English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1608-1632 DOI: 10.7536/PC200313 前一篇   

• 综述 •

全无机钙钛矿太阳电池: 现状与未来

马晓辉1, 杨立群1, 郑士建1, 戴其林2, 陈聪1,3,**(), 宋宏伟3,**()   

  1. 1.河北工业大学材料科学与工程学院 天津 300130
    2.杰克逊州立大学化学、物理和大气科学系 杰克逊 39217
    3.吉林大学电子科学与工程学院 集成光电子国家重点实验室 长春 130012
  • 收稿日期:2020-03-13 修回日期:2020-05-26 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 陈聪, 宋宏伟
  • 基金资助:
    国家自然科学基金项目(51771201); 国家重点研究开发计划资助(2016YFC0207101)

All-Inorganic Perovskite Solar Cells: Status and Future

Xiaohui Ma1, Liqun Yang1, Shijian Zheng1, Qilin Dai2, Cong Chen1,3,**(), Hongwei Song3,**()   

  1. 1. School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
    2. Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, U.S.A.
    3. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received:2020-03-13 Revised:2020-05-26 Online:2020-10-24 Published:2020-09-02
  • Contact: Cong Chen, Hongwei Song
  • About author:
    **e-mail:(Cong Chen)
    (Hongwei Song)
  • Supported by:
    National Natural Science Foundation of China(51771201); National Key Research and Development Plan of China(2016YFC0207101)

近年来,基于ABX3结构的有机无机杂化钙钛矿材料因其具有优良的光电特性和廉价的制作成本得到了全世界的广泛关注,但体系中的有机组分容易受到光、热、湿等外界条件的影响而分解,导致器件的PCE发生严重的下降,极大地限制了PSCs(Perovskite solar cells, PSCs)的产业化进程。利用纯无机阳离子完全取代ABX3结构中的A位有机阳离子制备出全无机钙钛矿材料,因其优异的热稳定性和环境稳定性而得到了快速的发展。现阶段,基于全无机钙钛矿材料的全无机钙钛矿太阳能电池(I-PSCs)的效率已超过19%,应用前景广阔。本文回顾了近年来全无机钙钛矿材料的研究进展,对不同类型的全无机钙钛矿材料进行了综述和讨论,从成膜工艺、掺杂工程、后处理工程等方面论述了如何提升器件的稳定性。最后,对I-PSCs的大面积制备及其柔性应用进行了介绍,揭示了I-PSCs面临的挑战,并对该领域进行了展望。

In recent years, organic-inorganic hybrid perovskite materials based on the ABX3 structure have attracted worldwide attention due to their excellent optoelectronic properties and cheap manufacturing costs. However, the organic components in the system are elementary to be resolved under the influence of light, heat, humidity, and other external conditions, which greatly limits the industrialization of the PSCs(Perovskite solar cells). All-inorganic perovskite materials prepared by using pure inorganic cations to replace the A-site organic cations in ABX3 structure have been developed rapidly due to their excellent thermal stability and environmental stability. At present, the efficiency of all-inorganic perovskite solar cells(I-PSCs) has exceeded 19% with broad application prospects. The research progress of inorganic perovskite materials and the different types of inorganic perovskite materials are reviewed. Meanwhile, the ways to improve the stability of devices from the aspects of films forming process, doping engineering, post-processing engineering, etc. are summarized Finally, we introduced the large-area preparation and flexible application of I-PSCs, reveals the challenges faced by I-PSCs and summarizes the prospect of the field.

