English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 58-66 DOI: 10.7536/PC150617 前一篇   后一篇

• 综述与评论 •

用于DNA合成测序的可断裂连接单元研究现状

姜玉1, 谭连江2, 殷燕1, 沈玉梅2*, 龚兵4, 邵志峰3   

  1. 1. 上海应用技术学院化学与环境工程学院 上海 201418;
    2. 上海交通大学系统生物医学研究院 系统生物医学教育部重点实验室 上海 200240;
    3. 上海交通大学生物医学工程学院Bio-ID中心 上海 200240;
    4. 布法罗纽约州立大学化学系 纽约14260 美国
  • 收稿日期:2015-06-01 修回日期:2015-09-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 沈玉梅 E-mail:yumeishen@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.11374207,31370750,81071250,91227109)资助

Cleavable Linkers in DNA Sequencing by Synthesis

Jiang Yu1, Tan Lianjiang2, Yin Yan1, Shen Yu-Mei2*, Gong Bing4, Shao Zhifeng3   

  1. 1. School of Chemistry and Environmental Engineering, Shanghai Institution of Technology, Shanghai 201418, China;
    2. Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China;
    3. Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    4. Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
  • Received:2015-06-01 Revised:2015-09-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 11374207, 31370750, 81071250, 91227109).
DNA测序技术是遗传基因组相关疾病研究的基础。合成测序是DNA二代测序技术中非常重要的一种。合成测序技术能够有效地实现大规模平行测序,大大提高测序通量的同时也降低成本,目前已得到广泛的应用。在合成测序中,首先需要合成荧光素标记的核苷酸,作为能够参与DNA链延伸的循环可逆终端。已有文献报道的可逆终端结构主要包括单位点修饰(MRT)和双位点修饰(DRT)两种类型。DRT类型可逆终端的最大优势是DNA聚合酶容易识别且合成路线简单,能够较好地应用于DNA合成测序。在此过程中可断裂连接单元将核苷酸和荧光素连接起来,它的性质直接决定了测序的效率、读长等关键指标。本文主要对目前用于DNA合成测序的可断裂连接单元研究现状进行介绍,并对其发展前景进行了展望。
DNA sequencing technology is the basis of genetical genomics-related diseases. Sequencing by synthesis is one of the most important second-generation DNA sequencing techniques. Sequencing by synthesis can achieve a massively parallel sequencing effectively and improve sequencing throughput greatly, which favor cost reduction. Therefore, sequencing by synthesis has been widely used over the world. In DNA sequencing by synthesis, fluorescence-labeled nucleotides should be synthesized as a cyclic reversible terminator for DNA extension reaction. The reversible terminators reported in the literature mainly include MRT (mono-modified reversible terminators) and DRT (dual-modified reversible terminators) reversible terminators. The most significant advantage of DRT reversible terminator is that it can be readily identified by DNA polymerase. Besides, the synthetic route of MRT is simple, and this type of reversible terminator is hence more suitable for DNA sequencing by synthesis. Since fluorescence-labeled nucleotides are usually prepared by connecting the fluorescence tag and the nucleotide with a cleavable linker, the properties of the cleavable linker exert significant effects on the key parameters of DNA sequencing such as sequencing efficiency and read length. In this paper, recent advances and current research status of cleavable linkers used in DNA sequencing by synthesis is reviewed. Also, the development prospect of the cleavable linkers is demonstrated.

Contents
1 Introduction
2 Introduction of DNA sequencing technology
3 DNA sequencing by synthesis
3.1 Mono-modified cyclic reversible terminators
3.2 Dual-modified cyclic reversible terminators
4 Linkers
4.1 Enzymatic reversible terminators
4.2 Nucleophilic/alkali sensitive reversible terminators
4.3 Reduction-sensitive reversible terminators
4.4 Photosensitive reversible terminators
4.5 Metal-aided reversible terminators
4.6 Oxidation-sensitive reversible terminators
4.7 Electrophilic/acid-sensitive reversible terminators
5 Outlook

中图分类号: 

