zeng P, Peng T, Zhang X, Deng K. Int. J. Hydrogen Energy, 2012, 37:1375.
[110] Moya A, Cherevan A, Marchesan S, Gebhardt P, Prato M, Eder D, Vilatela J J. Appl. Catal. B, 2015, 179:574.
[111] Li N, Ma Y, Wang B, Huang Y, Wu Y, Yang X, Chen Y. Carbon, 2011, 49:5132.
[112] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[113] Xiang Q, Yu J, Jaroniec M. Chem. Soc. Rev., 2012, 41:782.
[114] Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R. Adv. Mater., 2013, 25:3820.
[115] Cao X, Tian G, Chen Y, Zhou J, Zhou W, Tian C, Fu H. J. Mater. Chem. A, 2014, 2:4366.
[116] Kim H I, Moon G H, Monllor-Satoca D, Park Y, Choi W. J. Phys. Chem. C, 2011, 116:1535.
[117] Fan W, Lai Q, Zhang Q, Wang Y. J. Phys. Chem. C, 2011, 115:10694.
[118] Zhang X Y, Li H P, Cui X L, Lin Y. J. Mater. Chem., 2010, 20:2801.
[119] Zhang X, Sun Y, Cui X, Jiang Z. Int. J. Hydrogen Energy, 2012, 37:811.
[120] Mou Z, Wu Y, Sun J, Yang P, Du Y, Lu C. ACS Appl. Mater. Inter., 2014, 6:13798.
[121] Gao P, Sun D D. Appl. Catal. B Environ., 2014, 147:888.
[122] Chai B, Peng T, Zhang X, Mao J, Li K, Zhang X. Dalton Trans., 2013, 42:3402.
[123] Yu Z, Meng J, Li Y, Li Y. Int. J. Hydrogen Energy, 2013, 38:16649.
[124] Xiang Q, Yu J, Jaroniec M. J. Am. Chem. Soc., 2012, 134:6575.
[125] Lv X J, Zhou S X, Zhang C, Chang H X, Chen Y, Fu W F. J. Mater. Chem., 2012, 22:18542.
[126] Chao K J, Cheng W Y, Yu T H, Lu S Y. Carbon, 2013, 62:69.
[127] Yang Y, Yao Y, He L, Zhong Y, Ma Y, Yao J. J. Mater. Chem. A, 2015, 3:10060.
[128] Zhu Y P, Ren T Z, Yuan Z Y. ACS Appl. Mater. Interfaces, 2015, 7:16850.
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[3] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[4] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[5] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[6] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[7] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[8] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[9] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[10] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[11] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[12] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[13] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[14] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[15] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.