English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1489-1500 DOI: 10.7536/PC160314 前一篇   后一篇

• 综述与评论 •

水溶性含糖共轭聚合物的制备及应用

孙鹏飞1,2, 候焕知1, 范曲立1*, 黄维1,3*   

  1. 1. 南京邮电大学 有机电子与信息显示国家重点实验室培育基地 信息材料与纳米技术研究院 江苏先进生物与化学制造协同创新中心 南京 210023;
    2. 聚合物分子工程国家重点实验室 上海 200433;
    3. 南京工业大学 江苏省柔性电子重点实验室 先进材料研究院 江苏先进生物与化学制造协同创新中心 南京 211816
  • 收稿日期:2016-03-01 修回日期:2016-05-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 范曲立, 黄维 E-mail:iamqlfan@njupt.edu.cn;wei-huang@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61378081,21574064),江苏省自然科学基金青年基金项目(No.BK20150843),南京邮电大学引进人才科研启动基金(No.NY215017),南京邮电大学基金(No.NY215080)和聚合物分子工程国家重点实验室开放基金(No.K2016-17)资助

Synthesis and Application of Water-Soluble Conjugated Glycopolymer

Sun Pengfei1,2, Hou Huanzhi1, Fan Quli1*, Huang Wei1,3*   

  1. 1. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Jiangsu Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. State Key Laboratory of Molecular Engineering of Polymers, Shanghai 200433;
    3. Jiangsu Key Laboratory of Flexible Electronics and the Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2016-03-01 Revised:2016-05-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61378081, 21574064), The Jiangsu Provincial Natural Science Foundation for Youth(No. BK20150843), NUPTSF(No.NY215017), and The State Key Laboratory of Molecular Engineering of Polymers Program(No.K2016-17).
水溶性共轭聚合物具有优异的光学稳定性、高亮度、易于修饰和水溶性等特点,广泛应用于离子检测、蛋白检测和生物成像等领域。水溶性共轭聚合物主要通过在共轭聚合物的侧基或端基修饰水溶性的离子基团或水溶性聚合物实现其水溶性,水溶性共轭聚合物还可以通过引入功能性基团或聚合物使其具备不同的功能特性。糖化合物是天然存在的一类生物分子且大部分具有水溶性的特点,因此最近十几年来科研工作者将糖化合物引入共轭聚合物中以赋予共轭聚合物糖化合物的生物功能特性。本文总结了水溶性含糖共轭聚合物的制备方法、化学结构及其在凝集素、细菌检测和细胞荧光成像中的应用。最后总结了此类聚合物的特性、发展方向及目前所需解决的问题。
Water-soluble conjugated polymers (WSCPs) have been applied to a wide range of fields such as chemical sensing, bio-sensing and bio-imaging. The advantages of WSCPs for these applications include their high brightness, good photo-stability, structure variety and sufficient solubility in aqueous solution. WSCPs are usually decorated with water-soluble ionic groups or polymers on their sides or end groups. Sugars are a kind of biomolecules existing naturally and most of them have the features of water-solubility, therefore in recent years researchers have introduced sugar compounds into conjugated polymers leading to water-soluble conjugated glycopolymers with the biological properties of carbonhydrates. In this review, we summarize the recent development in the synthesis of water-soluble conjugated glycopolymers and their applications in terms of lectin-sensing, bacteria-sensing and live-cell imaging. Finally, we point out the peculiarity, developing trend and the challenges of water-soluble conjugated glycopolymers.

Contents
1 Introduction
2 Water-soluble conjugated polymers with sugar side-chains
2.1 PDA-based water-soluble conjugated glycopolymers
2.2 PPE-based water-soluble conjugated glycopolymers
2.3 PT-based water-soluble conjugated glycopolymers
2.4 Others water-soluble conjugated glycopolymers
3 Amphiphilic conjugated glycopolymers
4 Conclusion

中图分类号: 