Contents

1 Introduction

2 Basic of I-PSCs

2.1 Crystal structure of inorganic perovskite

2.2 Working principle of I-PSCs

2.3 Device structure of I-PSCs

3 Preparation process of inorganic perovskite

3.1 Solution processing technology

3.2 Vacuum preparation technology

3.3 Other preparation methods

4 Inorganic Pb-based perovskite and devices

4.1 CsPbI3

4.2 CsPbBr3

4.3 CsPbI3-xBrx

4.4 Cs1+xPbI3+x

5 Inorganic Sn/Ge-based perovskite and devices

5.1 CsSnI3

5.2 CsSnBr3

5.3 CsSnI3-xBrx

5.4 CsGeI3

6 Perovskite derivatives and devices

7 Functional application of inorganic perovskite

8 Stability of inorganic perovskite

8.1 Phase stability

8.2 Light and thermal stability

9 Large-area preparation and flexible application

10 Conclusion and outlook

()
图1 CsPbX3太阳能电池的发展
Fig.1 The development of CsPbX3 PSCs
图2 (a)无机钙钛矿的晶体结构[38];(b)I-PSCs的能级示意图[39];(c)I-PSCs的器件结构[40];(d)一步溶液法[39];(e)两步溶液法[39];(f)真空热蒸发法[39];(g)蒸气/喷雾辅助溶液法[41]
Fig.2 (a) Crystal structure of inorganic perovskite[38]; (b) energy level diagram of I-PSCs[39]; (c) device structure of I-PSCs[40]; (d) one-step solution method[39]; (e) two-step solution method[39]; (f) vacuum processing technique[39]; (g) vapor assisted/spray assisted solution approach[41]
图3 (a)CsPbI3的晶体结构[43];(b)两性离子稳定α-CsPbI3的原理示意图[46];(c)CsPbI3·xDETAI3基器件的结构示意图[47];(d)CsPbI3·xDETAI3基器件的J-V曲线[47];(e)CsPbI3·0.05DETAI3基器件在黑暗的干燥箱中的稳定性测试曲线[47]
Fig.3 (a) Crystal structure of CsPbI3[43]; (b) Schematic diagram of zwitterionic stabilized α-CsPbI3[46]; (c) Schematic diagram of CsPbI3·xDETAI3 PSCs[47]; (d) J-V curve of CsPbI3·xDETAI3 PSCs[47]; (e) Stability test curves of CsPbI3·0.05DETAI3 PSCs in dark dry box[47]
图4 (a)HI或Bi3+稳定α-CsPbI3的原理示意图[49];(b)CsPbI3薄膜表面钝化原理示意图[50];(c)PTABr-CsPbI3基器件的横截面SEM图[50];(d)CsPbI3裂纹填充界面工程原理图[53];CHI-CsPbI3基器件的(e)正、反扫描J-V曲线和(f)稳定性测试曲线[53]
Fig.4 (a) Stabilization of α-CsPbI3 by adding HI or Bi3+ in the precursor solution[49]; (b) Schematic diagram of CsPbI3 film surface passivation principle[50]; (c) Cross section SEM image of PTABr-CsPbI3 PSCs[50]; (d) CsPbI3 crack filling interface engineering schematic[53]; (e) Forward and reverse scanning J-V curve and (f) stability test curve of CHI-CsPbI3 PSCs[53]
图5 (a)CsPbI3量子点薄膜的沉积过程和AX盐的后处理示意图[55];(b)基于μGR/CsPbI3器件的电荷传输过程和稳定机制的示意图[57];(c)随着Yb3+掺杂浓度增加的CsPbI3量子点溶液在紫外光下的照片[59];20%Yb-CsPbI3 量子点基器件的(d)J-V曲线和(e)稳定性测试曲线[59]
Fig.5 (a) Schematic of the film deposition process and AX salt posttreatmnet[55]; (b) Schematic drawing of the charge transport process and stabilization mechanism for the μGR/CsPbI3 film based PSCs[57]; (c) Photographs of CsPbI3 QD solutions with increasing Yb-doping concentrations and solutions under UV illumination[59]; (d) J-V curve and (e) stability test curve of 20% Yb-CsPbI3 quantum dots PSCs[59]
图6 (a)不同全无机器件的J-V曲线[62];(b)不同浓度的碘化胍处理后的CsPbIBr2薄膜表面SEM图[67];CsPbIBr2基器件的(c)J-V曲线和(d)稳定性测试曲线[67];(e)利用LiF修饰SnO2表面的器件结构示图[75];(f)CsPbI3-xBrx PSCs的能带排列[75]
Fig.6 (a) J-V curves of different all-inorganic PSCs[62]; (b) SEM images of CsPbIBr2 film surface treated with guanidinium iodide at different concentrations[67]; (c) J-V curve and (d) stability test curve of CsPbIBr2 PSCs[67]; (e) The scheme of device architecture of I-PSCs, LiF was used to modify the SnO2 surface[75]; (f) Energy band alignment for each layer in CsPbI3-xBrx PSCs[75]
表1 CsPbX3(X=I,Br或I和Br)基器件的结构和性能
Table 1 Structure and performance of CsPbX3 (X=I, Br or I and Br) PSCs
Device configuration Voc
(V)
Jsc
(mA·cm-2)
FF
(%)
PCE
(%)
Year ref
FTO/TiO2/CsPbI3/Spiro-OMeTAD/Au 2.90 2015 19
FTO/TiO2/CsPbI3/Spiro-OMeTAD/Ag 0.66 11.92 52.47 4.13 2016 78
FTO/TiO2/CsPbI3 QDs/Spiro-OMeTAD/MoOx/Al 1.23 13.47 65.00 10.77 2016 23
FTO/TiO2/CsPbI3 QDs/Spiro-OMeTAD/MoOx/Al 1.16 15.24 76.63 13.43 2017 55
FTO/TiO2/CsPbI3·0.025EDAPbI4/Spiro-OMeTAD/Ag 1.15 14.53 71.00 11.86 2017 79
FTO/c-TiO2/CsPb0.96Bi0.04I3/CuI/Au 0.97 18.76 72.59 13.21 2017 49
FTO/c-TiO2/CsPbI3·xDETAI3/P3HT/Au 1.06 12.20 61.00 7.89 2018 47
FTO/TiO2/CsPbI3/PTAA/Au 1.05 18.95 74.90 15.07 2018 44
FTO/TiO2/PTABr-CsPbI3/Spiro-OMeTAD/Ag 1.10 19.15 80.60 17.06 2018 50
FTO/TiO2/γ-CsPbI3/P3HT/Au 1.04 16.53 65.70 11.30 2018 51
N-GQD/FTO/TiO2/γ-CsPbI3/PTAA/Au 1.10 19.15 75.60 16.02 2019 80
FTO/c-TiO2/β-CsPbI3/Spiro-OMeTAD/Ag 1.11 20.23 82.00 18.40 2019 53
FTO/m-TiO2/CsPbBr3/PTAA/Au 1.28 6.24 74.00 5.95 2015 31
FTO/TiO2/CsPbBr3/C 1.24 7.40 73.00 6.70 2016 81
FTO/c-TiO2/m-TiO2/CsPb0.97Sm0.03Br3/C 1.59 7.48 85.10 10.14 2018 61
FTO/c-TiO2/m-TiO2/CsPb0.97Tb0.03Br3/SnS:ZnS/NiOx/C 1.57 8.21 79.60 10.26 2018 62
FTO/TiO2/PTI-CsPbBr3/Spiro-OMeTAD/Ag 1.49 9.78 74.47 10.91 2019 60
FTO/m-TiO2/CsPbIBr2/Spiro-OMeTAD/Al 1.12 7.80 72.00 6.30 2016 29
ITO/PEDOT:PSS/CsPbI2Br/PCBM/BCP/Al 6.80 2016 63
FTO/c-TiO2/Cs0.925K0.075PbI2Br/Spiro-OMeTAD/Au 1.18 11.60 73.00 10.00 2017 68
FTO/mp-TiO2/CsPb0.98Sr0.02I2Br/P3HT/Au 1.04 15.30 69.90 11.30 2017 69
FTO/m-TiO2/CsPb0.9Sn0.1IBr2/C 1.26 14.30 63.00 11.33 2017 70
ITO/Ca/C60/CsPbI2Br/TAPC/TAPC:MoO3/Ag 1.17 15.50 68.00 11.80 2017 82