()
[1] Avery O T, MacLeod C M, McCarty M. J. Exp. Med., 1944, 79: 137.
[2] Meselson M, Stahl F W. Proc. Natl. Acad. Sci.U.S.A., 1958, 44: 671.
[3] Sanger F, Coulson A R. J. Mol. Biol., 1957, 94: 441.
[4] Sanger F, Nicklen S, Coulson A R. Proc. Natl. Acad. Sci.U.S.A.,1977, 74: 5463.
[5] Maxam A M, Gilbert W. Proc. Natl. Acad. Sci.U.S.A., 1977, 74: 560.
[6] Gao L, Lu Z H. Biochem. Biophys. Res. Commun., 2009, 387: 421.
[7] Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, DeWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. Science, 2009, 323: 133.
[8] Levene M J, Korlach J, Turner S W, Foquet M, Craighead H G, Webb W W. Science, 2003, 299: 682.
[9] Schadt E E, Turner S, Kasarskis A. Hum. Mol. Genet., 2010, 19: 227.
[10] Hyman E D. Anal. Biochem., 1988, 174: 423.
[11] Ronaghi M. Anal. Biochem. 1996, 242: 84.
[12] Guo J, Yu L, Nicholas T, Ju J Y. Acc. Chem. Res., 2010, 43: 551.
[13] Metzker M L. Genome Res., 2005, 15: 1767.
[14] Melamede R J. US 4863849, 1989.
[15] Kim T S, Kim D R, Ahn H C, Shin D Y, Ahn D R. ChemBioChem., 2010, 11: 75.
[16] Metzker M L, Raghavachari R. Nucleic. Acid. Res., 1994, 22: 4259.
[17] Welch B M, Burgess K. Nucleoside Nucleotides., 1999, 18: 197.
[18] Welch B M, Martinez C I, Zhang A J, Jin S, Gibbs S R, Burgess K. Chemistry, 1999, 5: 951.
[19] Shin D Y, Ahn D R, Chui H. EP 2305835A1, 2011.
[20] Ruparel H R, Bi L R, Li Z G, Bai X P, Kim D H, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci., 2005, 102(17): 5932.
[21] Guo J, Xu N, Li Z M, Zhang S L, Wu J, Kim D H, Marma M S, Meng Q L, Cao H Y, Li X X, Shi S D, Yu L, Kalachikov S, Russo J J, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U.S.A., 2008, 105(27): 9145.
[22] Kricka L J, Fortina P. Clin. Chem., 2009, 55(4): 670.
[23] Turcatti G, Romieu A, Fedurco M, Tairi A P. Nucleic. Acids Res., 2008, 36(4): e25.
[24] Tasara T, Angerer B, Damond M, Winter H, Doerhoefer S, Huebscher U, Amacker M. Nucleic. Acids. Res., 2003, 31: 2636.
[25] Seok T S, Bai X P, Ruparel H, Li Z M, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2004, 101(15): 5488.
[26] Seok T S, Bai X P, Kim D H, Meng Q L, Shi S D, Ruparel H, Li Z M, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2005, 102(17): 5926.
[27] Li Z M, Bai X P, Ruparel H, Kim S, Nicholas J T, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2003, 100(2): 414.
[28] Vladislav A L, Wu W D, Stupi1 B P, Wang J C, Sidney E, Megan M, Hersh1 N, Michael L. Nucl. Acids. Res., 2011, 39(6): e39.
[29] Leriche G, Chisholm L, Wagner A. Bioorg. Med. Chem., 2012, 20: 571.
[30] Babe L M, Craik C S. Cell, 1997, 91: 427.
[31] Speers A E, Cravatt B F. J. Am. Chem. Soc., 2005, 127: 10018.
[32] Takakusa H, Kikuchi K, Urano Y, Sakamoto S, Yamaguchi K, Nagano T. J. Am. Chem. Soc., 2002, 124: 1653.
[33] Lin W C, Morton T H. J. Org. Chem., 1991, 56: 6850.
[34] Fang S Y, Bergstrom D E. Nucleic Acid Res., 2003, 31: 708.
[35] Knapp D C, D'Onofrio J, Engels J W. Bioconjugate Chem., 2010, 21: 1043.
[36] Zarling D A, Watson A, Bach F H. J. Immunol., 1980, 124: 913.
[37] Petrotchenko E V, Olkhovik V K, Borchers C H. Mol. Cell. Proteomics., 2005, 4: 1167.