()
[1] Tuncel D, Demir H V. Nanoscale, 2010, 2(4):484.
[2] Zhu C L, Liu L B, Ma L, Yang Q, Lv F T, Wang S. Chemical Reviews, 2012, 112(8):4687.
[3] Sun P F(孙鹏飞), Fan Q L(范曲立), Liu L L(柳露林), Deng W X(邓卫星), Lu X M(卢晓梅), Huang W (黄维). Acta Polymerica Sinica(高分子学报), 2014, (12):1629.
[4] Jin Y H, Ye F M, Zeigler M, Wu C F, Zeigler M, Jin Y H, Burnhan D R, Mcneill J D, Olson J M, Chiu D T. Angewandte Chemie, 2011, 123:3492.
[5] Shi H F, Ma X, Zhao Q, Liu B, Qu Q Y, An Z F, Zhao Y L, Huang W. Advanced Functional Materials, 2014, 24(30):4823.
[6] Pu K Y, Cai L P, Liu B. Macromolecules, 2009, 42(16):5933.
[7] Sun P F, Lu X M, Fan Q L, Zhang Z Y, Song W L, Li B, Huang L, Peng J W, Huang W. Macromolecules, 2011, 44(22):8763.
[8] Zhang Z Y, Fan Q L, Sun P F, Liu L L, Lu X M, Huang W. Macromolecular Rapid Communications, 2010, 31(24):2160.
[9] Lin C H, Tung Y C, Ruokolainen J, Mezzenga R, Chen W C. Macromolecules, 2008, 41(22):8759.
[10] Huang K K, Fang Y K, Hsu J C, Kuo C C, Chang W H, Chen W C. Journal of Polymer Science Part A:Polymer Chemistry, 2010, 49:147.
[11] Wang M F, Zou S, Guerin G, Shen L, Deng K Q, Jones M, Walker G C, Scholes G D, Winnik M A. Macromolecules, 2008, 41(19):6993.
[12] Fleming C, Maldjian A, Costa D D, Rullay A K, Haddleton D M, John J S, Penny P, Noble R C, Cameron N R, Davis B G. Nature Chemical Biology, 2005, 1(5):270.
[13] Reichardt N C, Martín-Lomas M, Penadés S. Chemical Society Reviews, 2013, 42(10):4358.
[14] Pilobello K T, Mahal L K. Current Opinion in Chemical Biology, 2007, 11(3):300.
[15] Pan J J, Charych D. Langmuir, 1997, 13:1365.
[16] Okada S, Peng S, Spevak W, Charych D. Accounts of Chemical Research, 1998, 31(5):229.
[17] Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh M, Nagy J O, Spevak W, Stevens R C. Chemistry & Biology, 1996, 3(2):113.
[18] Lio A, Reichert A, Ahn D J, Nagy J O, Salmeron M, Charych D H. Langmuir, 1997, 13(24):6524.
[19] Nagy J O, Zhang Y L, Yi W, Liu X W, Motari E, Song J C, Lejeune J T, Wang P G. Bioorganic & Medicinal Chemistry Letters, 2008, 18(2):700.
[20] Erdogan B, Wilson J N, Bunz U H F. Macromolecules, 2002, 35:7863.
[21] Wilson J N, Bangcuyo C G, Erdogan B, Myrick M L, Bunz U H F. Macromolecules, 2003, 36(5):1426.
[22] Babudri F, Colangiuli D, Di Lorenzo P A, Farinola G M, Omar O H, Naso F. Chemical Communications, 2003, (1):130.
[23] Disney M D, Zheng J, Swager T M, Seeberger P H. Journal of the American Chemical Society, 2004, 126(41):13343.
[24] Kim I B, Wilson J N, Bunz U H F. Chemical Communications, 2005, (10):1273.
[25] Phillips R L, Kim I B, Tolbert L M, Bunz U H F. Journal of the American Chemical Society, 2008, 130(22):6952.
[26] Phillips R L, Kim I B, Carson B E, Tidbeck B, Bai Y, Lowary T L, Tolbert L M, Bunz U H F. Macromolecules, 2008, 41(20):7316.
[27] Kim I B, Dunkhorst A, Bunz U H F. Langmuir, 2005, 21(17):7985.