ITO/TiO2/CsPbI2Br/P3HT/Au 1.30 13.13 70.40 12.02 2018 74
ITO/SnO2/CsPbI2Br/Spiro-OMeTAD/Ag 1.06 15.99 77.12 13.09 2018 66
FTO/TiO2/CsPbBrI2/CsPbI2Br QDs/PTAA/Au 1.22 15.10 80.30 14.81 2018 65
FTO/NiOx/InCl3:CsPbI2Br/ZnO@C60/Ag 1.14 15.70 77.00 13.74 2018 71
ITO/SnO2/ZnO/CsPbI2Br/Spiro-OMeTAD/MoO3/Ag 1.23 15.00 78.80 14.60 2018 73
ITO/SnO2/CsPbI2Br/PTAA/MoO3/Al 1.19 15.66 74.10 13.80 2019 83
ITO/TiO2/CsPbI2Br/PTAA/Au 1.31 14.55 78.58 14.86 2019 84
ITO/SnO2/LiF/CsPbI3-xBrx/Spiro-OMeTAD/Au 1.22 18.20 80.97 18.64 2019 75
图7 (a)CsSnI3的晶体结构(红球代表“ I”,黄球代表“ Sn”,蓝球代表“ Cs”)[87];(b)CsSnI3基器件的横截面SEM图[91];(c)添加不同含量SnF2的CsSnI3基器件的J-V曲线[91];(d)CsSnI3基器件的结构示意图[92];(e)在不同温度下退火后的CsSnI3基器件的J-V曲线[92];(f)性能最佳的CsSnI3基器件的J-V曲线[92]
Fig.7 (a) Crystal structure of CsSnI3 (The red balls represent "I", the yellow balls represent "Sn", and the blue balls represent "Cs")[87]; (b) Cross sectional SEM image of CsSnI3 PSCs[91]; (c) J-V curves of photovoltaic devices fabricated with different amounts of SnF2 addition[91]; (d) Schematic diagram of CsSnI3 PSCs[92]; (e) J-V curves of CsSnI3 PSCs after annealing at different temperatures[92]; (f) J-V curve of CsSnI3 PSCs with optimum performance[92]
图8 (a)基于不同条件下的CsSnBr3的能带位置[99]; (b)CsSnI3-xBrx(x=0,1,2,3)的Tauc图[101]; (c)CsSnI3-xBrx的带隙与x值的关系曲线[101];(d)PSC中材料和电荷传输的能级图[103];(e)CsGeI3的晶体结构(左边是R3m结构,右边是Pmmm结构)[108];(f)CsGeI3纳米晶体在不同曝光时间下的TEM图[110]
Fig.8 (a) Energy band positions of CsSnBr3 under different conditions[99]; (b) Tauc plots of the CsSnI3-xBrx with different x values[101]; (c) Relation of the band gap of CsSnI3-xBrx with x values[101]; (d) Energy level diagram of each material and charge transportation within a PSC[103]; (e) The crystal structure of CeGeI3 (R3m on the left, Pmmm on the right)[108]; (f) TEM images of CsGeI3 nanocrystals under different exposure times[110]
表2 CsSnX3(X=I,Br或I和Br)基器件的结构和性能
Table 2 Structure and performance of CsSnX3 (X=I, Br or I and Br) PSCs
图9 (a)Cs2SnI6粉末在空气中放置不同时间后的XRD图[117];(b)Cs2SnI6-xBrx基器件的J-V曲线,插图显示Cs2SnI6(黑色)和Cs2SnBr2I4(绿色)的IPCE值[112];(c)在不同溶剂中以不同比例的前驱体合成的Cs2SnI6 粉末的SEM图,CsI∶SnI2为1∶1(上面两幅图),CsI∶SnI4为3∶2(下面两幅图)[118];(d)Cs2AgBiBr6薄膜的紫外可见光谱和PL光谱[122];(e)基于溶液法和真空沉积法制备的Cs2AgBiBr6基器件的J-V曲线[16];(f)(Cs1-xRbx)2AgBi6薄膜表面的SEM图[125]
Fig.9 (a) XRD patterns of Cs2SnI6 powder after being left in air for different times[117]; (b) J-V curves of Cs2SnI6-xBrx PSCs, inset shows IPCE values for Cs2SnI6 (black) and Cs2SnBr2I4 (green)[112]; (c) SEM images of Cs2SnI6 powder synthesized with different proportions of precursors in different solvents, CsI∶SnI2 is 1∶1 (two pictures above), CsI∶SnI4 is 3∶2 (two pictures below)[118]; (d) UV-vis absorption and PL spectra of Cs2AgBiBr6 film[122]; (e) J-V curves of Cs2AgBiBr6 PSCs prepared by solution method and vacuum deposition method[16]; (f) SEM images of (Cs1-xRbx)2AgB6[125]
表3 Cs2AgBiBr6基器件的结构和性能
Table 3 Structure and performance of Cs2AgBiBr6 PSCs
图10 (a)CsPbBr3纳米晶体修饰器件结构的原理图[129];(b)CsPbBr3@SiO2基器件的J-V曲线[129];(c)器件结构示意图[130];有和无Al2O3封装层器件的(d)J-V曲线和(e)稳定性测试曲线[130]
Fig.10 (a) Schematic diagram of PSCs structure modified by nanocrystals, where CsPbBr3 was introduced into the devices[129]; (b) J-V curve of CsPbBr3@SiO2 PSCs[129]; (c) Schematic architecture of the modi?ed PSCs[130]; (d) J-V curves and (e) the stability of PSCs with and without Al2O3 encapsulation layer[130]
图11 (a)CsPbBrCl2量子点薄膜沉积原理示意图[132];(b)利用钙钛矿薄膜改善硅基太阳能电池性能的示意图[133];(c)不同Nb掺杂浓度下器件的J-V曲线[148];(d)暴露在光下的CsPbI3薄膜中碘和铅原子比值的变化[161];(e)MAPbBr3和CsPbBr3薄膜的光化学降解比较[161]
Fig.11 (a) Schematic diagram of CsPbBrCl2 quantum dots film deposition principle[132]; (b) Schematic diagram of improving the performance of silicon-based solar cells with perovskite film[133]; (c) J-V curves of the devices with different amounts of Nb doping[148]; (d) EDX analysis revealing the evolution of the iodine-to-lead atomic ratio in the CsPbI3 films when exposed to light[161]; (e) Comparison of photochemical degradation of the hybrid MAPbBr3 and all-inorganic CsPbBr3 perovskite material[161]
图12 (a)刮涂法提高钙钛矿薄膜性能的原理示意图和大面积的CsPbI2Br薄膜实物图[164];(b)基于不同有效面积的CsPbI2Br器件的J-V曲线[165];(c)在弯曲半径为10 mm的情况下,随弯曲次数的增加柔性器件J-V特性的变化曲线[167];(d)基于GAI-DEE-CsPbIBr2柔性器件的J-V曲线[67];(e)基于不同有效面积的GAI-DEE-CsPbIBr2器件性能的变化曲线[67]
Fig.12 (a) Schematic diagram of improving perovskite film properties by blade-coating method and the physical diagram of the large area CsPbI2Br film[164]; (b) J-V curves of the CsPbI2Br PSCs based on different effective areas[165]; (c) J-V characteristics evolution of the flexible device upon increasing bending cycles at a fixed bending radius of 10 mm[167]; (d) J-V curve of the ?exible GAI-DEE-CsPbIBr2 (20 mg/mL) PSC based on the PET substrate[67]; (e) PCEs and photographs of GAI-CsPbIBr2 (20 mg/mL) PSC based on the FTO substrate with different active areas[67]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. Journal of the American Chemical Society, 2009,131:6050. doi: 10.1021/ja809598r