[38] Yokoshima S, Abe Y, Watanabe N, Kita Y, Kan T, Iwatsubo T, Tomita T, Fukuyama T. Bioorg. Med. Chem. Lett., 2009, 19: 6869.
[39] Long L L, Lin W Y, Chen B B, Gao W S, Yuan L. Chem. Commun., 2011, 47: 893.
[40] Traut R R, Bollen A, Sun T T, Hershey J W, Sundberg J, Pierce L R. Biochemistry., 1973, 12: 3266.
[41] Bildstein L, Dubernet C, Couvreur P. Adv. Drug Delivery Rev., 2011, 63: 3.
[42] Texier I, Razkin J, Josserand V, Boturyn D, Dumy P, Coll J, Rizo P. Nucl. Instrum. Methods Phys. Res. Sect. A, 2007, 571: 165.
[43] Soukup G A, Cerny R L, Maher L J. Bioconjugate Chem., 1995, 6: 135.
[44] Turcatti G, Komieu A, Fedurco M, Tairi A.Nucleic Acids Res., 2008, 36: e25.
[45] 汤道年(Tang D N). 华东理工大学硕士论文(Doctoral Dissertation of East China University of Science and Technology), 2014.
[46] 汤道年(Tang D N),江敏(Jiang M),李小卫(Li X W),康亚妮(Kang Y N),伍新燕(Wu X Y),龚兵(Gong B),邵志峰(Shao Z F),赵小东(Zhao X D),沈玉梅(Shen Y M). 高等学校化学学报(Chemical Journal of Chinese Universities), 2014, 35: 2346.
[47] Gemeay A H. Dyes Pigments., 2002, 54: 201.
[48] Landi F, Johansson C M, Campopiano D J, Hulme A N. Org. Biomol. Chem., 2010, 8: 56.
[49] Yang Y Y, Grammel M, Raghavan A S, Charron G, Hang H C. Chem. Biol., 2010, 17: 1212.
[50] Budin G, Moune-Dimala M, Leriche G, Saliou J M, Papillon J, Sanglier-Cianferani S, Dorsselaer A V, Lamour V, Brino L, Wagner A. ChemBioChem., 2010, 11: 2359.
[51] Tan L J, Liu Y Z, Yang Q L, Li X W, Wu X Y, Gong B, Shen Y M, Shao Z F. Chem. Commun., 2016, 52: 954.
[52] 沈玉梅(Shen Y M),杨晴来(Yang Q L),谭连江(Tan L J),李鑫辉(Li X H),邵志峰(Shao Z F),龚兵(Gong B),李小卫(Li X W),刘亚智(Liu Y Z),张震(Zhang Z). CN 201510031230.9. 2015.
[53] Hammond N, Koumi P, Langley G J, Lowe A, Brown T. Org. Biomol. Chem., 2007, 5: 1878.
[54] Zhou H L, Ranish J A, Watts J D, Aebersold R. Nat. Biotechnol., 2002, 20: 512.
[55] Holmes P C. J. Org. Chem., 1997, 62: 2370.
[56] Chowdhury S M, Munske G R, Tang X T, Bruce J E. Anal. Chem., 2006, 78: 8183.
[57] Cho S, Lee S H, Chung W J, Kim Y K, Lee Y S, Kim B G. Electrophoresis., 2004, 25: 3730.
[58] Lemaire R, Stauber J, Wisztorski M, Camp C V, Desmons A, Deschamps M, Proess G, Rudlof I, Woods A S, Day R, Salzet M, Fournier I. J. Proteome Res., 2007, 6: 2057.
[59] Li Z M, Bai X P, Ruparel H, Kim S, Turro N J, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2003, 100: 414.
[60] Seo T S, Bai X P, Ruparel H, Li Z M, Turro N J, Ju J Y. Proc. Natl. Acad. Sci.U. S. A., 2004, 101: 5488.
[61] Seo T S, Bai X P, Kim D H, Meng Q L, Shi S D, Ruparel H, Li Z M, Turro N J, Ju J Y. Proc. Natl. Acad. Sci.U.S.A., 2005, 102: 5926.
[62] Meng Q L, Kim D H, Bai X P, Bi L R, Turro N J, Ju J Y. US20090081686A1, 2008
[63] Wu W, Stupi B P, Litosh A V, Mansouri D, Farley D, Morris S, Metzker S, Metzker L M. Nucleic Acids Res., 2007, 35: 6339.
[64] Wu W, Litosh A V, Stupi B P, Metzker L M. US20090081686A1, 2008
[65] Tjoeng F S, Heavner G A. J. Org. Chem., 1983, 48: 355.
[66] Orth R, Sieber S A. J. Org. Chem., 2009, 74: 8476.
[67] Gardner M W, Vasicek L A, Shabbir S, Anslyn E V, Brodbelt J S. Anal. Chem., 2008, 80: 4807.
[68] Gardner M W, Brodbelt J S. Anal. Chem., 2009, 81: 4864.