[28] Kim I B, Erdogan B, Wilson J N, Bunz U H F. Chemistry:A European Journal, 2004, 10(24):6247.
[29] Xue C H, Donuru V R R, Liu H Y. Macromolecules, 2006, 39(17):5747.
[30] Xue C H, Velayudham S, Johnson S, Saha R, Smith A, Brewer W, Murthy P, Bagley S T, Liu H Y. Chemistry:A European Journal, 2009, 15(10):2289.
[31] Shi J B, Cai L P, Pu K Y, Liu B. Chemistry-An Asian Journal, 2010, 5(2):301.
[32] Pu K Y, Shi J B, Wang L H, Cai L P, Wang G, Liu B. Macromolecules, 2010, 43(23):9690.
[33] Wang L H, Pu K Y, Li J, Qi X Y, Li H, Zhang H, Fan C H, Liu B. Advanced Materials, 2011, 23(38):4386.
[34] Wang G, Pu K Y, Zhang X H, Li K, Wang L, Cai L P, Ding D, Lai Y H, Liu B. Chemistry of Materials, 2011, 23(20):4428.
[35] Senthilkumar T, Asha S K. Macromolecules, 2015, 48(11):3449.
[36] Wang L Y, Fang G P, Li L Q, Cao D R. Sensors and Actuators B, 2016, 229:47.
[37] Bark M G, Stevens R C, Charych D H. Bioconjugate Chemistry, 2000, 11(6):777.
[38] Xue C H, Luo F T, Liu H Y. Macromolecules, 2007, 40(19):6863.
[39] Schmid S, Mishra A, Wunderlin M, Bäuerle P. Organic & Biomolecular Chemistry, 2013, 11(34):5656.
[40] Chen Q, Cui Y, Cao J, Han B H. Polymer, 2011, 52(2):383.
[41] Chen Q, Han B H. Journal of Polymer Science Part A:Polymer Chemistry, 2009, 47(11):2948.
[42] Chen Q, Xu Y H, Du Y G, Han B H. Polymer, 2009, 50(13):2830.
[43] Chen Q, Cheng Q Y, Zhao Y C, Han B H. Macromolecular Rapid Communications, 2009, 30(19):1651.
[44] Chen Q, Cui Y, Zhang T L, Cao J, Han B H. Biomacromolecules, 2010, 11(1):13.
[45] Xue C H, Jog S P, Murthy P, Liu H Y. Biomacromolecules, 2006, 7(9):2470.
[46] Navy M, Racz D, Daroczi L, Lukacs B, Jona I, Zsuga M, Kéki S. Macromolecular Chemistry and Physics, 2011, 212(17):1891.
[47] 王芸芸(Wang Y Y), 范曲立(Fan Q L), 王培(Wang P), 马谆(Ma Z), 汪联辉(Wang L H), 黄维(Huang W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28(7):1377.
[48] Aissou K, Pfaff A, Giacomelli C, Travelet C, Muller A H E, Borsali R. Macromolecular Rapid Communications, 2011, 32(12):912.
[49] Xu L Q, Huang C, Wang R, Neoh K G, Kang E T, Fu G D. Polymer, 2011, 52(25):5764.
[50] Sun P F, He Y, Lin M C, Zhao Y, Ding Y, Chen G S, Jiang M. ACS Macro Letters, 2014, 3(1):96.
[51] Sun P F, Lin M C, Zhao Y, Chen G S, Jiang M. Colloids and Surfaces B:Biointerfaces, 2015, 133:12.
[52] Chen L, Sun P F, Chen G S. Carbohydrate Research, 2015, 405:66.
[53] Lu J W, Zhang W D, Yuan L, Ma W J, Li X, Lu W, Zhao Y, Chen G J. Macromol. Biosci., 2014, 14:340.
[54] Lu Z T, Mei L, Zhang X G, Wang Y N, Zhao Y, Li C X. Polym. Chem., 2013, 4:5743.
[55] Lv F, He X J, Wu L, Liu T J. Bioorg. Med. Chem. Lett., 2013, 23:1878.
[1] 吴晓甫, 童辉, 王利祥. 爆炸物检测用荧光聚合物材料[J]. 化学进展, 2019, 31(11): 1509-1527.
[2] 晏菲, 刘向洋, 赵冬娇, 包炜幸, 董晓平, 奚凤娜*. 荧光金纳米团簇在小分子化合物检测中的应用[J]. 化学进展, 2013, 25(05): 799-808.
[3] 张灯青,赵圣印,刘海雄. 一氧化氮荧光分子探针[J]. 化学进展, 2008, 20(09): 1396-1405.
[4] 王红,张华山. 分离检测生物活性物质的荧光标记试剂与分子探针及其应用*[J]. 化学进展, 2007, 19(05): 633-642.