URL     pmid: 19366264
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G. Sci. Rep., 2012,2:591. doi: 10.1038/srep00591

URL     pmid: 22912919
[3]
Yang J, Kelly T L. Inorg. Chem., 2017,56:92.

URL     pmid: 27504538
[4]
Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, La Magna A, Alberti A. Phys. m. Chem. Phys., 2016,18:13413.
[5]
Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G. Advanced Energy Materials, 2015,5:1501310. doi: 10.1002/aenm.201501310
[6]
Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A. Angew. Chem. Int. Edit., 2015,54:8208. doi: 10.1002/anie.201503153
[7]
Boyd C C, Cheacharoen R, Leijtens T, McGehee M D. Chem. Rev., 2019,119:3418.

URL     pmid: 30444609
[8]
Xiao C, Li Z, Guthrey H, Moseley J, Yang Y, Wozny S, Moutinho H, To B, Berry J J, Gorman B, Yan Y, Zhu K, Al-Jassimt M. Journal of Physical Chemistry C, 2015,119:26904.
[9]
De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Koyalenko M V, Hens Z. ACS Nano, 2016,10:2071. doi: 10.1021/acsnano.5b06295

URL     pmid: 26786064
[10]
Chen Z, Wang J J, Ren Y H, Yu C L, Shum K. Appl. Phys. Lett, 2012,101:4.
[11]
Wang Y, Liu X, Zhang T, Wang X, Kan M, Shi J, Zhao Y. Angew. Chem. Int. Edit., 2019,58:16691.
[12]
Fu L, Zhang Y, Chang B, Li B, Zhou S, Zhang L, Yin L. Journal of Materials Chemistry A, 2018,6:13263. doi: 10.1039/C8TA02899K
[13]
Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G. Chemical Science, 2016,7:4548.

URL     pmid: 30155101
[14]
Chen M, Ju M G, Carl A D, Zong Y X, Grimm R L, Gu J J, Zeng X C, Zhou Y Y, Padture N P. Joule, 2018,2:558.
[15]
Bai F, Hu Y, Hu Y, Qiu T, Miao X, Zhang S. Solar Energy Materials and Solar Cells, 2018,184:15.
[16]
Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y. Nano Lett., 2019,19:2066. doi: 10.1021/acs.nanolett.9b00238

URL     pmid: 30803237
[17]
Xie C, You P, Liu Z, Li L, Yan F. Light-Science & Applications, 2017,6:17023.
[18]
Tress W. Organic-Inorganic Halide Perovskite Photovoltaics, 2016,53.
[19]
Eperon G E, Paterno G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. Journal of Materials Chemistry A, 2015,3:19688.
[20]
Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A. J. Phys. Chem. Lett., 2017,8:67. doi: 10.1021/acs.jpclett.6b02594

URL     pmid: 27936746
[21]
Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S. Joule, 2018,2:1500.
[22]
Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L. ACS Energy Letters, 2018,3:1571. doi: 10.1021/acsenergylett.8b00835

URL     pmid: 30505950
[23]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Science, 2016,354:92. doi: 10.1126/science.aag2700

URL     pmid: 27846497
[24]
Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q, Ma W. Joule, 2018,2:2450.
[25]
Xiao M D, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L. Angew. Chem. Int. Edit., 2014,53:9898.
[26]
Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Nat. Mater, 2014,13:897.

