English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1289-1298 DOI: 10.7536/PC160418 前一篇   后一篇

• 特约稿 •

仿衣壳结构的巨大中空超分子纳米容器的多组分自组装构筑及其功能

张广录1,2, 张婷1, 周黎鹏1, 孙庆福1*   

  1. 1. 中国科学院福建物质结构研究所 福州 350002;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2016-04-01 修回日期:2016-06-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 孙庆福 E-mail:qfsun@fjirsm.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21402201)资助

Capsid-Inspired Multi-Component Self-Assembly of Nanocontainers: Structure, Functionalization, and Applications

Zhang Guanglu1,2, Zhang Ting1, Zhou Lipeng1, Sun Qingfu1*   

  1. 1. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-04-01 Revised:2016-06-01 Online:2016-09-15 Published:2016-08-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21402201).
在自然界病毒衣壳及笼状蛋白质大分子结构的启发下,运用V型双齿桥连吡啶配体和具有平面四方构型的Pd2+离子的溶液配位自组装,一系列具有MnL2n经验分子式的多组分巨大中空“纳米容器”型超分子结构被成功构筑。通过在配体内外引入官能团的策略,可以简单地实现衣壳骨架结构的内外功能化。内功能化后的“纳米容器”具有特殊的高密度相,不仅可以实现对不同类型客体分子的包裹,而且可以作为“纳米反应器”实现尺寸均一可控纳米粒子的原位合成以及小分子的催化转化。外功能化的核壳结构则可以对寡肽、DNA等生物分子具有特定的识别作用。本文对此类“纳米容器”型超分子的设计原理、自组装合成与表征、以及功能化应用等方面进行了综述。
Inspired by the spontaneous self-assembly of hollow virus capsids and protein cages found in nature, a family of hollow spherical structure with general formula MnL2n can be obtained via the coordination-directed multi-component self-assembly of bent bis(pyridine) ligands and square-planar Pd2+ ions. Endo and exo-hedral functionalization of the nanocontainer complexes have been realized by introduction of functional groups into the organic ligands. Due to the nanoconcentrator effect, endo-functionalised spherical complex could be used not only for the template-synthesis of mono-dispersed polymers or nanoparticles, but also for the catalytic transformations of small substrates. Meanwhile, exo-functionalized complexes can selectively recognize a variety of substrates, such as oligonucleotides and DNA. The design principles, synthesis, characterization and functional applications of such nano-container molecules are summarized in this paper.

Contents
1 Introduction
2 Design and synthesis of the nano-containers
3 Functionalization and applications
3.1 Functional cavity
3.2 Functional surface
4 Conclusion and outlook

中图分类号: 