[69] Petrotchenko E V, Xiao K H, Cable J, Chen Y W, Dokholyan N V, Borchers C H. Mol. Cell. Proteomics., 2009, 8: 273.
[70] Kodama K, Fukuzawa S, Nakayama H, Kigawa T, Sakamoto K, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S. ChemBioChem., 2006, 7: 134.
[71] Bi L R, Kim D H, Ju J Y. J. Am. Chem. Soc., 2006, 128: 2542.
[72] Smith R J, Capaldi R A, Muchmore D, Dahlquist F. Biochemistry, 1978, 17: 3719.
[73] Brockmöller J, Kamp R M. Biochemistry, 1988, 27: 3372.
[74] Hutter D, Kim M J, Karalkar N, Leal N A, Chen F, Guggenheim E, Visalakshi V, Olejnik J, Gordon S, Benner S A. Nucleosides Nucleotides Nucleic Acids., 2010, 29: 879.
[75] Buchardt O, Elsner H I, Nielsen P E, Petersen L C, Suenson E. Anal. Chem., 1986, 158: 87.
[76] Saxon E, Bertozzi C R. Science, 2000, 287: 2007.
[77] Hangauer M J, Bertozzi C R. Angew. Chem. Int. Ed., 2008, 47: 2394.
[78] Tan L J, Liu Y Z, Li X W, Wu X Y, Gong B, Shen Y M, Shao Z F. Chem. Commun., 2016, DOI: 10.10391C5CC09578F.
[79] Szychowski J, Mahdavi A, Hodas L J, Bagert J D, Ngo J T, Landgraf P, Dieterich D C, Schuman E M, Tirrell D A. J. Am. Chem. Soc., 2010, 132: 18351.
[80] Tannock I F, Rotin D. Cancer Res., 1989, 49: 4373.
[81] Gao W W, Chan J M, Farokhzad O C. Mol. Pharmaceutics, 2010, 7: 1913.
[82] Jiang M, Tang D M, Zhao X D, Li Q, Zhuang Y, Wei X F, Li X W, Liu Y Z, Wu X Y, Shao Z F, Gong B, Shen Y M. Nucleosides Nucleotides Nucleic Acids, 2014, 33: 774.
[83] 沈玉梅(Shen Y M),龚兵(Gong B),黎庆(Li Q), 邵志峰(Shao Z F), 伍新燕(Wu X Y), 盛司潼(Sheng S T), 郭勋祥(Guo X X). CN 201110331659.1. 2014.
[84] 沈玉梅(Shen Y M),庄园(Zhang Y),郭勋祥(Guo X X),伍新燕(Wu X Y),邵志峰(Shao Z F),龚兵(Gong B),黎庆(Li Q). CN 201210132695. X. 2012.
[85] 沈玉梅(Shen Y M),赵小东(Zhao X D),邵志峰(Shao Z F),龚兵(Gong B),汤道年(Tang D N),李小卫(Li X W),彭丽娜(Peng L N),邢宇洋(Xing Y Y),庄园(Zhang Y),黎庆(Li Q),伍新燕(Wu X Y). CN 201310015235.3. 2013.
[86] 沈玉梅(Shen Y M),龚兵(Gong B),汤道年(Tang D N),邵志峰(Shao Z F),赵小东(Zhao X D),李小卫(Li X W),伍新燕(Wu X Y),黎庆(Li Q)、魏晓飞(Wei X F),刘亚智(Liu Y Z). CN 201310533070.9. 2013.
[1] 任娟, 边申, 王奕允, 孔祥蕾. 幻数团簇丝氨酸八聚体:结构和手性特征[J]. 化学进展, 2018, 30(4): 383-397.
[2] 肖肖, 陈昌盛, 刘伟强, 张业顺. 丝胶蛋白的结构、性能及生物医学应用[J]. 化学进展, 2017, 29(5): 513-523.
[3] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[4] 蒋革, 罗锋, 徐耀忠, 张晓辉. 近紫外光辅助4-硫脱氧胸苷抗癌作用的研究[J]. 化学进展, 2016, 28(8): 1224-1237.
[5] 袁硕, 孙德群. β-模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2016, 28(7): 1084-1098.
[6] 宋萍, 叶德楷, 宋世平, 王丽华, 左小磊. DNA水凝胶的制备及生物应用[J]. 化学进展, 2016, 28(5): 628-636.
[7] 马晓川, 费浩. 金属配位在多肽与蛋白质研究中的应用[J]. 化学进展, 2016, 28(2/3): 184-192.
[8] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法[J]. 化学进展, 2015, 27(11): 1628-1639.
[9] 王军, 张阿方. 多肽基超分子螺旋聚合物[J]. 化学进展, 2015, 27(10): 1413-1424.
[10] 侯辉, 孙德群. 模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2015, 27(9): 1260-1274.
[11] 董世彪, 焦雄, 赵荣涛, 许金坤, 宋宏彬, 郝荣章. DNA四面体结构纳米材料及其应用[J]. 化学进展, 2015, 27(9): 1191-1197.
[12] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[13] 王见伟, 宋利锋, 赵瑾, 原续波. 基于多肽结构的聚合物水凝胶[J]. 化学进展, 2015, 27(4): 373-384.
[14] 田丹碧, 张卫, 汤燕, 江凌, 刘佳, 胡燚. 纳米金生物共轭探针在酶活检测中的应用[J]. 化学进展, 2015, 27(2/3): 267-274.
[15] 梁妍钰, 唐姗, 郑基深. 细胞穿透环肽[J]. 化学进展, 2014, 26(11): 1793-1800.