URL     pmid: 24997740
[27]
Ahn N, Son D Y, Jang I H, Kang S M, Choi M, Park N G. Journal of the American Chemical Society, 2015,137:8696. doi: 10.1021/jacs.5b04930

URL     pmid: 26125203
[28]
Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y R Q, Yang Y, Yu T. ACS Appl. Mater. Interfaces, 2018,10:9541. doi: 10.1021/acsami.8b00358

URL     pmid: 29485858
[29]
Lau C F J, Deng X F, Ma Q S, Zheng J H, Yun J S, Green M A, Huang S J, Ho-Baillie A W Y. ACS Energy Letters, 2016,1:573.
[30]
Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J. Phys. Chem. Lett., 2016,7:167. doi: 10.1021/acs.jpclett.5b02597

URL     pmid: 26700466
[31]
Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015,6:2452. doi: 10.1021/acs.jpclett.5b00968

URL     pmid: 26266718
[32]
Duan J L, Zhao Y Y, He B L, Tang Q W. Angew. Chem. Int. Edit., 2018,57:3787. doi: 10.1002/anie.201800019
[33]
Sessolo M, Momblona C, Gil-Escrig L, Bolink H J. MRS Bull, 2015,40:660.
[34]
Momblona C, Gil-Escrig L, Bandiello E, Hutter E M, Sessolo M, Lederer K, Blochwitz-Nimoth J, Bolink H J. Energy & Environmental Science, 2016,9:3456.
[35]
Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y. Advanced Energy Materials, 2016,6:1502202.
[36]
Zhang W, Saliba M, Moore D T, Pathak S K, Horantner M T, Stergiopoulos T, Stranks S D, Eperon G E, Alexander-Webber J A, Abate A, Sadhanala A, Yao S H, Chen Y L, Friend R H, Estroff L A, Wiesner U, Snaith H J. Nat. Commun., 2015,6:10.
[37]
Zhou H P, Chen Q, Yang Y. MRS Bull., 2015,40:667. doi: 10.1557/mrs.2015.171
[38]
Giustino F, Snaith H J. ACS Energy Letters, 2016,1:1233. doi: 10.1021/acsenergylett.6b00499
[39]
Tai Q, Tang K C, Yan F. Energy & Environmental Science, 2019,12:2375.
[40]
Meng L, You J, Guo T F, Yang Y. Accounts of Chemical Research, 2016,49:155. doi: 10.1021/acs.accounts.5b00404

URL     pmid: 26693663
[41]
Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q. Materials Today Energy, 2018,10:146.
[42]
Swarnkar A, Mir W J, Nag A. ACS Energy Letters, 2018,3:286.
[43]
Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J. ACS Nano, 2018,12:3477.

URL     pmid: 29565559
[44]
Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z. Nat. Commun, 2018,9:8.

URL     pmid: 29295990
[45]
Xiang S S, Fu Z H, Li W P, Wei Y, Liu J M, Liu H C, Zhu L Q, Zhang R F, Chen H N. ACS Energy Letters, 2018,3:1824.
[46]
Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J. Joule, 2017,1:371.
[47]
Ding X H, Chen H B, Wu Y H, Ma S, Dai S Y, Yang S F, Zhu J. Journal of Materials Chemistry A, 2018,6:18258.
[48]
Liu F, Ding C, Zhang Y, Ripolles T S, Kamisaka T, Toyoda T, Hayase S, Minemoto T, Yoshino K, Dai S, Yanagida M, Noguchi H, Shen Q. Journal of the American Chemical Society, 2017,139:16708.

URL     pmid: 29091445
[49]
Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S. ACS Energy Letters, 2017,2:2219.
[50]
Wang Y, Zhang T, Kan M, Zhao Y. Journal of the American Chemical Society, 2018,140:12345. doi: 10.1021/jacs.8b07927

URL     pmid: 30247030
[51]
Zhao B Y, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q W, Ding J, Ge Q Q, Feng Y Q, Hu J S. Journal of the American Chemical Society, 2018,140:11716.
[52]
Wang K, Jin Z, Liang L, Bian H, Wang H, Feng J, Wang Q, Liu S. Nano Energy, 2019,58:175.
[53]
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Gratzel M, Zhao Y X. Science, 2019,365:591.

URL     pmid: 31395783
[54]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Letters, 2015,15:3692. doi: 10.1021/nl5048779

URL     pmid: 25633588
[55]
Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M. Sci. Adv, 2017,3:4204.
[56]
Wheeler L M, Sanehira E M, Marshall A R, Schulz P, Suri M, Anderson N C, Christians J A, Nordlund D, Sokaras D, Kroll T, Harvey S P, Berry J J, Lin L Y, Luther J M. Journal of the American Chemical Society, 2018,140:10504.

URL     pmid: 30044630
[57]
Wang Q, Jin Z W, Chen D, Bai D L, Bian H, Sun J, Zhu G, Wang G, Liu S Z. Advanced Energy Materials, 2018,8:8.
[58]
Ling X, Zhou S, Yuan J, Shi J, Qian Y, Larson B W, Zhao Q, Qin C, Li F, Shi G, Stewart C, Hu J, Zhang X, Luther J M, Duhm S, Ma W. Advanced Energy Materials, 2019,9:1900721.
[59]
Shi J W, Li F C, Yuan J Y, Ling X F, Zhou S J, Qian Y L, Ma W L. Journal of Materials Chemistry A, 2019,7:20936.
[60]
Tong G Q, Chen T T, Li H, Qiu L B, Liu Z H, Dang Y Y, Song W T, Ono L K, Jiang Y, Qi Y B. Nano Energy, 2019,65:10.
[61]
Duan J, Zhao Y, Yang X, Wang Y, He B, Tang Q. Advanced Energy Materials, 2018,8:1802346.
[62]
Yuan H, Zhao Y, Duan J, Wang Y, Yang X, Tang Q. Journal of Materials Chemistry A, 2018,6:24324.
[63]
Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. J. Phys. Chem. Lett., 2016,7:746.
[64]
Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Horantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J. Advanced Energy Materials, 2016,6:1502458.
[65]
Bai D L, Bian H, Jin Z W, Wang H R, Meng L N, Wang Q, Liu S Z. Nano Energy, 2018,52:408.
[66]
Gao Y X, Dong Y N, Huang K Q, Zhang C J, Liu B, Wang S T, Shi J, Xie H P, Huang H, Xiao S, He J, Gao Y L, Hatton R A, Yang J L. ACS Photonics, 2018,5:4104.
[67]
Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dai Q, Xu L, Song H. ACS Appl. Mater. Interfaces, 2019,11:33868. doi: 10.1021/acsami.9b09171

URL     pmid: 31441638
[68]
Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H. Nano Letters, 2017,17:2028. doi: 10.1021/acs.nanolett.7b00050

URL     pmid: 28170276
[69]
Lau C F J, Zhang M, Deng X F, Zheng J H, Bing J M, Ma Q S, Kim J, Hu L, Green M A, Huang S J, Ho-Baillie A. ACS Energy Letters, 2017,2:2319.
[70]
Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z. Journal of the American Chemical Society, 2017,139:14009.