()
[1] Philp D, Stoddart J F. Angew. Chem., Int. Ed.,1996, 35:1155.
[2] Horne R W. Virus Structure (Academic, New York), 1974.
[3] Casjens S. Virus Structure and Assembly. Jones and Bartlett, Boston, MA, 1985.
[4] Klug A.Angew. Chem., Int. Ed., 1983, 22:565.
[5] Caspar D L D, Klug A. Cold Spring Harbor Symp. Quant. Biol., 1962, 27:1.
[6] Carrillo-Tripp M, Shepherd C M, Borelli I A, Venkataraman S, Lander G, Natarajan P, Johnson J E, Brooks C L Ⅲ, Reddy V S. Nucleic acids research,2009, 37:D436.
[7] Wikoff W R, Liljas L, Duda R L, Tsuruta H, Hendrix R W, Johnson J E. Science,2000, 289:2129.
[8] Kang S, Zheng H, Liu T, Hamachi K, Kanegawa S, Sugimoto K, Shiota Y, Hayami S, Mito M, Nakamura T, Nakano M, Baker M L, Nojiri H, Yoshizawa K, Duan C, Sato O. Nat. Commun.,2015, 6:5955.
[9] MacGillivray L R, Atwood J L, Nature, 1997, 389:469.
[10] Ono K, Johmoto K, Yasuda N, Uekusa H, Fujii S,Kiguchi M, Iwasawa N. J. Am. Chem. Soc., 2015, 137:7015.
[11] Zhang G, Presly O, White F, Oppel I M, Mastalerz M. Angew. Chem., Int. Ed., 2014, 53:5126.
[12] Abrahams B F, Egan S J, Robson R. J. Am.Chem. Soc.,1999, 121:7172.
[13] Chand D K, Biradha K, Fujita M, Sakamoto S, Yamaguchi K. Chem. Commun.,2002, 2486.
[14] Olenyuk B, Whiteford J A, Fechtenkotter A, Stang P J. Nature,1999, 398:796.
[15] Olenyuk B, Levin M D, Whiteford J A, Shield J E, Stang P J. J. Am.Chem. Soc., 1999, 121:10434.
[16] Muller A, Krickemeyer E, Bogge H, Schmidtmann M, Peters F. Angew. Chem., Int. Ed.,1998, 37:3360.
[17] Bilbeisi R A, Ronson T K, Nitschke J R. Angew. Chem., Int. Ed., 2013, 52:9027.
[18] Xie T Z, Guo K, Guo Z, Gao W, Wojtas Y L, Ning G H, Huang M, Lu X, Li J Y, Liao S Y, Chen Y S, Moorefield C N, Saunders M J, Cheng S Z, Wesdemiotis C, Newkome G R. Angew. Chem., Int. Ed.,2015, 54:9224.
[19] Pasquale S, Sattin S, Escudero-Adan E C, Martinez-Belmonte M, de Mendoza J. Nat. Commun.,2012, 3:785.
[20] Haris K, Fujita D, Fujita M. Chem. Commun., 2013, 49:6703.
[21] Takezawa H, Akiba S, Murase T, Fujita M. J. Am. Chem. Soc.,2015, 137:7043.
[22] Ono K, Yoshizawa M, Akita M, Kato T, Tsunobuchi Y, Ohkoshi S I, Fujita M. J. Am. Chem. Soc.,2009, 131:2782.
[23] Murase T, Nishijima Y, Fujita M. J. Am. Chem. Soc., 2012, 134:162.
[24] Sawada T, Hisada H, Fujita M. J. Am. Chem. Soc., 2014, 136:4449.
[25] Tominaga M, Suzuki K, Kawano M, Kusukawa T, Ozeki T, Sakamoto S, Yamaguchi K, Fujita M. Angew. Chem., Int. Ed.,2004, 43:5621.
[26] Sato S, Ishido Y, Fujita M. J. Am. Chem. Soc.,2009, 131:6064.
[27] Fujita D, Takahashi A, Sato S, Fujita M. J. Am. Chem. Soc.,2011, 133:13317.
[28] Suzuki K, Tominaga M, Kawano M, Fujita M. Chem. Commun., 2009, 1638.
[29] Li J R, Timmons D J, Zhou H C. J. Am. Chem. Soc.,2009, 131:6368.
[30] Tranchemontagne D J, Ni Z, O'Keeffe M, Yaghi O M. Angew. Chem., Int. Ed.,2008, 47:5136.
[31] Li J R, Zhou H C. Nature Chem.,2010, 2:893.
[32] Sun Q F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Sci.,2010, 328:1144.
[33] Bunzen J, Iwasa J, Bonakdarzadeh P, Numata E, Rissanen K, Sato S, Fujita M. Angew. Chem., Int. Ed.,2012, 51, 3161.
[34] Sun Q F, Murase T, Sato S, Fujita M. Angew. Chem., Int. Ed.,2011, 50:10318.