URL     pmid: 28933843
[71]
Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y. Advanced Energy Materials, 2019,9:1803572.
[72]
Xiang W, Wang Z, Kubicki D J, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Graetzel M, Hagfeldt A. Joule, 2019,3:205.
[73]
Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Chen Z, Chen Z, Yan H, Yip H L, Cao Y. Adv. Mater., 2018,30:1802509.
[74]
Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S, Yang B. Adv. Mater., 2018,30:1705393.
[75]
Ye Q F, Zhao Y, Mu S Q, Ma F, Gao F, Chu Z M, Yin Z G, Gao P Q, Zhang X W, You J B. Adv. Mater, 2019,31:6.
[76]
Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z. Solar Rrl, 2020,4:1900363. doi: 10.1002/solr.v4.1
[77]
Bai F, Zhang J, Yuan Y, Liu H, Li X, Chueh C C, Yan H, Zhu Z, Jen A K Y. Adv. Mater., 2019,31:1904735.
[78]
Luo P F, Xia W, Zhou S W, Sun L, Cheng J G, Xu C X, Lu Y W. J. Phys. Chem. Lett., 2016,7:3603.

URL     pmid: 27569604
[79]
Zhang T Y, Dar M I, Li G, Xu F, Guo N J, Gratzel M, Zhao Y X. Sci. Adv, 2017,3:6.
[80]
Bian H, Wang Q, Yang S, Yan C, Wang H, Liang L, Jin Z, Wang G, Liu S. Journal of Materials Chemistry A, 2019,7:5740.
[81]
Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. Journal of the American Chemical Society, 2016,138:15829.

URL     pmid: 27960305
[82]
Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W. Adv. Mater, 2017,29:1605290.
[83]
Wang Z, Liu X, Lin Y, Liao Y, Wei Q, Chen H, Qiu J, Chen Y, Zheng Y. Journal of Materials Chemistry A, 2019,7:2773.
[84]
Kim D H, Heo J H, Im S H. ACS Appl. Mater. Interfaces, 2019,11:19123. doi: 10.1021/acsami.9b03413

URL     pmid: 31070346
[85]
Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T. Appl. Phys. Lett., 2010,96:221903.
[86]
Xu P, Chen S, Xiang H J, Gong X G, Wei S H. Chemistry of Materials, 2014,26:6068.
[87]
Zhang J, Yu C, Wang L, Li Y, Ren Y, Shum K. Sci. Rep., 2014,4:6954.

URL     pmid: 25378076
[88]
Xing G, Kumar M H, Chong W K, Liu X, Cai Y, Ding H, Asta M, Gratzel M, Mhaisalkar S, Mathews N, Sum T C. Adv. Mater., 2016,28:8191. doi: 10.1002/adma.201601418

URL     pmid: 27417520
[89]
Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. Nature, 2012,485:486.

URL     pmid: 22622574
[90]
Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G. Journal of the American Chemical Society, 2012,134:8579.

URL     pmid: 22578072
[91]
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Adv. Mater., 2014,26:7122.

URL     pmid: 25212785
[92]
Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W. Advanced Energy Materials, 2016,6:1601130
[93]
Marshall K P, Walker M, Walton R I, Hatton R A. Nature Energy, 2016,1:16178.
[94]
Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y, Grimm R L, Pacifici D, Zeng X C, Zhou Y, Padture N P. Nat. Commun, 2019,10:16.

URL     pmid: 30604757
[95]
Wang Y, Tu J, Li T, Tao C, Deng X, Li Z. Journal of Materials Chemistry A, 2019,7:7683. doi: 10.1039/C8TA10901J
[96]
Chen L J, Lee C R, Chuang Y J, Wu Z H, Chen C. J. Phys. Chem. Lett., 2016,7:5028. doi: 10.1021/acs.jpclett.6b02344

URL     pmid: 27973874
[97]
Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulovic V, Lunt R R. Nano Energy, 2016,28:469.
[98]
Gupta S, Bendikov T, Hodes G, Cahen D. ACS Energy Letters, 2016,1:1028.
[99]
Gupta S, Hodes G. SN Applied Sciences, 2019,1:1066.
[100]
Song T B, Yokoyama T, Stoumpos C C, Logsdon J, Cao D H, Wasielewski M R, Aramaki S, Kanatzidis M G. Journal of the American Chemical Society, 2017,139:836. doi: 10.1021/jacs.6b10734

URL     pmid: 27977193
[101]
Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N. Journal of Physical Chemistry C, 2015,119:1763.
[102]
Li W, Li J, Li J, Fan J, Mai Y, Wang L. Journal of Materials Chemistry A, 2016,4:17104.
[103]
Xu H, Duan J, Zhao Y, Jiao Z, He B, Tang Q. Journal of Power Sources, 2018,399:76.
[104]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem, 2013,52:9019. doi: 10.1021/ic401215x

URL     pmid: 23834108
[105]
Li W, Wang Z, Deschler F, Gao S, Friend R H, Cheetham A K. Nature Reviews Materials, 2017,2:16099.
[106]
Krishnamoorthy T, Ding H, Yan C, Leong W L, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar S G. Journal of Materials Chemistry A, 2015,3:23829.
[107]
Liu D, Li Q, Jing H, Wu K. RSC Advances, 2019,9:3279. doi: 10.1039/C8RA10251A
[108]
Tang L C, Chang C S, Huang J. J. Phys.: Condens. Matter., 2000,12:9129.
[109]
Roknuzzaman M, Ostrikov K, Wang H, Du A, Tesfamichael T. Sci. Rep., 2017,7:14025. doi: 10.1038/s41598-017-13172-y

URL     pmid: 29070848
[110]
Wu X, Song W, Li Q, Zhao X, He D, Quan Z. Chemistry-an Asian Journal, 2018,13:1654.
[111]
Heo J H, Kim J, Kim H, Moon S H, Im S H, Hong K H. J. Phys. Chem. Lett., 2018,9:6024.

URL     pmid: 30259748
[112]
Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H. Sustainable Energy & Fuels, 2017,1:710.
[113]
Kim Y, Yang Z Y, Jain A, Voznyy O, Kim G H, Liu M, Quan L N, de Arquer F P G, Comin R, Fan J Z, Sargent E H, Angew. Chem. Int. Edit., 2016,55:9586.
[114]
Liang G X, Chen X Y, Chen E H, Lan H B, Zheng Z H, Pan P, Tian X Q, Duan J Y, Wei Y D, Su Z H. J. Phys. Chem. C, 2019,123:27423.
[115]
Dolzhnikov D S, Wang C, Xu Y, Kanatzidis M G, Weiss E A. Chemistry of Materials, 2017,29:7901.
[116]
Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Ye Q, Wang H, Zeng H, Liu J, Kanatzidis M G. Solar Energy Materials and Solar Cells, 2017,159:227.
[117]
Jiang Y, Zhang H, Qiu X, Cao B. Materials Letters, 2017,199:50.
[118]
Xiao N, Tang N, Qiu Y, Liu D, Wang K. Sol. Energy, 2020,204:429.
[119]
Johansson M B, Zhu H, Johansson E M J. J. Phys. Chem. Lett., 2016,7:3467.

URL     pmid: 27538852
[120]
Slavney A H, Hu T, Lindenberg A M, Karunadasa H I. Journal of the American Chemical Society, 2016,138:2138. doi: 10.1021/jacs.5b13294

URL     pmid: 26853379
[121]
Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z. ChemPhysChem, 2018,19:1696.

URL     pmid: 29667287
[122]
Ning W, Wang F, Wu B, Lu J, Yan Z, Liu X, Tao Y, Liu J M, Huang W, Fahlman M, Hultman L, Sum T C, Gao F. Adv. Mater., 2018,30: doi: 10.1002/adma.201804470

URL     pmid: 30393893
[123]
Wu C, Zhang Q, Liu Y, Luo W, Guo X, Huang Z, Ting H, Sun W, Zhong X, Wei S, Wang S, Chen Z, Xiao L. Advanced Science, 2018,5:1700759.

URL     pmid: 29593974
[124]
Greul E, Petrus M L, Binek A, Docampo P, Bein T. Journal of Materials Chemistry A, 2017,5:19972.
[125]
Zhang Z, Wu C, Wang D, Liu G, Zhang Q, Luo W, Qi X, Guo X, Zhang Y, Lao Y, Qu B, Xiao L, Chen Z. Organic Electronics, 2019,74:204. doi: 10.1016/j.orgel.2019.06.037
[126]
Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G. ACS Energy Letters, 2018,3:1781.
[127]
Zai H, Zhu C, Xie H, Zhao Y, Shi C, Chen Z, Ke X, Sui M, Chen C, Hu J, Zhang Q, Gao Y, Zhou H, Li Y, Chen Q. ACS Energy Letters, 2018,3:30.
[128]
Akin S, Altintas Y, Mutlugun E, Sonmezoglu S. Nano Energy, 2019,60:557.
[129]
Chen C, Wu Y, Liu L, Gao Y, Chen X, Bi W, Chen X, Liu D, Dai Q, Song H. Advanced Science, 2019,6:1802046. doi: 10.1002/advs.201802046

URL     pmid: 31179207
[130]
Jin J, Li H, Bi W, Chen C, Zhang B, Xu L, Dong B, Song H, Dai Q. Solar Energy, 2020,198:187. doi: 10.1016/j.solener.2020.01.048
[131]
Gao Y, Wu Y, Lu H, Chen C, Liu Y, Bai X, Yang L, Yu W W, Dai Q, Zhang Y. Nano Energy, 2019,59:517.
[132]
Zheng X, Troughton J, Gasparini N, Lin Y, Wei M, Hou Y, Liu J, Song K, Chen Z, Yang C, Turedi B, Alsalloum A Y, Pan J, Chen J, Zhumekenov A A, Anthopoulos T D, Han Y, Baran D, Mohammed O F, Sargent E H, Bakr O M. Joule, 2019,3:1963.
[133]
Zhou D, Liu D, Pan G, Chen X, Li D, Xu W, Bai X, Song H. Adv. Mater., 2017,29:1704149.
[134]
Li Y N, Duan J L, Yuan H W, Zhao Y Y, He B L, Tang Q W. Solar Rrl, 2018,2:8.
[135]
Guo Y, Zhao F, Tao J, Jiang J, Zhang J, Yang J, Hu Z, Chu J. ChemSusChem, 2019,12:983.