[35] Sun B, Wang M, Lou Z, Huang M, Xu C, Li X, Chen L J, Yu Y, Davis G L, Xu B, Yang H B, Li X. J. Am. Chem. Soc.,2015, 137:1556.
[36] Bhat I A, Samanta D, Mukherjee P S. J. Am. Chem. Soc.,2015, 137:9497.
[37] Sun Q F, Sato S, Fujita M. Nature Chem.,2012, 4:330.
[38] Fujita D, Yokoyama H, Ueda Y, Sato S, Fujita M. Angew. Chem., Int. Ed.,2015, 54:155.
[39] Yoneya M, Tsuzuki S, Yamaguchi T, Sato S, Fujita M. ACS Nano, 2014, 8:1290.
[40] Sun Q F, Sato S, Fujita M. Angew. Chem., Int. Ed.,2014, 53:13510.
[41] Zhang G L, Zhou L P, Yuan D Q, Sun Q F. Angew. Chem., Int. Ed., 2015, 54:9844.
[42] Harris K, Sun Q F, Sato S, Fujita M. J. Am. Chem. Soc.,2013, 135:12497.
[43] Tominaga M, Suzuki K, Murase T, Fujita M. J. Am. Chem. Soc.,2005, 127:11950.
[44] Sato S, Iida J, Suzuki K, Kawano M, Ozeki T, Fujita M. Sci.,2006, 313:1273.
[45] Murase T, Sato S, Fujita M. Angew. Chem., Int. Ed.,2007, 46:5133.
[46] Bruns C J, Fujita D, Hoshino M, Sato S, Stoddart J F, Fujita M. J. Am. Chem. Soc., 2014, 136:12027.
[47] Suzuki K, Takao K, Sato S, Fujita M. J. Am. Chem. Soc.,2010, 132:2544.
[48] Suzuki K, Kawano M, Sato S, Fujita M. J. Am. Chem. Soc., 2007, 129:10652.
[49] Gramage-Doria R, Hessels J, Leenders S H, Troppner O, Durr M, Ivanovic-Burmazovic I, Reek J N. Angew. Chem., Int. Ed., 2014, 53:13380.
[50] Abe S, Hirata K, Ueno T, Morino K, Shimizu N, Yamamoto M, Takata M, Yashima E, Watanabe Y. J. Am. Chem. Soc.,2009, 131:6958.
[51] Murase T, Sato S, Fujita M. Angew. Chem., Int. Ed.,2007, 46:1083.
[52] Kikuchi T, Murase T, Sato S, Fujita M. Supramol. Chem., 2008, 20:81.
[53] Suzuki K, Sato S, Fujita M. Nature Chem.,2010, 2:25.
[54] Suzuki K, Takao K, Sato S, Fujita M. Angew. Chem., Int. Ed.,2011, 50:4858.
[55] Takao K, Suzuki K, Ichijo T, Sato S, Asakura H, Teramura K, Kato K, Ohba T, Morita T, Fujita M. Angew. Chem., Int. Ed.,2012, 51:5893.
[56] Sontz P A, Bailey J B, Ahn S, Tezcan F A. J. Am. Chem. Soc.,2015, 137:11598.
[57] Fujita D, Fujita M. ACS Central Science,2015, 1:352.
[58] Fujita D, Suzuki K, Sato S, Yagi-Utsumi M, Yamaguchi Y, Mizuno N, Kumasaka T, Takata M, Noda M, Uchiyama S, Kato K, Fujita M. Nature Commun.,2012, 3:1093.
[59] Kamiya N, Tominaga M, Sato S, Fujita M. J. Am. Chem. Soc.,2007, 129:3816.
[60] Sato S, Yoshimasa Y, Fujita D, Yagi-Utsumi M, Yamaguchi T, Kato K, Fujita M. Angew. Chem., Int. Ed., 2015, 54:8435.
[61] Kikuchi T, Sato S, Fujita M. J. Am. Chem. Soc.,2010, 132:15930.
[62] Ikemi M, Kikuchi T, Matsumura S, Shiba K, Sato S, Fujita M. Chemical Science,2010, 1:68.
[63] Sato S, Ikemi M, Kikuchi T, Matsumura S, Shiba K, Fujita M. J. Am. Chem. Soc.,2015, 137:12890.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[7] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[10] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[11] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[12] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[13] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[14] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[15] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.