URL     pmid: 30614214
[136]
Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Yang S, Chen H. iScience, 2019,15:156. doi: 10.1016/j.isci.2019.04.025

URL     pmid: 31059998
[137]
Tan X, Liu X, Liu Z, Sun B, Li J, Xi S, Shi T, Tang Z, Liao G. Applied Surface Science, 2020,499:143990.
[138]
Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M. Nanoscale, 2018,10:6318. doi: 10.1039/c8nr00758f

URL     pmid: 29589862
[139]
Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018,2:1356. doi: 10.1016/j.joule.2018.05.004
[140]
Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y. Joule, 2018,2:2065. doi: 10.1016/j.joule.2018.06.013
[141]
Tsai H, Nie W, Blancon J C, Toumpos C C S, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. Nature, 2016,536:312. doi: 10.1038/nature18306

URL     pmid: 27383783
[142]
Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S. Energy & Environmental Science, 2017,10:2095.
[143]
Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F. ACS Energy Letters, 2018,3:970. doi: 10.1021/acsenergylett.8b00270
[144]
Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A. Journal of Materials Chemistry A, 2018,6:5580. doi: 10.1039/C7TA11154A
[145]
Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y, Shen Q, Hayase S. Angew. Chem. Int. Edit., 2018,57:12745. doi: 10.1002/anie.201807270
[146]
Fang Z, Shang M, Hou X, Zheng Y, Du Z, Yang Z, Chou K C, Yang W, Wang Z L, Yang Y. Nano Energy, 2019,61:389. doi: 10.1016/j.nanoen.2019.04.084
[147]
Jena A K, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T. Chemistry of Materials, 2018,30:6668. doi: 10.1021/acs.chemmater.8b01808
[148]
Guo Z, Zhao S, Liu A, Kamata Y, Teo S, Yang S, Xu Z, Hayase S, Ma T. ACS Appl. Mater. Interfaces, 2019,11:19994.

URL     pmid: 31083899
[149]
Sharma S, Weiden N, Weiss A. Zeitschrift für Physikalische Chemie, 1992,175:63. doi: 10.1524/zpch.1992.175.Part_1.063
[150]
Ma Q, Huang S, Chen S, Zhang M, Lau C F J, Lockrey M N, Mulmudi H K, Shan Y, Yao J, Zheng J, Deng X, Catchpole K, Green M A, Ho-Baillie A W Y. Journal of Physical Chemistry C, 2017,121:19642. doi: 10.1021/acs.jpcc.7b06268
[151]
Amudhavalli A, Padmavathy R, Rajeswarapalanichamy R, Iyakutti K. Indian Journal of Physics, 2019,1.
[152]
Padmavathy R, Amudhavalli A, Manikandan M, Rajeswarapalanichamy R, Iyakutti K, Kushwaha A K. Journal of Electronic Materials, 2018,48:1243. doi: 10.1007/s11664-018-06850-8
[153]
Bella F, Sacco A, Salvador G P, Bianco S, Tresso E, Pirri C F, Bongiovanni R. Journal of Physical Chemistry C, 2013,117:20421. doi: 10.1021/jp405363x
[154]
Jiang Q, Rebollar D, Gong J, Piacentino E L, Zheng C, Xu T. Angew. Chem. Int. Edit., 2015,54:7617. doi: 10.1002/anie.201503038
[155]
Daub M, Hillebrecht H. Angew. Chem. Int. Edit., 2015,54:11016. doi: 10.1002/anie.201506449
[156]
Yao Z, Jin Z, Zhang X, Wang Q, Zhang H, Xu Z, Ding L, Liu S. Journal of Materials Chemistry C, 2019,7:13736. doi: 10.1039/C9TC04851K
[157]
Zhao H, Han Y, Xu Z, Duan C, Yang S, Yuan S, Yang Z, Liu Z, Liu S. Advanced Energy Materials, 2019,9:1902279. doi: 10.1002/aenm.v9.40
[158]
Ye L, Wang H, Wei Y, Guo P, Yang X, Ye Q, Wang H. ACS Applied Energy Materials, 2020,3:658. doi: 10.1021/acsaem.9b01859
[159]
Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Graetzel M, Seok S I. Nature Photonics, 2013,7:487.
[160]
Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J. Advanced Functional Materials, 2014,24:151. doi: 10.1002/adfm.v24.1
[161]
Akbulatov A F, Luchkin S Y, Frolova L A, Dremova N N, Gerasimov K L, Zhidkov I S, Anokhin D V, Kurmaev E Z, Stevenson K J, Troshin P A. J. Phys. Chem. Lett., 2017,8:1211. doi: 10.1021/acs.jpclett.6b03026

URL     pmid: 28220700
[162]
Sanchez S, Christoph N, Grobety B, Phung N, Steiner U, Saliba M, Abate A. Advanced Energy Materials, 2018,8:1802060. doi: 10.1002/aenm.v8.30
[163]
Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G. Energy & Environmental Science, 2014,7:2944.
[164]
Fan Y, Fang J, Chang X, Tang M C, Barrit D, Xu Z, Jiang Z, Wen J, Zhao H, Niu T, Smilgies D M, Jin S, Liu Z, Li E Q, Amassian A, Liu S, Zhao K. Joule, 2019,3:2485. doi: 10.1016/j.joule.2019.07.015
[165]
Liu X, Xiao Y, Zeng Q, Jiang J, Li Y. J. Phys. Chem. Lett., 2019,10:6382. doi: 10.1021/acs.jpclett.9b02644

URL     pmid: 31593470
[166]
Liu D, Lin Q, Zang Z, Wang M, Wangyang P, Tang X, Zhou M, Hu W. ACS Appl. Mater. Interfaces, 2017,9:6171. doi: 10.1021/acsami.6b15149

URL     pmid: 28112895
[167]
Rao H, Ye S, Gu F, Zhao Z, Liu Z, Bian Z, Huang C. Advanced Energy Materials, 2018,8:1800758. doi: 10.1002/aenm.v8.23
[168]
Hu Y, Zhang S, Shu T, Qiu T, Bai F, Ruan W, Xu F. Journal of Materials Chemistry A, 2018,6:20365. doi: 10.1039/C8TA06719H
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[4] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[5] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[6] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[7] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[8] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[12] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[13] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[14] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[15] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.